Classical quadrature rules via Gaussian processes

Toni Karvonen & Simo Särkkä
Department of Electrical Engineering and Automation
Aalto University, Finland

Quadrature rules

Classical quadrature

In classical quadrature, the aim is to integrate many polynomials exactly. Given any \(n \) distinct nodes \(x_1, \ldots, x_n \in \Omega \subset \mathbb{R} \), it is possible to construct a quadrature rule

\[
Q(f) = \sum_{i=1}^{n} w_i f(x_i) \approx \int_{\Omega} f(x) \, d\mu
\]

that is exact for all polynomials of degree at most \(n - 1 \) by solving the weights from \(Vw = c \), where \(\{V_i\}_{i=1}^{n} = (x_i^{-1}) \) is the invertible Vandermonde matrix and \(\{c_i\} = f_i x_i^{-1} \, d\mu(x) \).

A classical quadrature rule is of degree \(m \) if it is exact for all polynomials of degree at most \(m \). One can do better than degree \(n - 1 \) with \(n \) points. An \(n \)-point Gaussian quadrature rule is of degree \(2n - 1 \). This rule is unique (given the measure \(\mu \)) and its weights \(w_i \) are positive.

Bayesian quadrature

In Bayesian quadrature [1,2], the integrand \(f \) is assigned a Gaussian process prior \(f \sim \mathcal{N}(0,k) \) with a positive-definite covariance kernel \(k \). The data \(\mathcal{D} = \{(x_i, f(x_i)), \ldots, (x_n, f(x_n))\} = (X, y) \) induce a Gaussian posterior \(f | \mathcal{D} \) and, consequently, a Gaussian posterior on the integral \(\int_{\Omega} f(x) \, d\mu | \mathcal{D} \) with the mean and variance

\[
Q_B(f) = \mathbb{E} \left(\int_{\Omega} f(x) \, d\mu | \mathcal{D} \right) = y^T K^{-1} k(X), \\
V_B = \text{Var} \left(\int_{\Omega} f(x) \, d\mu | \mathcal{D} \right) = \int_{\Omega} k(x) \, d\mu - \int_{\Omega} k(x) \, K^{-1} k(x) \, d\mu
\]

where \(k(x) = \int_{\Omega} k(x, x) \, d\mu(x), \) \(k_j(x) = k(x, x_j) \), and \(|K|_{ij} = k(x_i, x_j) \). Following the philosophy of probabilistic numerics [3], the integral posterior variance \(V_B \) can be used in quantifying the uncertainty inherent to the numerical integral approximation \(Q_B(f) \).

A numerical experiment

- We work with \(\Omega = [-1, 1] \) and \(d\mu = \frac{1}{2} dx \).
- The orthogonal polynomials are the Legendre polynomials so \(k^p \) is constructed using them.
- We set \(n = 4 \) and select the four nodes as those of the unique Gaussian quadrature rule.
- For \(p = 4, \ldots, 8 \), the kernel \(k^p \) yields a Bayesian quadrature rule that coincides with the Gaussian one by Theorem 1.
- The posterior processes for (for \(p = 4 \) the posterior variance vanishes) are depicted here.
- Note that the posterior variances are non-zero even though \(V_B = 0 \) by Theorem 1.

Conclusions and discussion

- All classical quadrature rules in one dimension can be interpreted as Bayesian quadrature rules if the kernel is selected suitably.
- In particular, Gaussian quadrature rules are unique optimal Bayesian rules when \(p = m = 2n \).
- In the paper we also provide some interesting multivariate generalisations.
- It is likely that the assumption on \(\varphi_i \) being orthogonal polynomials is not necessary.

Main results

Objectives

Särkkä et al. [4] have shown that many classical quadrature rules popular in non-linear Kalman filtering can be interpreted as Bayesian quadrature rules if the kernel is selected suitably. We clarify and extend their analysis.

Results

Let \(\varphi_0, \ldots, \varphi_{p-1} \) be polynomials that form a basis of the space of polynomials of degree at most \(p - 1 \). We define \(k^p \), the polynomial kernel of degree \(p \), as

\[
k^p(x, x') = \sum_{i=0}^{p-1} \varphi_i(x) \varphi_i(x').
\]

A Bayesian quadrature rule is said to coincide with a classical quadrature rule if the rules have the same nodes and weights.

Theorem 1. Let \(\varphi_0, \ldots, \varphi_{p-1} \) be the orthogonal polynomials. Consider the Bayesian quadrature rule with the kernel \(k^p \) and nodes \(X \) and the classical quadrature rule that is of degree \(m - 1 \) and uses the same nodes. Then these rules coincide if and only if \(n = m \). If the rules coincide, \(V_B = 0 \).

When \(p < m = 2n \), there are in general multiple optimal Bayesian quadrature rules (i.e. rules whose nodes globally minimise \(V_B \)). For \(p = m = 2n \), uniqueness of Gaussian quadrature rules results in the following corollary.

Corollary 2. When \(\varphi_i \) are the orthogonal polynomials there is a unique \(n \)-point optimal Bayesian quadrature rule for the kernel \(k^{2n} \). This is the Gaussian quadrature rule for the measure \(\mu \).

References