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This chapter provides a review on correspondence growing techniques which have
been used in multi-view stereo reconstruction problems. Typically these meth-
ods approach the problem of multi-view image matching by first determining a
sparse set of feature correspondences between pairs of views and then iteratively
expanding the matching regions. Sometimes such techniques are also referred by
terms like match propagation, quasi-dense matching, or surface growing. Besides
providing an overview of the research area, this chapter introduces a particular
method, called quasi-dense wide baseline matching, which employs the best-first
correspondence growing principle for matching pixels in views with substantially
different viewpoints. In addition, the properties and performance of different
methods are illustrated by examples and experiments with real images.

1. Introduction

Automatically acquiring a three-dimensional model of a scene from multiple photo-

graphic images is an important research area in computer vision. The basic geomet-

ric and computational principles for automatic multi-view reconstruction systems

have been known for some time [20], and several such systems have already been

built. The first systems of this kind were designed to use continuous video sequences

as their input whereas some of the more recent approaches are able to acquire scene

reconstructions from wide baseline image sets, where the views are captured at

sparsely located viewpoints [36], or even unorganized image sets downloaded from

Internet photo collections [48; 17].

However, despite the large number of previous research efforts and existing re-

construction systems, there are still many challenges and open problems in the

field. In fact, image-based modeling continues to be an active research area. For

example, one current focus area is the construction of large-scale reconstruction sys-

tems, which are able to reconstruct city-scale scenes from thousands or hundreds

of thousands of images [1; 13; 12]. In addition, there have been efforts to improve
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the efficiency of video-based reconstruction pipelines in order to achieve real-time

performance [42; 40; 39]. Also, one important research topic is to develop methods

for representing three-dimensional models in a compact form that facilitates storage

and transmission [32; 6].

The great interest towards image-based modeling is partly motivated by the re-

cent trends in information and communication technology industry. For instance,

in many applications and Internet-based services, there is an increased need for

three-dimensional photorealistic visualization of scenes and objects, possibly with

additional spatially localized data. Examples of such applications include naviga-

tion and driving assistance, entertainment and virtual tourism, architectural and

environmental planning, and various forms of personal communication. In fact,

image-based models are already utilized in many recent services by major software

companies, such as Photosynth image stitching tool by Microsoft, and geographical

mapping and visualization tools like Google Earth and Bing Maps.

In this article, we concentrate on image matching which is an essential part of

any generic multi-view reconstruction system. Specifically, we focus on a particular

correspondence growing method called quasi-dense wide baseline matching that was

originally proposed in the articles [24] and [29] on which this chapter is partly based.

This method tries to establish a large number of point correspondences, i.e. a quasi-

dense set of matching points, between two or three views of a scene. As its input

the algorithm takes a sparse set of corresponding regions between pairs of views

and then iteratively expands these regions pixel-wise by using a best-first match

propagation strategy similar to [33].

The quasi-dense approach can be used to match pairs of views of arbitrary

possibly deforming scenes if the surfaces of the scene are sufficiently textured [25].

However, if the fundamental matrix is known for a pair of perspective views of

a rigid scene, the method [24] can also utilize that to improve the reliability of

matching. Further, in the three-view case, the method of [29] can be used if the

trifocal tensor is known. In this chapter we mainly concentrate on cases where the

cameras are perspective and their projection matrices are known. In fact, this is the

usual problem setting in multi-view stereo [45], where the main task is to acquire a

dense or semi-dense reconstruction by matching pixels between multiple calibrated

views. Multi-view stereo is a key stage in a typical 3-D reconstruction pipeline after

the camera motion and sparse scene structure have been estimated by structure

from motion techniques [20; 16].

The structure of this chapter is as follows. First, in Section 2 we review related

work on correspondence growing methods and multi-view reconstruction. Then,

in Section 3, we describe the quasi-dense matching algorithms for image pairs and

triplets and also discuss possible generalizations in order to match multi-view im-

age sets with more than three views. Section 4 presents illustrative examples and

experimental results with real images. The results are discussed in Section 5 and

Section 6 concludes the chapter.
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2. Related work

Matching multiple views of a scene in order to obtain a reconstruction of it is

an old [20] but still timely problem in computer vision. Perhaps the most well

studied topic in this area is two-view stereo matching. Much of the early research

on two-view stereo was concentrated on the narrow baseline case [43] but some

more recent works [24; 52] have focused on matching widely separated views by

building upon the recent techniques in sparse wide baseline matching [38]. However,

although some image-based modeling approaches use two-view matching as a basic

building block and then combine point clouds from pairwise stereo depth maps

into complete object models as a post process, there are also many multi-view

stereo methods which are inherently designed to process more than two views [45;

14]. In the following, we aim to give an overview of two-view and multi-view stereo

reconstruction methods with a particular focus on correspondence growing methods

that are related to our approach.

2.1. General overview

Multi-view stereo methods can be characterized according to the scene representa-

tion that they use. Most approaches to represent three-dimensional scenes are based

on voxels [30; 44], level-sets [11], polygonal surface meshes [10; 21], depth maps [49;

16; 15] or point clouds [14; 34]. Typically level set methods and voxel-based ap-

proaches represent scene geometry as a function on a regularly sampled 3-D grid.

That is, in the case of level sets, the function encodes distance to the closest sur-

face and, in voxel representation, it is a simple discrete occupancy function. The

main problem with regular 3-D grids is their high memory usage which makes them

inefficient for high-resolution representation of large scenes.

In contrast, polygonal meshes are efficient to store and render since they rep-

resent surfaces as a set of connected planar facets that may have unconstrained

position in space. For example, triangular meshes have been used to model large

scenes in some recent works [21]. Nevertheless, sometimes a depth map for each in-

put view is the most convenient and natural representation for 3-D information. For

example, in a real-time reconstruction system that operates from a moving vehicle,

an efficient plane-sweeping method can be used to produce depth maps sequentially

from successive views [15; 42]. However, multi-view depth maps are not necessarily

mutually consistent and, in the end, some kind of a fusion process is often used to

combine multiple depth maps into a single point cloud or surface mesh [37; 31]. In

fact, besides meshes, point clouds (or clouds of surface patches) are representations

that are also commonly used [14; 27]. Still, in many cases point clouds are eventually

transformed into meshes in order to facilitate efficient storage and rendering [32;

6]. Finally, it is also common that systems use different 3-D representations in

different stages of the reconstruction pipeline.

Besides scene representation, another essential characteristic of multi-view stereo
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methods is the type of reconstruction algorithm. In fact, reconstruction algo-

rithms can be categorized into global and local methods. Global methods typ-

ically define a global cost function for shapes and then use some global opti-

mization algorithm to recover a shape that minimizes the cost function. Ex-

amples of global methods include approaches based on volumetric Markov Ran-

dom Field (MRF) models [3], which utilize graph cut optimization techniques
[2], and variational approaches, which use convex optimization [28]. A common

property of global methods is a relatively large memory usage and time com-

plexity due to the use of a dense volumetric grid. Hence, such methods are not

particularly suitable for large-scale scenes. However, there are also works which

improve efficiency of graph cut based approaches by using adaptive grids [47;

31].

On the other hand, local matching methods often allow faster reconstruction

with smaller memory requirements by, for example, dividing large image sets into

subsets which may be processed separately and partly in parallel [42]. However,

this may increase reconstruction errors in scene regions that are not particularly

distinctive. That is, the global fitness of reconstruction may be compromised. Thus,

the erroneously reconstructed parts need to be improved by some post-processing

approach, using e.g. depth map fusion [42] or other ways of enforcing visibility

consistency [14].

There are various local matching methods, including approaches based on the

plane-sweep algorithm [8; 15] or correspondence growing [33; 14], for instance. Of-

ten these local approaches use scene representation based on surface patches, point

clouds, or depth maps, which are flexible, as they can easily model various topolog-

ically complex structures and do not need a bounding box or a visual hull of the

scene for initialization.

In addition, besides approaches that can be clearly categorized as local or global,

there are semi-global methods [22], which do not directly aim in finding a global

optimum of a global cost function but still consider certain long-range interactions

between matched scene points (instead of just using their immediate neighborhood

as in purely local methods). For example, the commonly used dynamic program-

ming approach for narrow-baseline two-view stereo matching [43] can be seen as a

semi-global method.

Overall, it should be noted that a complete multi-view reconstruction system

may use different kinds of algorithms in different stages. For example, the recent

approach [21] uses local matching of input views to extract a dense but possibly

redundant point cloud, then applies a global approach for meshing the point cloud,

and finally refines the resulting mesh model by iterative local optimization of a

global cost function.
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2.2. Correspondence growing methods

In the following sections we concentrate on a local image matching approach [24;

29], which we call quasi-dense wide baseline matching and which iteratively expands

corresponding image regions by the match propagation algorithm [33]. However,

somewhat similar ideas of correspondence growing have been used in other works

as well, as briefly reviewed below.

One of the first correspondence growing methods is [41], which gradually expands

matching image patches in a pair of views by using iterative alignment of patches
[18] during each expansion step. Like [41], our approach uses the best-match-first

growing stategy but we do not perform iterative refinement of the matched patches

during growing. Also, [41] applies only for pairs of views whereas [29] extends the

best-first matching approach to triplets of views if the trifocal tensor is known.

Our growing algorithm is similar to the match propagation algorithm of [33],

which also avoids iterative patch refinements during growing and imposes a unique-

ness constraint (i.e. one-to-one matching) and a disparity gradient limit simultane-

ously. However, unlike [33], our implementation [24] can be directly used for wide

baseline image pairs. This is achieved by using an affine transformation model for

the local patches instead of a translational model.

Another relatively recent correspondence growing method is [5], which is also

inspired by [33]. However, unlike [33] and [24], [5] solves a global optimization

task, which allows to reduce matching errors and prevents matching ambiguous

structures, e.g. due to repetitive texture patterns. Nevertheless, the implementation

in [5] requires a rectified stereo image pair as input and, hence, it can not be used for

images of nonrigid scenes. Also, in practice, the ambiguities caused by repetitive

patterns can be reduced by using more than two views, and even greedy local

matching [24] may perform well in such cases [29].

Recently, correspondence growing algorithms have also been used for true multi-

image matching with datasets that contain more than two or three views [19; 14].

These methods expand surface patches in 3-D space so that the patches are directly

matched between multiple views. The advantage of such patch-based approaches is

their flexibility in modeling both small, compact objects and large, complex scenes,

and even crowded scenes where moving obstacles appear in multiple images of a

static structure of interest [14].

Perhaps one of the most widely used patch-based multi-view stereo methods is
[14], which is publicly available in source form and uses repeated match expansion

and filtering stages for reconstruction. The method has produced good results with

benchmark datasets [45] and it has also been used for large datasets [13]. However,
[14] does not use a best-first growing strategy as we do. In fact, our results indicate

that the best-first strategy allows to acquire good matches with a single growth stage

and without repeated expansion and filtering steps. Hence, one key aspect in this

chapter is to discuss the possibilities to further advance the use of correspondence

growing methods for direct multi-view matching that is both accurate and efficient.
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3. Quasi-dense wide baseline matching

In this section, we describe the two-view and three-view quasi-dense matching algo-

rithms which were originally proposed in [24] and [29], respectively. The algorithms

are based on the match propagation algorithm [33] which is extended to be appli-

cable for wide baseline images whose viewpoints differ substantially.

3.1. Two-view matching

Given two views, I1 and I2, and optionally the associated fundamental matrix F21,

our matching approach produces a quasi-dense set of point correspondences between

the two views by growing a sparse set of seed matches, which are determined by

matching affine covariant regions [24; 38].

Hence, the method contains two stages: the initial matching stage and the

growth stage. The output of the initial matching stage is a set of seed matches

{si}i, where each seed contains image coordinates xa and xb, which denote the cen-

troids of the matched regions [38], and an affine transformation matrix Aab, which

approximates the local geometric transformation between the views. For each seed,

the index a ∈ {1, 2} indicates the reference view, and b is the other view. The

reference view is determined so that the affine transformation Aab from a to b is

magnifying, i.e. |detAab| ≥ 1 [24]. Further, each seed is associated with a tex-

ture similarity score sab and intensity variance score v. The zero-mean normalized

cross-correlation (ZNCC) of geometrically normalized image patches is used as the

similarity measure, and the score v is set equal to the minimum intensity variance

of the two patches. The data structure for the two-view seeds is summarized in

Definition 1. The same structure is used also for the grown matches.

In the growth stage, the seeds are sorted into a priority queue Q according to

their similarity scores and then propagated by iterating the following steps:

(i) The seed s with the best score is removed from Q.

(ii) New candidate matches are searched nearby s by using s.Aab for the geometric

normalization of local image patches.

(iii) The candidates, which have a sufficiently high similarity and which satisfy the

disparity gradient limit and the epipolar constraint (optional), are added to Q

and to the list of matches after updating their affine transformation estimates.

The corresponding pixels in the matching tables are marked as reserved.

The geometric normalization of patches and the update of affine transformations are

detailed in [24]. Further, it should be noted that, for each grown match, the indices

a and b are determined from the updated transformation matrix, i.e., the role of

views 1 and 2 may be swapped during propagation. The outline of the growth stage

is described in pseudo-code in Algorithm 1.

Updating affine transformation parameters for new matches allows the propaga-

tion to adapt to variations in the orientation and pose of surfaces as the matching
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Definition 1: Data structure for two-view seed matches

struct twoviewseed{ int a, b;

double xa, xb, Aab, sab, v; };

Algorithm 1: Two-view match propagation

Input: images I1, I2, two-view seed matches S12, thresholds ǫd, ǫe, t, tu, z, zu,

and, optionally, fundamental matrix F21

Output: list of matches M, matching tables J1, J2

1 Initialize n=0, M=∅, Jk(p)=0 for all k, p

2 Compute pairwise similarity scores s.sab and uniformity

scores s.v for all seeds s, [s.sab, s.v]=sim(s, Is.a, I
s.b)

3 Sort the seeds according to the scores s.sab

4 Initialize priority queue Q with sorted seeds

5 while Q not empty

6 Draw the seed q̂ ∈ Q with the best score q̂.sab

7 Set a= q̂.a and b= q̂.b

(In the following, Ia and Ib define new seeds)

8 for each new match qi nearby q̂ which satisfies the disparity gradient limit ǫd

and, optionally, the epipolar constraint ǫe

9 Set qi.sab = −∞

10 if Ja(round(qi.xa))=0 & Jb(round(q
i.xb))=0

11 [qi.sab,q
i.v] = sim(qi, Ia, Ib)

12 end for

13 Sort matches qi according to the scores qi.sab

14 for each qi satisfying qi.sab≥z and qi.v≥ t

15 Set n=n + 1

16 if qi.sab≥zu and qi.v≥ tu

17 Update qi.Aab, and thereafter qi.a and qi.b

18 Set Q=Q∪{qi} and M=M∪{qi}

19 Set Ja(round(qi.xa))=n, Jb(round(q
i.xb))=n

20 end for

21 end while

expands further from seed regions. The update of the affine transformation ma-

trix is implemented via a simple non-iterative update rule which is based on local

second-order intensity moment matrices of the images [24]. In addition to intensity

moments, the update rule requires a pair of corresponding directions in the images.

Such directions can be obtained from the fundamental matrix or, if it is not avail-

able, they can be estimated from local image gradients [25]. In the latter case, the
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match propagation may even be used to track non-rigid deformations of surfaces
[25]. The frequency of affine adaptation is controlled by parameters zu and tu in Al-

gorithm 1 which restrict the update to occur only for textured image patches whose

similarity scores exceed a threshold zu. If zu >1, the update is omitted always and

the algorithm operates in a non-adaptive mode.

In summary, as shown in Algorithm 1, the result of two-view match propagation

is a list of grown matches M and two matching tables J1 and J2, which have the

same size as images I1 and I2, respectively. The nonzero values in J1 and J2

indicate the pixels which are nearby to the sub-pixel matches of M. That is, the

closest pixel to a given coordinate vector x is p = round(x), and a nonzero value

Jk(p) is an index to the corresponding item in M. The value Jk(p)=0 indicates

that pixel p is not matched.

3.2. Three-view matching

The three-view matching approach [29] builds on the ideas of the two-view method
[24] but there are some additions and modifications which improve the robustness

of matching for view triplets when the trifocal tensor is known. Thus, although

the two-view method can be used without knowing the fundamental matrix, the

three-view method always requires the trifocal tensor as input. Another difference

to the two-view method is that the ordering of seeds in the priority queue Q is

based on a total score s which combines two pairwise similarity scores, sab and sac,

between the reference view a and the other two views. Hence, at each propagation

step, the seed with the best total score is grown.

The three-view method is shown in pseudo-code in Algorithm 2, which is quite

similar to Algorithm 1. However, there are certain additional steps (i.e. lines 3, 4,

5, 21, 22, 25, and 26), which are detailed in the following. The data structure for

three-view matches is given in Definition 2.

First, since the input to Algorithm 2 is a set of two-view seeds, as in the two-

view method, the seeds have to be transformed to three-view seeds by using trifocal

transfer [20]. That is, we define a function called transfer, which transforms a

match (xa,xb) to the third view, indexed by c, and also computes the local affine

transformation Aac between the reference view a and the view c (line 3 in Algorithm

2). The function is implemented so that it uses xa, xb and Aab to define three

corresponding points in the views a and b and then transforms this local affine basis

to the third view by trifocal transfer [20]. Thereafter, Aac may be solved from the

three point correspondences between a and c. Finally, given xc and Aac, one may

also evaluate the local similarity sac between views a and c.

Given a three-view seed s, the total score s.s, on which the ordering in Q is

based, combines the pairwise similarities between a and the other two views. This

allows the three-view method to perform better than a combination of pairwise
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Definition 2: Data structure for three-view seed matches

struct threeviewseed{ int a, b, c;

double xa, xb, xc, Aab, Aac, sab, sac, s, v; };

Algorithm 2: Three-view match propagation

Input: images I1, I2, I3, two-view seeds S12, S13, S23, thresholds ǫd, ǫe, t, tu, z, zu, z̃,

and trifocal tensor T 23
1

Output: list of matches M, matching tables J1, J2, J3

1 Initialize n=0, M=∅, Jk(p)=0 for all k, p

2 Compute pairwise similarity scores s.sab and uniformity

scores s.v for all seeds s, [s.sab, s.v]=sim(s, Is.a, I
s.b)

3 Extend the two-view seeds to three views by trifocal

transfer: [s.xc, s.Aac]=transfer(s, T 23
1

)

4 Compute pairwise similarity scores s.sac for all seeds s

5 Combine similarity scores, s.s=score(s.sab, s.sac, z)

6 Sort the seeds according to the scores s.s

7 Initialize priority queue Q with sorted seeds

8 while Q not empty

9 Draw the seed q̂ ∈ Q with the best score q̂.s

10 Set a= q̂.a and b= q̂.b

(In the following, Ia and Ib define new seeds)

11 for each new match qi nearby q̂ which satisfies the disparity gradient limit ǫd

and the epipolar constraint ǫe

12 Set qi.sab = −∞

13 if Ja(round(qi.xa))=0 & Jb(round(q
i.xb))=0

14 [qi.sab,q
i.v] = sim(qi, Ia, Ib)

15 end for

16 Sort matches qi according to the scores qi.sab

17 for each qi satisfying qi.sab≥z and qi.v≥ t

18 Set n=n + 1

19 if qi.sab≥zu and qi.v≥ tu

20 Update qi.Aab, and thereafter qi.a and qi.b

21 Do trifocal transfer for qi and compute qi.sac, qi.s

22 if qi.sac≥ z̃ {

23 Set Q=Q∪{qi} and M=M∪{qi}

24 Set Ja(round(qi.xa))=n, Jb(round(q
i.xb))=n }

25 if Jc(round(qi.xc))=0 & qi.sac≥z

26 Set Jc(round(qi.xc))=n

27 end for

28 end while
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propagations. The scoring function is defined by

score(sab, sac, z)=
∑

j∈{b,c}

max

(

0, 1 −
(saj − 1)2

(z − 1)2

)

, (1.1)

which is a positive function on [−1, 1]3. It is nonzero if either sab or sac exceed

z ≤ 1, and it obtains the largest values when they both exceed z and are close to 1.

Most of the computation time of Algorithm 2 is spent in the while loop. The first

for loop is the same as in Algorithm 1. Thus, most of the bad candidate matches

are rejected already on the basis of the pairwise score sab and the trifocal transfer

and the evaluation of the total score are not necessary for them. In fact, only a

fraction of the candidates survive to the second for loop, and hence, the three-view

method is only slightly slower than the two-view method.

Finally, the last modifications are related to the acceptance of candidate matches

and to the update of the matching tables (lines 22, 25, and 26 in Algorithm 2).

Depending on the parameter settings, one may require that an accepted match

must be visible in at least one or two pairs of views. That is, by setting z̃ = −1,

a candidate match is always accepted if its pairwise similarity score sab exceeds a

threshold z and, on the other hand, setting z̃ = z implies that a match is accepted

only if both sab and sac exceed z (line 22). However, in both cases, a new match is

added to the matching table of the third view only if sac ≥ z and the corresponding

pixel is not already reserved (lines 25 and 26).

3.3. General multi-view matching

As described in Algorithm 2, our current implementation of quasi-dense wide base-

line matching can process at most three views simultaneously. However, this does

not exclude applying the proposed approach to multi-view datasets with a large

number of images, because there are several methods for combining multiple depth

maps extracted from different view triplets [9; 37; 32]. Hence, Algorithm 2 could

be used in generic multi-view stereo problems by first dividing large image sets

into overlapping subsets of three images, then matching these image triplets and

converting the obtained three-view matches to depth maps or point clouds, which

are finally combined to a single model. In fact, decomposition into manageable

subsets is indispensable for very large image sets but it may be advantageous also

for smaller datasets in order to improve efficiency [42; 23; 13]. If the image subsets

are processed in parallel and the resulting partial reconstructions are merged effi-

ciently, it is possible to implement systems that reconstruct city-scale scenes from

thousands or even millions of images within the span of a day on a single PC [13;

12].

Nevertheless, although there are multi-view reconstruction systems that build

on two-view matching [51], in some cases it might be useful to be able to perform

quasi-dense matching directly for a larger number of views than just two or three.

This is the case with large unstructured photo collections since it may be practically
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not feasible to process all possible view triplets but it is still not obvious how the

optimal division into triplets should be done [13]. Hence, analogously to [14], it

could be advantageous to extend Algorithm 2 for more than three views. In fact,

given camera matrices, this may be relatively straightforward to do since it is easy to

transfer the two-view matches to arbitrary number of views by the trifocal transfer

(lines 3 and 21 in Algorithm 2) and define the score (1.1) as the sum of several

pairwise terms. This would allow generalization to multiple views. However, our

current implementation covers only view triplets and extension to more general

settings could be seen as an interesting topic for future research.

4. Examples and experiments

We illustrate the performance of quasi-dense wide baseline matching in experiments

with real images. The experiments in Sections 4.1 and 4.2 focus on two-view match-

ing, Section 4.3 compares two-view and three-view approaches, and Sections 4.4 and

4.5 further illustrate three-view matching results.

4.1. A simple example

In our first experiment we demonstrate the two-view approach of Algorithm 1 by

matching two views without using any additional prior knowledge, i.e., the funda-

mental matrix is not known a priori. However, in order to get quantitative accuracy

estimates, we use sample views which are related by a homography and which were

used in [38]. The example image pair is shown in Figure 1.1 and there is a signifi-

cant change of scale between the views due to optical zooming. In addition, a seed

match, i.e. a pair of elliptical regions, is also illustrated in Figure 1.1. The seed re-

gions were extracted with the Hessian-Affine region detector [38] and automatically

matched using the SIFT descriptor [35].

The match propagation was started from the single seed shown in Figure 1.1.

The growing process resulted in 35589 matches and took 12 seconds on a 1GHz

processor. Here we used only one seed in order to illustrate the fact that often

already a one or a few correct matches are sufficient, but usually several tentative

seed matches can be used since the algorithm is robust to outliers.

Given the grown matches, we fitted a homography to them by using a RANSAC-

based estimation procedure. The resulting homography estimate was used to regis-

ter the images on top of each other and the corresponding difference image is shown

in Figure 1.1(b). Also, the grown quasi-dense matches are illustrated in Figure

1.1(e), where they are colored according to their homographic transfer error in the

second image [20]. The majority of point correspondences have a displacement less

than a pixel which indicates that the matches fit well to the estimated homography.

Interestingly, it also seems that our registration result is better than the ho-

mography estimate provided by the authors of [38], which is visualized in the last

column of Figure 1.1. Indeed, the difference image in Figure 1.1(c) shows larger
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(a) (b) (c)

(d) (e) (f)

Fig. 1.1. Matching a pair of views which are related by a homography. (a) and (d): An elliptical

region (a seed match) is shown on the original views, which are acquired by rotating and zooming
a camera fixed on a tripod [38]. (b) and (c): The difference images obtained by aligning the
views with homographies estimated by us and the authors of [38], respectively. (e) and (f): The

quasi-dense matches grown from the single seed match are colored according to their distance from
the location predicted by the two homographies, ours and theirs [38], respectively. (Image regions
that are not visible in the first view have grayvalue 6 and the unmatched regions are white.)

intensity discrepancies than Figure 1.1(b). In addition, Figure 1.1(f) shows that

the obtained quasi-dense matches are not consistent with the provided homography

estimate in the lower left corner of the first image. This suggests that the homog-

raphy estimate of [38] is not accurate there. Hence, we may note that even such a

simple task as homography estimation is error-prone when registration landmarks

are sparsely distributed and inaccurately localized. Moreover, our result shows that

the quasi-dense approach can clearly improve image registration accuracy in such

cases.

4.2. An experiment with two views of a pair of planes

The second experiment illustrates the performance of our two-view matching

method under different parameter settings. The image pair used in this experi-

ment is the same as in [24] and it is illustrated in Figures 1.2(a) and 1.2(d), which

show two views of a scene containing two planes: a paper map on a table and a

calibration plane orthogonal to the plane of the map. This pair of images is partic-

ularly suitable for algorithm evaluation since the calibration plane allows accurate

estimation of the homographies which describe the mappings of the planes between
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(a) (b) (c)

(d) (e) (f)

Fig. 1.2. Matching results for a pair of views of two planes using four different propagation

settings. The left column shows the original images and one seed match (small ellipses in the
lower left corner of the images). The last two columns illustrate the grown matches obtained by
four parameter settings: (b) non-adaptive, (e) non-adaptive with epipolar constraint, (c) adaptive,
and (f) adaptive with epipolar constraint. In each case, the matching pixels are colored according

to their distance from the true location determined by the known homography of the respective
plane. The values over 5 are suppressed to 5, and the non-common image area has grayvalue 6.

the two views, and hence, the obtained quasi-dence matches can be verified with

the homographies after propagation. In addition, it can be seen that there is a clear

perspective distortion between the views so that a global affine transformation is

not a good approaximation for the homography of either plane. This allows to

demonstrate the local affine adaptation capabilities of Algorithm 1.

The results obtained by Algorithm 1 using four different parameter settings are

illustrated in Figure 1.2. In each case the match propagation was started from a

single seed match, which is also shown in Figure 1.2 and which was extracted using

the Hessian-Affine detector [38]. The pictures in the middle column of Figure 1.2

illustrate the grown quasi-dense matches obtained with the non-adaptive setting,

i.e., without updating the affine transformation during propagation. The matches

do not grow very far from the seed match because the initial affine transformation

estimate is not accurate there due to perspective distortion. By comparing Figures

1.2(b) and 1.2(e), it can also be seen that imposing the epipolar constraint reduces

the number of erroneous matches.

The adaptive match propagation results, obtained with and without epipolar

constraint [24; 25], are shown in the last column of Figure 1.2, where the grown

matches cover almost all the pixels in areas that are visible in both images. Again,
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Fig. 1.3. Two-view and three-view matching of a plane with repetitive texture. Top: Three
views and the elliptical seed regions extracted from the first pair of views. The flow vectors in the
second view indicate the tentative seed region correspondences. There are only four correct seeds
(cyan colored). Bottom: Disparity maps for the two-view (left) and three-view methods (right).

Matched pixels are colored according to their distance to the correct corresponding location.

the epipolar constraint reduces false matches, as expected. The good coverage of

matches shows that the update of affine transformation parameters on the basis

of local texture properties has been successful and allows the single seed match

to propagate into regions where the local geometric transformation between the

views differs from the initial one. It is also interesting to note that the matching

has expanded from the horizontal plane of the map to the vertical plane of the

calibration object although there is a discontinuity in surface orientation. Further,

the accuracy of grown matches does not decrease during propagation, i.e., majority

of matched points have an error less than a pixel on both planes which indicates

that errors do not accumulate and adaptation is stable.

4.3. Matching three views of a plane with repetitive texture

In the third experiment, we compare our two-view and three-view matching ap-

proaches by using several view triplets of a planar calibration pattern. As the

sample views in Figure 1.3 show, the calibration pattern has a repetitive texture,

which consists of a regular grid of white dots on a black background. Matching

such a repetitive pattern is error-prone because the epipolar constraint alone is not

sufficient to resolve the ambiguities in local matching. Thus, it is expected that

three-view approach performs better than using just two views and our experiment

aims to verify this hypothesis. In fact, because we know the true structure of the

scene, it is easy to recover the correct homographies from manually picked corre-

spondences and use them to assess the accuracy of obtained matches afterwards.
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In detail, the experiment was carried out as follows. We selected a triplet of

views, extracted seed matches from two of them [38], and performed both the two-

view growing and the three-view growing with the same seeds. This was repeated

for 100 triplets. Usually there were many incorrect seeds because the epipolar

constraint was not effective in removing them due to repetitive texture. This is

illustrated in Figure 1.3 where only four seeds are correct. However, also in this

case, the three-view method (Algorithm 2) produced almost errorless matching

whereas the two-view method (Algorithm 1) made many errors. This shows that

the trifocal constraint allows to greatly improve the robustness of matching for

repetitive textures. The results for all 100 triplets are shown in Table 1.1, where

the total number of matches produced is approximately the same for both methods

(i.e. 5.7 million). However, as the quartiles of the error distribution indicate, the

matches produced by Algorithm 1 have a larger error. Thus, the two-view method

failed in many cases whereas the three-view method was able to produce accurate

matches for most of the cases. In this experiment the running time of Algorithm 2

was about 1.2 times the time of Algorithm 1. Hence, the three-view result is usually

better than the result of two pairwise propagations and can be computed faster.

4.4. Reconstruction of a piecewise planar scene

Our fourth experiment compares the three-view matching method of Algorithm 2

with the multi-view stereo method of [14], which uses patch-based surface repre-

sentation and relies on repeated patch expansion and filtering stages. The original

implementation of [14] is available in source format and has produced good recon-

struction results on publicly available benchmark datasets [46; 50].

As our current implementation can process at most three views simultaneously,

we concentrated on comparing the basic correspondence growing processes on a

dataset of three views. That is, we used our own images of a piecewise planar

scene, whose structure can be accurately recovered from the images utilizing prior

knowledge about the planes. However, this prior knowledge was only used to obtain

the ground truth, i.e. a triangular mesh model of the scene, which was then used for

accuracy evaluation of the point cloud reconstructions obtained by the two methods.

The images used in the experiment are illustrated in Figure 1.4 (top), and they

show three planes, i.e., a calibration object consisting of two orthogonal planes on

a wooden floor. There are regular patterns of circular dots on the planes which

allowed to recover the pose of each plane as well as the camera matrices associated

Table 1.1. Experiment with repetitive texture. Quartiles of the error distribution
are computed from 100 view triplets of the same kind as the triplet in Figure 1.3.

Method No. points 1st quartile Median 3rd quartile
Two views 5664285 0.33 0.74 11
Three views 5676160 0.079 0.27 0.65
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Fig. 1.4. Top: Three views of a piecewise planar scene. Left: Point cloud obtained by our three-

view algorithm. Right: Point cloud computed by Furukawa’s approach [14]. Accuracy of these
two point clouds is illustrated by the curves with symbols × and ◦ in Figure 1.5, respectively.

to the three views. Given the views and the camera matrices, we reconstructed a

point cloud using both Furukawa’s approach and our approach (Algorithm 2). In the

latter case, the seed matches were automatically extracted and matched using the

Hessian-Affine detector [38] and SIFT descriptor [35], and after the correspondence

growing by Algorithm 2 each grown match was triangulated from its two reference

views (indexed by a and b in Algorithm 2).

The obtained point clouds are illustrated in Figure 1.4 (bottom). Our recon-

struction consists of 155107 points and the match propagation stage took 228 sec-

onds. Furukawa’s point cloud has 119932 points, i.e. the centroids of reconstructed

patches, and the processing time was 616 seconds, which also includes the time

used for initial feature matching. However, as the running time of initial matching

is negligible compared to that of patch expansion and filtering, it can be deduced

that our correspondence growing is faster than Furukawa’s. This is expected as we

use only one expansion stage and we do not refine the alignment of matched patches

via non-linear optimization during growing as in [14].

The accuracy of reconstructed points is evaluated by computing their distances

to the ground truth surface, which is a triangular mesh representing the imaged

planes. Further, each matched pixel in the three images corresponds to a point

in the point cloud and the associated error is the distance of this point from the

ground truth surface. Thus, each pixel is assigned with an error value, and we

may assess reconstructions by comparing the error distributions of matched pixels.

That is, we discretize the error values into 13 bins and compute the corresponding

cumulative error histograms [50], which are visualized in Figure 1.5. By comparing

the curves with symbols × and ◦, we may see that the accuracies of points in our
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Fig. 1.5. Evaluation of accuracy for the point cloud reconstructions in Figure 1.4. Each matched
pixel corresponds to a point in the point cloud and the associated error is the distance of this
point from the ground truth surface. The curves illustrate the proportion of pixels whose error is

less than a threshold. The curves are plotted using discrete error histograms of 13 bins where the
last bin contains all pixels with an error > 11.5 mm, also the unmatched ones.

point cloud and Furukawa’s point cloud are quite similar but our point cloud is

denser. However, this is not very significant difference as the overall coverage of

Furukawa’s reconstruction is also good. The proportion of matched pixels is much

less than 100 % in all cases because both methods used such parameter settings that

required the reconstructed patches to be visible in all the three images. Hence, only

those scene regions that are unoccluded in all three views could be reconstructed.

In addition, there is also a third curve in Figure 1.5, denoted by + symbol,

and it illustrates the result obtained by our approach when all the circular dots of

calibration patterns were used as seed regions (initialized with the correct pairwise

affine transformations obtained from the ground truth planes). Although this is

not a realistic application scenario for unknown scenes, the result indicates that it

might be possible to further improve the accuracy of our approach by iteratively

refining the seeds before growing them. In fact, this could be one direction for

future developments as such a refinement of seeds would probably not decrease the

overall computational efficiency very much since the number of seeds is usually small

compared to the final number of grown matches.

4.5. Examples with benchmark datasets

In the last experiment, we compare our three-view matching method [29] and Fu-

rukawa’s method [14] using benchmark datasets from [46]. The datasets contain

images of two objects, called Dino and Temple. Three sample images of both ob-

jects are shown in Figures 1.6 and 1.7. There is also an online evaluation service [46]

which allows to compare submitted reconstructions (i.e. mesh models) to ground-

truth models of the objects obtained via a laser scanning process. However, since
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Fig. 1.6. Top: Three views from Dino dataset [46]. Bottom: Depth maps produced by our

approach (left) and Furukawa’s approach [14] (right). Note that the points in the depth maps are
shown from the viewpoint of the second camera but they are colored according to their distance
from the image plane of the first camera.

this chapter mainly presents a basic algorithm for match expansion in two-view and

three-view cases and we do not discuss depth map fusion or mesh generation which

would be both needed for generating complete object models, we confine ourselves

to comparing three-view matching results qualitatively via visualized depth maps.

The experiment was carried out in a similar manner as the previous one in

Section 4.4. The results are illustrated with depth maps in Figures 1.6 and 1.7 and

they basically confirm the findings of the previous section. That is, our approach

and Furukawa’s approach provide comparable results but our approach is faster. For

example, in the Dino example in Figure 1.6, the number of reconstructed points is

123633 in our point cloud and 90013 in Furukawa’s point cloud. The correspondence

growing stage of our approach took 442 seconds whereas Furukawa’s approach took

621 seconds alltogether.

On the other hand, match expansion is implemented in different ways in the

two methods [29; 14] and this may sometimes imply differences to the resulting

point clouds. Thus, although the results are generally comparable there may be

differences in some cases. For instance, as some parts of the object are not visible

in all three views in Figure 1.7, we ran our algorithm using such parameters that

the matching patches were not required to be visible in all views (i.e. we set in

z̃ = −1 in Algorithm 2). This resulted in slightly improved coverage of matched

pixels but without significantly increasing the number of false matches, as shown
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Fig. 1.7. Top: Three views from Temple dataset [46]. (The ellipses denote seed matches.) Bot-
tom: Depth maps computed by our approach [29] (left) and Furukawa’s approach [14] (right).

in Figure 1.7. However, in order to ensure the robustness of Furukawa’s approach

it was important to require that all reconstructed patches were visible in all three

views. That is, we tried Furukawa’s method also so that it accepted patches visible

in only two images but this increased outliers and the result was worse than the one

shown in Figure 1.7. This might be due to the fact that the best-first expansion

strategy is not used in [14].

In summary, the results with Dino and Temple datasets suggest that accurate

correspondence growing is possible without expensive iterative optimization for the

pose of matched patches. Hence, although iterative surface refinement is probably

necessary at the final stage for the best reconstruction results [14], it might be

unnecessary at the correspondence growing stage.

5. Discussion

Besides describing the basic match propagation algorithms for quasi-dense wide

baseline matching, this chapter has mainly concentrated on multi-view stereo re-

construction applications, where the algorithms are used for guided matching of

calibrated images. That is, the camera matrices are assumed known, as is typi-

cal in multi-view stereo problems, and the fundamental matrix or trifocal tensor

is used to guide image matching, i.e., to reject matches that do not satisfy multi-

view constraints. The experiments of Section 4 demonstrate that our algorithms
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are computationally efficient and provide results that are comparable to the state

of the art [14]. In addition, as our current implementation can process only two

or three views simultaneously, we outlined possibilities to extend the algorithms to

more generic settings so that they would be directly applicable to arbitratry number

of views. As discussed in Section 3.3, this seems to be a promising topic for future

research.

However, besides multi-view reconstruction, the basic matching algorithms of

Section 3 could be utilized in other applications as well. For example, unguided

matching for image registration and multi-view geometry estimation, as illustrated

in Section 4.1, is one evident application. In addition, quasi-dense matching can

be used for registration of non-rigid deformations and for recognition and retrieval

of particular objects [25; 4; 7]. Also, dense pixel-wise motion segmentation from

multiple views may benefit from correspondence growing techniques [26].

6. Conclusion

In this chapter, we have described algorithms for quasi-dense wide baseline matching

of view pairs and view triplets. The basic idea of the algorithms is to expand a

sparse set of seed matches into a quasi-dense set of corresponding points between

the views. The expansion is based on the best-first match propagation strategy.

The algorithms can be used for unguided matching of view pairs of rigid and non-

rigid scenes and for guided matching of view pairs and view triplets of rigid scenes.

In the unguided case the quasi-dense approach allows to improve the robustness

and accuracy of multi-view geometry estimation. On the other hand, multi-view

surface reconstruction is the main application of guided matching, which refers to

the case where matching is guided by the fundamental matrix or trifocal tensor.

In this case, the algorithms can be used for depth map estimation from view pairs

and triplets, and the obtained results are comparable to the state of the art within

correspondence growing methods. Importantly, a good matching result is usually

achieved with a single growth stage and without iterative refinement for the matched

patches during growing. This is promising from the viewpoint of computational

efficiency and encourages further studies on the topic.
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