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Abstract

We introduce a camera self-calibration method using a
planar scene of unknown texture. Planar surfaces are ev-
erywhere but checkerboards are not, thus the method can be
more easily applied outside the lab. We demonstrate that the
accuracy is equivalent to a checkerboard-based calibration,
so there is no need for printing checkerboards any more.
Moreover, the use of a planar scene provides improved ro-
bustness and stronger constraints than a self-calibration
with an arbitrary scene. We utilize a closed-form initial-
ization of the focal length with minimal and practical as-
sumptions. The method recovers the intrinsic and extrinsic
parameters of the camera and the metric structure of the
planar scene. The method is implemented in a real-time
application for non-expert users that provides an easy and
practical process to obtain high accuracy calibrations.

1. Introduction
Calibrating a camera’s intrinsics (focal length, principal

point, and distortion coefficients) is a fundamental problem
in computer vision. A calibrated camera is needed to per-
form a metric reconstruction of a scene, otherwise only a
projective reconstruction is possible [7]. Some of the most
interesting applications of computer vision, like simultane-
ous localization and mapping, augmented reality, and 3D
reconstruction, require a metric reconstruction of the scene.
Nowadays, cameras are most often calibrated offline using
a calibration target. A planar target with a checkerboard or
circular pattern of known structure is a well established and
popular method for camera calibration [13, 15, 4, 8].

Planar scenes are a very convenient calibration target be-
cause they are easy to detect, match, and the observed mo-
tion can be completely described by a homography. A pla-
nar target is much easier to manufacture than a 3D target
of known structure, for example a paper checkerboard can
be produced by a standard printer and attached to a table.
Homography-based known-target calibration methods like
[13, 15] extract the intrinsic parameters of a camera from
a set of homographies between the known points in metric

space and the matched points in image space. This pro-
duces a very accurate calibration because the homographies
are very robust to noise and outliers.

Although this is an accurate and practical method, it is
not as practical as it can be. Checkerboard targets are of-
ten inconvenient and not always available, especially out-
side the lab. There are a myriad of well-textured planar tar-
gets in the wild (books, paintings, billboards) but the metric
structure of their texture is not known a-priori and are thus
not suited for a method like [15]. We explore the problem
of planar self-calibration which attempts to simultaneously
calibrate the camera and recover the metric structure of the
scene under the assumption that the scene is planar.

Planar self-calibration is attractive for several reasons. It
is much more practical than a known-target calibration be-
cause we can use any planar structure for calibration. On
the other hand, when compared to a generic self-calibration
approach, the planar-scene constraint significantly reduces
the degrees of freedom of the problem and increases the
robustness and accuracy of the calibration. Moreover, ho-
mography estimation is a much simpler and robust process
than feature matching of arbitrary 3D points.

An internal and necessary component of planar self-
calibration is homography-based self-calibration which
takes a set of homographies and estimates the intrinsic pa-
rameters of the camera. So far, homography-based self-
calibration has been proven possible [14] but it has not led
to a practical implementation that can replace known-target
calibration methods due to its lack of a closed-form solu-
tion for initialization. Checkerboard-based calibration is
still the standard calibration technique due to several rea-
sons. Homography-based self-calibration by itself cannot
reach the accuracy of a known-target calibration because
the camera poses are implicitly fixed within the homogra-
phies. There hasn’t been a proper comparison of the perfor-
mance of both calibration types that would prove that it is
safe to use planar self-calibration without sacrificing accu-
racy. Moreover, there is no publicly available implementa-
tion as there is for known-target calibration, e.g. [4].

In this paper we address these issues and describe a com-
plete planar self-calibration system that rivals the perfor-
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mance of known-target calibration methods. We compare
the limits of both calibration types and show that in almost
any practical situation, planar self-calibration can be used to
obtain calibrations with the same accuracy as that of known-
target calibration methods.

Previous work

Hartley and Zisserman [7] present a comprehensive anal-
ysis of camera calibration, including known-target and self-
calibration methods. In the area of known-target calibration
the landmark paper of Zhang [15] is nowadays the defacto
standard for camera calibration and has been implemented
for many platforms [4, 5]. It is interesting to notice that the
calibration constraints used there have the same nature as
the ones presented here. However, because the metric struc-
ture of the world is known the equations simplify consider-
ably, there are less degrees of freedom, and the optimization
is performed directly in metric space.

There has been considerable progress in the area of self-
calibration when the observed scene has a 3D structure.
Closed-form and linear solutions have been obtained to re-
cover the focal length of a moving camera [3]. However,
these methods fail when the scene is planar. The planar self-
calibration constraints were first introduced by Triggs [14].
Triggs encoded the plane structure with two circular points
using 4 degrees of freedom (DoF). Bocquillon et al. [2] later
reformulated these constraints to encode the plane structure
using only the plane normal (2 DoF) and solved the cali-
bration problem using interval analysis which results in an
exhaustive search through parameter space.

Gurdjos and Sturm [6] took a different approach us-
ing the centre line constraint. Their formulation keeps the
DoF constant even with a varying focal length. However,
it is less constrained than the formulation of [2] and re-
quires more images to reach the same accuracy. Gurdjos
and Sturm also provide a closed-form solution under a mi-
nor assumption, namely that the reference image is close to
fronto-parallel with the scene plane.

Our system combines the ideas from [2] and [6] and ex-
tends them into a complete planar self-calibration system.
We take a novel approach to derive the homography-based
self-calibration constraints which highlights a weakness of
the existing formulation. We solve this by providing a new
set of normalized constraints. We use the same assumption
as [6] to obtain a closed-form solution and bootstrap the cal-
ibration. Then, we obtain a significant improvement in the
final accuracy by normalizing the constraints and adding a
final bundle adjustment in metric space. Our contributions
can be summarized as follows

• A new set of normalized planar self-calibration con-
straints that are more robust to noise.

• A novel derivation of the planar self-calibration con-
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Figure 1: The outline of our planar self-calibration algo-
rithm. It first performs a projective reconstruction, then re-
covers the calibration matrix from the obtained homogra-
phies, and then upgrades it to a metric reconstruction.

straints that is more intuitive and provides insight into
the nature of the constraints.

• A complete planar self-calibration pipeline that ro-
bustly obtains a final metric reconstruction and cali-
bration with an accuracy significantly higher than that
of a homography-based self calibration.

• A direct comparison of the accuracy of planar known-
target and self-calibration methods.

• An open source implementation of the planar self-
calibration system.

2. The planar self-calibration system
The homography-based self-calibration stage as de-

scribed by [2] and [6] is a key component for planar self-
calibration but it is not enough to produce the best cali-
bration results. A projective reconstruction stage is needed
before it to prepare the homographies and a metric recron-
struction stage is needed after it to perform a final bundle
adjustment. The structure of the final system is shown in
Fig. 1. We first describe our camera model in Section 3.

The projective reconstruction stage receives the input
images and extracts the homographies between them. It
also gives an initial estimate of the distortion. It initially
estimates each homography individually and then performs
a global bundle adjustment of all homographies, the dis-
tortion coefficients, and the observed points in projective
space. Section 4 describes this stage in detail.

Once the optimal set of homographies is found, they
are fed into a homography-based self-calibration stage that
simultaneously recovers the camera calibration and the
pose of the reference camera. We derive the planar self-
calibration constraints and propose a novel set of normal-
ized constraints in Section 5.

The calibration obtained allows a metric reconstruction
of the scene. However, this calibration is not optimal be-
cause the camera poses were not optimized together with



the intrinsic parameters. Thus, a metric reconstruction is
performed and a final bundle adjustment is done to obtain
the optimal calibration. Details of this reconstruction and
final optimization are described in Section 6.

Notation: We denote vector quantities as bold lowercase
letters (e.g. x,p,t), matrix quantities as bold uppercase let-
ters (e.g. R,K), and scalars as lowercase italic letters (e.g.
fx,u0). We denote the homogeneous representation of a
vector x with x̂. The transformation back from homoge-
neous coordinates, denoted by ν̌(x̂), is performed by divid-
ing a vector by its last component and discarding it.

3. Camera model
We model our camera using the well-known pinhole

model with radial distortion. The projection function p =
P(x) transforms a point in 3D world space x = [x, y, z]> to
a 2D pixel position p = [u, v]>. The projection function is
the composition of three functions: the extrinsic transform
T , the intrinsic transform K, and the distortion function D,
i.e. P(x) = D ◦ K ◦ T (x).

The extrinsic transform is a rigid 3D transform that
aligns the point with the camera reference frame

xc = T (x) = Rx + t (1)

where the rotation matrix R and the translation vector t are
the extrinsic parameters of the camera, i.e. its rigid pose.
The intrinsic function converts the point from metric to
pixel units

pn = K(xc) = ν̌(Kxc) (2)

K =

fx 0 u0
0 fy v0
0 0 1

 (3)

.
Finally, the distorted point is obtained by applying

p = D(pn) = (pn − p0)(1 + r2d0 + r4d1) + p0 (4)

where p0 = [u0, v0]> is the principal point and r =
‖pn − p0‖. The vector d = [d0, d1]> contains the dis-
tortion coefficients.

The camera model contains 6 degrees of freedom (DoF)
for the extrinsic parameters (three for rotation and three for
translation) and 6 DoF for the intrinsic parameters (two fo-
cal lengths, two for the principal point, and two distortion
coefficients).

4. Projective reconstruction
Planar geometry is well understood and extensively doc-

umented. Here we provide a brief review of what is relevant
to this paper. Further details can be found in [7]. We first

approach planar geometry using a pinhole camera with no
distortion. Section 4.1 addresses the effects of distortion.

A planar scene induces a homography between two pin-
hole cameras. That is, the measurements of image i are
related to those of image j by

p̂j ∝ Hijp̂i (5)

where Hij is a 3× 3 full-rank matrix. The equation is only
up to scale because all elements are in homogeneous coor-
dinates and thus Hij has only 8 DoF.

The first step in our algorithm is to obtain a projective
reconstruction of the scene. The reconstruction includes the
position of the observed points in world coordinates and the
poses of the cameras. The points can be represented with a
2D position vector y = [x, y]> because the scene is planar.
The pose of a camera i can be represented by a homography
Hi that translates the points from world to image space.

A projective reconstruction is defined up to a homogra-
phy. Thus, without loss of generality we select one of the
image frames as the reference frame, say image 0, which
has the same coordinate frame as the world, i.e. H0 = I3×3.
This also implicitly fixes the position of the world points
y = p0. The poses of the other frames can be determined
independently by computing the homography between them
and the reference frame.

4.1. Distortion

The relation of Eq. (5) only holds for a pinhole camera
without distortion. In the case of distortion, the undistorted
measurements will still follow Eq. (5). We can thus estimate
the distortion model by finding the coefficients that allow
the measurements to be modelled by a homography. We use
the distortion model from Eq. (4) to remove the distortion
in image space.

Although there are methods of estimating the distortion
parameters from a set of uncalibrated images, for simplic-
ity we rely here on robust homography estimation methods
[7] to obtain an initial projective reconstruction assuming
no distortion. The distortion coefficients are then estimated
during a projective bundle adjustment step. This has proven
to work well with moderate distortion levels.

4.2. Projective bundle adjustment

The projective reconstruction obtained so far is not opti-
mal for two reasons. First, the homographies have all been
computed in a pair-wise manner between the reference im-
age and the all others. This ignores the fact that the other
images might constrain each other’s projective pose as well.
In fact, as the camera moves farther away from the reference
pose, matching becomes harder and nearby images might
constrain the pose better. Second, distortion has not been
estimated yet. Even under mild distortion, this can add a



considerable noise to homographies that are estimated from
distorted pixel correspondences.

Although the final metric bundle adjustment might re-
cover from these intermediate errors, there is no guarantee.
Thus, we perform a robust non-linear minimization [1] over
all parameters to obtain the optimal projective reconstruc-
tion. The formulation of the minimization problem is as
follows,

arg min
d′,p0,{Hi},{yk}

∑
i

∑
k

ρ(‖pik −D(Hiyk)‖)2 + λ‖p0 − p̄0‖2

(6)

where ρ(·) is a robust function to reduce the influence of
outliers (e.g. the Cauchy loss function [1]). The first term
transforms the projective positions of a point yk to the
frame of camera i through its homography Hi, distorts it,
and compares it with the measured position pik. The ho-
mography of the reference camera is kept fixed to remove
the projective ambiguity. However, all point coordinates
yj are optimized to remove any bias towards the reference
camera. The final term regularizes the center of distortion,
biasing it towards the center of the image p̄0 in case of no
distortion. The weighting term λ is set to the inverse of the
expected variance of the principal point. However, this reg-
ularization is only a safety measure and is negligible with
even minor distortions.

5. Homography-based self-calibration
We first derive the constraints for homography-based

self-calibration. We take a different route than [2] for clarity
and to gain insight into the nature of the constraints. Yet, the
constraints obtained in this section are equivalent to those of
[2], as is shown in Section 5.1. In Section 5.3 we show that
these constraints are biased and propose a new set of nor-
malized constraints. We then derive a closed-form solution
to obtain an initial guess for the focal length in Section 5.2.

The input to a homography-based self-calibration stage
are a series of homographies {Hi} that relate all images to
a reference image. The calibration recovers the intrinsic pa-
rameters fx,fy , and p0. It assumes no distortion since the
distortion has been corrected beforehand during the projec-
tive reconstruction stage.

The calibration constraints come from our knowledge of
the metric structure of the world applied to the obtained pro-
jective reconstruction. To derive the constraints we arbitrar-
ily choose our metric world coordinate frame to coincide
with the camera frame of the reference image. We describe
the scene plane in this reference frame by its 3D normal
vector n0 (with unit norm) and the distance to the origin.

We encode the Euclidean structure of the plane with
two orthogonal basis vectors with equal norm that span the
plane: a0 and b0. Like the normal vector, these vectors rep-
resent directions in 3D space, see Fig. 2. Note that these
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Figure 2: Planar self-calibration geometry.

vectors are not unique since we can rotate them around n0

and they are still orthonormal basis vectors. With this in
mind, the following equations encode the orthogonality and
equal norm constraints respectively

a>i bi = 0, (7)

a>i ai − b>i bi = 0, (8)

where the index i has been kept variable because these con-
straints apply to all cameras.

By definition, we can derive these vectors for the refer-
ence camera. To ensure orthogonality, we select a0 as the
cross product of n0 with an auxiliary fixed vector e

a0 = n0 × e = [n0]×e (9)

b0 = n0 × a0 = [n0]2×e (10)

Note that e can be any vector as long as it is not parallel to
n0. A different e will produce a different orientation for the
basis but Eqs. (7) and (8) will remain unchanged.

Given the basis vectors in the reference camera they can
be transformed to the frame of camera i through its homog-
raphy

ai = K−1HiKa0, (11)

bi = K−1HiKb0. (12)

Note that Eqs. (7) and (8) for the reference camera are sat-
isfied by definition but the other cameras constrain K us-
ing the reconstructed homographies. These are the self-
calibration constraints that will allow us to recover K.

5.1. Connection with previous work

Although our derivation takes a different route, the con-
straints obtained so far are identical to those proposed in
[2]. The components of the circular points in [2] x1 and x2

are simply the images of the basis vectors (i.e. x1 = Ka0
and x2 = Kb0). By using the notation ω = K−>K−1,



Eqs. (7) and (8) can be expanded to be expressed as in [2]

a>i bi = (K−1HiKa0)>(K−1HiKb0)

= x>1 H
>
i ωHix2 = 0 (13)

a>i ai − b>i bi = (K−1HiKa0)>(K−1HiKa0)

− (K−1HiKb0)>(K−1HiKb0)

= x>1 H
>
i ωHix1 − x>2 H

>
i ωHix2 = 0

(14)

which are the same constraints and with the same
parametrization as in Eq. (4) of [2]. The resulting unknowns
are K and n0. The normal n0 has 3 variables with 2 DoF.
The intrinsic matrix K varies between 5 DoF and 1 DoF de-
pending on the camera model. Vector e is not an unknown
of the problem. It can be chosen arbitrarily and fixed as long
as it is not parallel to the normal vector.

5.2. Closed-form with a known plane normal

The normalized constraints can be readily used in an it-
erative non-linear minimization procedure to find the op-
timum values for the intrinsic parameters and the normal
vector. However, we need an initial guess that we’d like to
obtain in closed-form. A closed-form solution can be ob-
tained if we assume a known plane normal and a simplified
camera model. Gurdjos and Sturm [6] derived a closed-
form solution using their formulation. Here we show that
our formulation so far is equivalent and reaches the same
closed-form solution.

We reduce the intrinsic matrix to have 1 DoF, i.e. K =
diag(f, f, 1), and assume a reference image fronto-parallel
to the plane, i.e. n0 = [0, 0, 1]>. This seems like a strong
assumption, however it is only used to obtain an initial guess
of the focal length. The constraint is dropped during the
optimization step and the real normal is found. Moreover,
different initial guesses for the focal length can be obtained
very cheaply by repeating this procedure with a different in-
put image selected as the reference frame. The best initial
guess from these can then be used for further optimization.
The experiments presented in Section 7 demonstrate the ro-
bustness of the algorithm to violations of this assumption.

Under these assumptions the constraints (7) and (8) re-
duce to a pair of quadratic polynomials in one variable

h31 h32 f
2 + h11 h12 + h21 h22 = 0

(15)

f2 h31
2 − f2 h322 + h11

2 + h21
2 − h122 − h222 = 0

(16)

Note that since n0 is known the choice of e vanishes.
Choosing either e = [1, 0, 0]> or e = [0, 1, 0]> result in
the same equations. However, choosing e = [0, 0, 1]> (i.e.
e = n0) results in the trivial constraint 0 = 0. Each homog-
raphy imposes two constraints on the focal length. Since

the focal length only appears in quadratic form Eqs. (15)
and (16) simplify to linear constraints that can the be solved
directly as an overdetermined linear system to obtain f . In
case of outliers, a RANSAC approach can be used here to
discard homographies that were poorly estimated.

5.3. Scale and normalization

In the absence of noise, the self-calibration constraints
are homogeneous and their scale does not matter. However,
with real data the constraints will have non-zero residuals
and their scale affects the solution obtained. For example,
Eq. (7) can also be expressed as

a>i bi = ‖ai‖‖bi‖ cos θaibi (17)

where θaibi is the angle between the vectors. We see that the
scale of the residuals is directly proportional to the norm of
the vectors. However, this constraint should only depend
on the angle because it is an orthogonality constraint. Simi-
larly, Eq. (8) should only constrain the norms of the vectors
to be equal regardless of their scale. The constraints from
both [2] and [6] suffer from this problem.

There are two factors that affect the norm of the basis
vectors: the homography’s scale and the angle between n0

and e, i.e.

‖ai‖ ∝ ‖Hi‖ sin θn0e (18)

Both of these bias the calibration process if not accounted
for. A homography is a homogenous quantity and can have
any arbitrary scale. For example, if it is obtained through
linear means, it is usual to set h33 = 1 and thus fix the
scale. However, if it is obtained through SVD it is common
to set ||H||F = 1. Even though they are equivalent, these
two normalizations produce very different results when us-
ing constraints (7) and (8), because they give a different and
unequal weight to the residuals.

In a similar fashion, the angle between n0 and e will also
bias the solution. Even though e can be fixed, the normal of
the plane will vary during the optimization. A larger angle
will lead to a smaller norm for the basis vectors, thus reduc-
ing the cost of the solution and biasing the optimization to-
wards larger angles between n0 and e. In the extreme, when
the vectors are perpendicular, all residuals vanish. Even if
e is adjusted after each iteration to avoid vanishing residu-
als, it is not possible to normalize the homographies to give
an equal norm to all basis vectors. To remove this bias and
improve the obtained calibration we propose a pair of nor-
malized constraints that are scale independent

cos θaibi =
ai · bi

‖ai‖‖bi‖
= 0 (19)

1− ‖bi‖2

‖ai‖2
= 0 (20)



These constraints are shown in Section 7 to produce a more
stable and accurate calibration than the original constraints
of [2] and [6].

Normalizing the homographies with their Frobenious
norm is recommended to avoid possible singularities [7].
We still tried both normalizations for the homographies and
our normalized constraints consistently produced a better
calibration in both cases.

5.4. Non-linear optimization

The closed-form solution provides an initial guess un-
der the fixed-normal assumption. Although rough, this is
a suitable starting point for a non-linear optimization using
the constraints (19) and (20). The formulation of the mini-
mization problem is as follows,

arg min
K,n0

∑
i

ai · bi

‖ai‖‖bi‖
+
∑
i

1− ‖bi‖2

‖ai‖2
(21)

where the normal vector is constrained to have unit norm
and K is allowed to have 4 DoF as in (3). Although this
non-linear minimization is necessary to improve the initial
guess, it is still not optimal because the camera poses are en-
coded into the homographies and cannot be optimized. The
optimal solution will be obtained by optimizing in metric
space.

6. Metric reconstruction
Once the intrinsic parameters have been recovered, up-

grading the projective reconstruction to a metric reconstruc-
tion is straightforward. We define a new world reference
frame so that the scene’s plane lies at z = 0. Under this
reference frame, the extrinsic parameters of the reference
camera are initialized to R = [a,b,n]> and t = −Rn,
which positions the camera exactly one unit away from the
plane center and aligns it with the recovered normal.

The position x = [x, y, 0] of the observed points can
be obtained by intersecting the optical ray of the reference
camera with the scene plane at z = 0. The extrinsic param-
eters of the other cameras are implicitly contained in the
homographies and could be directly recovered from them
using non-linear means. Alternatively, since the observed
points are already triangulated and the camera is calibrated
we can use well-known perspective-n-points techniques to
estimate the extrinsics [9].

This produces a complete and calibrated 3D reconstruc-
tion of the scene and the cameras, including the intrinsic
parameters, K and d, the extrinsic parameters, {Ri} and
{ti}, and the point 3D positions, {xk}.

6.1. Metric bundle adjustment

The final solution is obtained by a non-linear optimiza-
tion which minimizes the reprojection errors of 3D points

on image space. That is, the point coordinates are now in
metric space and the quantity minimized is in pixel units.
This implicitly enforces all known constraints about the
scene over all measurements. The formulation of the mini-
mization problem is as follows,

arg min
K,d,{Ri},{ti},{xk}

∑
i

∑
k

ρ(‖pik − Pi(xk))‖)2 (22)

where the position of the points is constrained so that z = 0.

7. Experimental results
We present a series of experiments that highlight the ac-

curacy, robustness, and practicality of our calibration ap-
proach. Most of the experiments are done with synthetically
generated datasets in order to have absolute ground truth for
comparison. The final experiments use real cameras with
both a checkerboard and an arbitrary planar surface to vali-
date our method against a popular calibration toolbox.

7.1. Synthetic experiments

All synthetic tests were produced using a virtual cam-
era with images of size 640 × 480 and intrinsic parameters
fx = fy = 600, p0 = [320, 240]>, and d = [0.1,−0.01]>.
We use three different position set-ups for the virtual cam-
eras, shown in Fig. 3. Scene Fixed-A represents a com-
mon pattern by users capturing a plane from different an-
gles. Although common, this motion is close to degener-
ate as described in [12] and our experiments show that it
should be avoided. Scene Fixed-B augments this camera
arrangement with a series of cameras that are translated on
the XY plane, thus better constraining the problem. These
scenes have a fixed number of 35 cameras. Half of the cam-
eras for each scene were rotated by 90◦ to stabilize and con-
strain the calibration [10]. To test the influence of the num-
ber of images used for calibration we use scene Random
which samples cameras uniformly in space and points them
at a random point in the plane. In all scenes the reference
camera was positioned at a fixed central location and the an-
gle between the optical axis and the plane normal was cho-
sen according to the experiment. For all scenes, a uniformly
distributed set of 1000 features was generated on the plane
and projected onto the images, keeping only those measure-
ments within the image bounds. Gaussian noise was added
to the image point measurements with a σ depending on the
experiment. Each experiment was repeated 300 times to ob-
tain valid statistical results. All errors are calculated as the
root-mean-squared value from these iterations and they are
reported as a percentage of the ground truth value.

Figure 4 shows the robustness of the algorithm to viola-
tions of the assumption used to derive the closed-form solu-
tion. The reference camera was randomly sampled to have
an increasing angle with the scene’s plane. We observe that
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Figure 3: Synthetically generated scenes used for testing.
For all scenes fx = fy = 600, u0 = 320, v0 = 240,
d0 = 0.1, and d1 = −0.01.
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Figure 4: Robustness of the calibration system to non-
perpendicular reference cameras. The calibration is robust
to angles of up to 35◦.

the closed-form focal length estimation was able to produce
a good enough initial guess for the system to find the correct
calibration with angles of up to 35◦. Scene Fixed-B was
used with noise of σ = 1px.

Figure 5 presents a comparison of our normalized con-
straints with the formulation from [2]. Scene Fixed-B
with noise of variable σ was used. To show a direct
comparison the metric reconstruction stage was disabled,
Fig. 5 shows the results after the non-linear minimization
of Eq. (21). The angle between the reference camera and
the plane was set to 15◦. The results show that the normal-
ized equations are more accurate and more robust to noise.
These results correspond to those obtained by Gurdjos and
Sturm [6] with roughly 5% error in the focal length. How-
ever, they only tested with small amounts of noise.

Figure 6 evaluates the accuracy of the calibration in the
presence of noise. We generate a synthetic scene with noise
of increasing σ. We calibrate using our system (blue solid
line for Fixed-B and dotted line for Fixed-A). As a
comparison, we also show two cases for scene Fixed-B
where the final metic BA is initialized with the ground truth.
In the first (green) the points are allowed to vary along the
plane, in the second (black) the points are kept fixed at the
ground truth to simulate an ideal known-target calibration.

Figure 6 shows the clear difference in accuracy between
scenes Fixed-A and Fixed-B. The translated images
help constrain the distortion coefficients and result in a more
accurate calibration. We observe that the green line is very
close to our results, which means that our calibration is very
close the theoretical optimum using planar self-calibration
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for self-calibration. Note that this is the same experiment as
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constraints.
Self-calibration is more susceptible to noise than a

known-target calibration. This is to be expected because it
has more degrees of freedom. However, we can correct this
by using more images. Fig. 7 shows the behaviour of the al-
gorithm with a varying number of images used for calibra-
tion. We see that the accuracy of the self-calibration con-
verges to that of the known-target calibration when more
images are used. For modern cameras it is trivial to cap-
ture more images for calibration. In fact, we routinely use a
video of the camera moving around looking at a book cover
for calibration.

7.2. Real cameras

We show the results of calibrating real cameras using the
popular Bouguet toolbox [4] and our method. Bouguet’s
calibration uses planar checkerboards of known structure
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Figure 7: Calibration accuracy with increasing number of
images (scene Random, σ = 1). The self-calibration con-
verges with the known-target calibration.

to perform calibration. We use 30 images for calibration
and 15 for validation. We use the same hand-picked corner
matches for our method without using the known structure
to perform a direct comparison. This is shown in Table 1
as user match. Additionally, we perform calibration using a
video of a flat Lego box with unknown texture structure.
ORB features [11] were automatically matched between
frames to provide the necessary correspondences. The re-
sults of this video calibration are called automatic match.
The reprojection error of the calibration images is shown as
etrain. The pose of the validation images is optimized and
their reprojection error is listed as eval.

Our method provides an equivalent calibration to that of
[4]. Using the same matches the calibrations are practically
identical and the reprojection errors are comparable. Our
training reprojection error is marginally lower due to the ex-
tra degrees of freedom and the validation error is marginally
higher. The obtained accuracy is in line with the synthetic
results, showing a 0.15% focal length error. Moreover, al-
though it is a good reference, the calibration from [4] is not
a true ground truth and is also noisy.

For the video sequence, the distortion parameters are
considerably underestimated which results in a higher re-
projection error. This is due to inaccurate matching and
outliers, as indicated by the very high calibration repro-
jection error. Yet, the reprojection error is still below 1px
and the obtained accuracy is better than that reported by
[6] which demonstrates the robustness of the calibration ap-
proach. The feature matching stage can be improved but it
is out of the scope of this paper.

Finally, to showcase the flexibility and applicability of
our method we present a simple augmented reality applica-

Table 1: Comparison of obtained calibrations using real
cameras. Bouguet’s values are given as a reference and our
calibration is expressed as a relative deviation percentage
from it. We achieve practically the same calibration and
reprojection errors below 1px on validation.

Bouguet [4] Our method (%)
user match automatic match

fx 1384.77 -0.05 0.69
fx 1384.92 -0.15 0.93
u0 953.78 -0.27 2.00
v0 528.42 -0.41 -0.37
d0 0.094 4.70 -37.63
d1 -0.158 2.10 -14.45
etrain 0.25px 0.23px 1.94px
eval 0.26px 0.28px 0.84px

tion. A virtual cube is overlaid on top of the scene plane
and rigidly attached to it. This is best viewed as a video
sequence in the supplemental material . Plane-based aug-
mented reality is a popular application of computer vision
due to its robustness and accuracy. In our case, no knowl-
edge about the plane is needed. The camera can be self-
calibrated on the fly and the plane can be augmented with
any virtual scene.

8. Conclusions
We have presented a planar self-calibration system that

rivals the state-of-the-art calibration algorithms in accuracy
and is considerably more practical to use. Our novel deriva-
tion of the planar self-calibration constraint shows that the
previous formulations are biased. We proposed a set of nor-
malized self-calibration constraints that eliminates this bias
and is more robust to noise due to proper normalization. We
demonstrated that the assumption used to obtain the closed-
form solution to estimate the focal length is not very strict
and for most practical purposes poses no limitations on the
system. The system proved to be very robust to violations of
this assumption, obtaining correct calibrations with angles
of up to 35◦ between the reference camera and the scene
plane. Our calibration system improves the accuracy of cal-
ibration over a purely homography-based self-calibration by
over an order of magnitude.

We showed that our system has such a high accuracy
that with enough input images it reaches the same accuracy
as a known-target calibration, thus eliminating the practical
need of printing checkerboards for camera calibration. As
a possible application, our system enables plane-based aug-
mented reality without the need for any prior knowledge
about the plane or camera. Finally, we release the code of
our calibration system so that the computer vision commu-
nity can easily adopt this calibration method.
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