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Center for Machine Vision Research

University of Oulu
firstname.lastname@ee.oulu.fi

Abstract

In this paper we propose a unified framework for learn-
ing such local image descriptors that describe pixel neigh-
borhoods using binary codes. The descriptors are con-
structed using binary decision trees which are learnt from
a set of training image patches. Our framework general-
izes several previously proposed binary descriptors, such
as BRIEF, LBP and their variants, and provides a princi-
pled way to learn new constructions which have not been
previously studied. Further, the proposed framework can
utilize both labeled or unlabeled training data, and hence
fits to both supervised and unsupervised learning scenar-
ios. We evaluate our framework using varying levels of su-
pervision in the learning phase. The experiments show that
our descriptor constructions perform comparably to bench-
mark descriptors in two different applications, namely tex-
ture categorization and age group classification from facial
images.

1. Introduction
Image description is a key component in almost all com-

puter vision applications concerning detection, recognition
and classification. Among the main requirements for a de-
scriptor are discriminative efficiency and robustness against
degradations due to many factors such as noise and varying
imaging conditions. Classical methods such as Local Bi-
nary Pattern (LBP) [15] and Scale-Invariant Feature Trans-
form (SIFT) [11] have been widely examined and have
gained credits due to their robustness against challenges
such as pose and illumination variation.

The latest wave of development has seen the birth of lo-
cal descriptors that are quick to compute and compact in
their representation. A representative of this style of de-
scriptors is so called Binary Robust Independent Elemen-
tary Features (BRIEF). The motivation for developing fast
and compact description methods has risen partly due to the
ever increasing data and the proliferation of hand-held de-
vices for which the computational lightness is always vital.

For SIFT, for example, frequently mentioned drawbacks are
the computational cost of the feature calculation and slow
nearest-neighbor matching. Furthermore, although LBP is
a very fast in terms of feature computation it often leads
to very long representations. Dimension reduction meth-
ods such as Principal Component Analysis (PCA) can help
to speed up matching while using SIFT or LBP but at the
cost of added computational load and sometimes even with
a dropped matching accuracy.

Besides speed and compactness another essential re-
quirement for the construction of image descriptors is that
they are discriminative. A question then arises about how to
simultaneously achieve these all appealing properties. By
operating on simple pixel difference tests one can easily be
convinced about the speed. Compactness, in turn, can be
achieved by a descriptor operator that divides the resulting
descriptor or feature space as evenly as possible with re-
spect to all possible sample occurrences. Finally, to have a
discriminative description the feature space should be such
that all the regions collect as much as possible sample oc-
currences from a particular class and are only slightly mixed
of possible classes occurring. Clearly, to achieve all of these
properties powerful learning methods are needed.

In this paper, we propose a unified framework for learn-
ing local image descriptors using binary decision trees. In
fact, it is clear and well known that many previously pro-
posed descriptors, which represent image patches using bi-
nary codes, such as LBP [15], LPQ [16] and BRIEF [3],
can be computed by evaluating a sequence of binary-valued
functions. However, we suggest to view such descriptor
constructions as a special case of a more general decision
tree model where the binary code of an image patch is ob-
tained by assigning the patch to one of the leaf nodes. That
is, a binary-valued function of pixel intensities is computed
at each node of the tree so that its value determines the node
evaluated at the next level, thereby defining a unique route
from the root node to one of the leaf nodes encoded as a
bit string. In this kind of a setting, the aforementioned tra-
ditional image descriptors (e.g. LBP, LPQ, BRIEF) corre-
spond to a tree in which each node at a particular depth eval-
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uates the same function. This constraint makes the function
evaluations independent of each other and therefore the tree
structure can be reduced to a so-called fern [17]. Yet, con-
sidering these previous image descriptors as special cases of
more general decision trees opens up possibilities for poten-
tially useful generalizations and for utilizing the rich theory
and practice of decision trees [5] for learning new descrip-
tors.

There are a few previous works which have used deci-
sion trees in the context of local image description. For
example, [10] used randomized trees for keypoint classi-
fication in wide baseline image matching, [20] used ran-
domized trees for image categorization and segmentation,
and [13] learned local binary pattern features for descrip-
tion of face regions using a decision tree. However, almost
without an exception, all of these previous works, as well
as most other related works, use decision trees in the super-
vised setting where labeled training images are available.
In contrast, we take the unsupervised setting into deeper
investigation by additionally considering the possibility of
using decision trees to learn generic image descriptors us-
ing unlabeled non-application-specific image data. In fact,
inspired by [9], one of our goals is to construct such de-
scriptors that do not need to be trained specifically for each
application and which could be used as off-the-shelf alterna-
tives for conventional hand-crafted descriptors, like BRIEF
or LBP. To the best of our knowledge, decision trees have
not been previously used for learning general-purpose bi-
nary descriptors directly from raw pixel values.

Finally, it should be noted that besides pointing out con-
nections between different previous local descriptors and
providing ways for learning new constructions, our frame-
work responds well to practical requirements since binary
decision trees provide compact and discriminative features
which are fast to compute. Moreover, as our approach can
utilize both labeled and unlabeled data it fits well to differ-
ent learning scenarios and also has potential for learning the
characteristics of different application domains if additional
training data is available.

2. Related work
Statistical histogram over a discrete vocabulary of local

texture features is an effective way of image description. In
this paradigm, the responses to a descriptor of local image
patches are assigned to predefined bins according to some
partition of the feature space.

One of the pioneering works under the visual vocabulary
paradigm is Local Binary Patterns (LBP) [18]. LBP uses
a dataset-independent dictionary of local features which
are based on simple pixel intensity comparisons on a local
neighborhood. The output of the LBP operation is a binary
code string which characterizes texture properties within
this region. The binary strings are then mapped to their

decimal counterparts and collected into a histogram which
is used as image description. The simplest form of LBP op-
erates on image pixels by thresholding their 3×3 neighbor-
hood with the center value, but later it was extended to use
neighborhoods of different sizes with different sampling ge-
ometries such as circular and elliptical (bilinearly interpo-
lating values at non-integer pixel coordinates) which have
both proven to work reasonably well in a vast amount of
applications. The most important characteristic of LBP is
its robustness to monotonic gray-scale changes caused, for
example, by illumination variations. This is achieved by the
fact that LBP operates on the signs of pixel value differ-
ences throwing away the information about absolute pixel
magnitudes.

Binary Robust Independent Elementary Features
(BRIEF) [3] shares the idea of LBP to form a descriptor
which is based on pixel comparisons on a local neighbor-
hood. The BRIEF descriptor operates on image patches by
a predefined set of n (x, y)-location pairs that define the
set of binary tests. The output of the BRIEF operation is a
binary string.

Besides being both robust against monotonic intensity
changes and shown to be highly discriminative, LBP and
BRIEF are computationally simple and very fast to extract.
However, both of them share the same question about how
to select the binary tests used in feature calculation. Com-
pared with BRIEF, there are fewer possibilities to select the
binary tests in LBP as the center is always fixed. Further,
for LBP, the problem is even more relaxed, as developers
usually fix the sampling geometry, such as a ring or an el-
lipse, and then pick equally sampled points around that. For
BRIEF, authors in [3] tested different kinds spatial arrange-
ments by selecting the test locations according to uniform
and Gaussian distributions. Although both of these meth-
ods have shown to work well, one might ask whether there
are more sophisticated methods available than handcrafting
the sampling points or randomly deriving them according to
some distribution.

After fixing the sampling strategy, a popular way to pro-
ceed is then to select the most significant patterns or pools
of patterns in this topology-defined feature space. For LBP,
these methods cover different feature selection techniques
such as the widely used uniform and rotation invariant pat-
terns. Different kinds of heuristical search strategies, such
as beam search [12] or Sequential Floating Forward Selec-
tion (SFFS) [1], have been also tried but without any signif-
icant improvements. One must remember that feature selec-
tion methods are always sub-optimal, due to the number of
possible subspaces which is

(
D
d

)
where d is the dimension

of the subspace. Also, the options for BRIEF have not yet
been studied in-depth. Instead of randomly deriving binary
tests according to some distribution, a greedy learning algo-
rithm was proposed to find a subset of uncorrelated binary



tests that provide high variance [19].
To tackle the raised sampling and feature selection is-

sues, a method called Local Quantized Patterns (LQP) [7]
was proposed. LQP was introduced as a generalization of
local pattern features making use of vector quantization and
letting to have many more pixels and quantization levels
without the loss of simplicity and computational efficiency.
One of the main objectives of LQP is to get rid of hand-
crafted sampling topologies by densely sampling larger lo-
cal pattern neighbourhoods and then using K-means to clus-
ter the resulting set of binary patterns off-line to build a
very large look-up table which later allows run-time cod-
ing of local patterns. LQP is partly inspired by the famous
visual words approach where a set of training images are
convolved with a filter bank to generate filter responses. Ex-
emplar filter responses, found by K-means clustering, are
then selected as textons for labeling each filter response and
finally every pixel.

A kind of an opposite method to LQP was proposed
in [13] where decision trees were introduced to learn the
most discriminative set of neighborhood pixels for intensity
value comparisons. The observation behind this method,
called Decision Tree LBP (DT-LBP), was the operation of
an LBP over a given neighborhood which was stated equiv-
alent to the operation of a fixed binary decision tree. Thus,
instead of using a fixed binary decision tree, the paper pro-
poses to use decision tree learning for finding out the most
discriminative pixel value comparisons. The immediate aim
of the DT-LBP method is to produce compact and discrim-
inative descriptors without such a deep pattern mining and
later clustering present in LQP.

In [17], a concept called decision fern was introduced as
a specific case of a tree structure and with an application to
image patch processing for keypoint recognition. A fern is
formed from a tree by first constraining it to systematically
perform the same test across each hierarchy level, which
then results in the same test of the path taken to get to a par-
ticular node. As a result, ferns do not contain hierarchical
structure but apply a linear sequence of tests. In [17], ferns
were used as replacements for trees based on the argument
that the tree structure itself was not the key factor in suc-
cessful patch recognition but rather combining the groups
of binary tests. It is evident, by definition, that the LBP
descriptor can be seen as a kind of a decision fern.

In their most original form, LBP and BRIEF descriptors
rely on simple pixel value comparisons describing the result
of a set of these operations by zeros and ones. For LBP,
many studies propose various kinds of sampling geometries
for characterizing the local neighborhood. Some was shown
to work better than the basic rectangular or circular LBP
but only few put a serious attention on the question why
did the topology at hand perform better than the basic one.
LQP was introduced to tackle the problem of choosing the

sampling geometry by proposing a descriptor operating on
a densely sampled patch of a size 5×5. However, as also
noted by the authors [7], using larger neighborhoods such
as 7×7 or even bigger ones, the developer is again forced
to handcraft sampling geometries as the dense sampling in
this case yields a lot more than 24 binary tests which was
stated to be an upper limit for implementation in hardware.

For BRIEF, there are only few methods for selecting
the best set of pixel value comparisons. Moreover, to
the best of our knowledge, BRIEF has never been exper-
imented as a dense descriptor but rather as a method for
sparse keypoint point description. Partly towards these
ends, we next introduce a framework for learning disrim-
inative and compact descriptors that are based on binary de-
cision trees. Although sharing many of the ideas already
presented in [13], [14], and [17] our method can be seen as
a generalization of all these works. We evaluate our frame-
work using decision trees under the dense image descrip-
tion mode meaning the final description is formed from the
whole image or at least from major parts.

3. Learning local binary descriptors
When using binary descriptors like LBP or BRIEF a

good starting point is to clarify the underlying mechanism
and the efficiency they are based on. At first, threshold-
ing pixel value differences is an efficient coding per se, as
it makes the descriptor invariant to monotonic gray-scale
changes. What follows is then the selection of the best set
of pixels for the comparisons. For LBP, while using cir-
cular or elliptical sampling geometries this set of pixels is
always fixed. This is motivated by the patterns that occur in
textures and that the most interesting ones are more or less
extractable by using the given geometries.

Because each pixel value thresholding operation in-
cluded in a binary descriptor is responsible for such a criti-
cal task as feature space partition, it is desirable to find the
most optimal set of those. In LBP calculation, however,
this does not apply as the pixels are chosen based on the
fixed geometry. To tackle this, Maturana et al. proposed to
use decision tree learning algorithms to find the most dis-
criminative set of pixel comparisons [13]. Although they
showed the method improves standard LBP calculation in
face recognition, their framework was still highly tuned for
operating on faces. First, they trained many different tree
descriptors based on different face areas and did not try to
explain in depth what really happens behind the curtains.

The main goal of our framework is to gain ability to learn
discriminative and compact descriptors by first sampling
a representative yet reasonable number of training image
patches to represent the feature space and then learning the
optimal parition of this feature space using decision trees.
It is of further interest to evaluate whether it is possible to
learn general purpose descriptors using natural images as



it was done in [9]. Further, the aim is not to put any re-
strictions on finding the best set of pixel comparisons, but
to generalize the descriptor to operate like the BRIEF de-
scriptor. Following the steps presented in [13] and [14], the
algorithm for learning tree-based local binary descriptors is
given in Alg.1.

Algorithm 1 Tree(L)
Input: A set of training image patches L

if max depth == true then
return

else
(ft, θt)← chooseTest(L)
Ll ← {(xi, yi) ∈ Lt|ft(xi) ≥ θt}
Lr ← {(xi, yi) ∈ Lt|ft(xi) < θt}
return ft, θt, T ree(Ll), T ree(Lr)

end if

Algorithm 2 chooseTest(L)
Input: A set of training image patches L
Output: A binary test f and a threshold θ
evaluate n possible binary tests
for j = 1 to n do

scores← evaluate(L, fj , θj)
end for
find the index of the best test
j∗ = arg maxj scores
return fj∗ , θj∗

The binary descriptor is learned recursively top-down.
The training phase starts by defining a complete descriptor
space corresponding to a training set L = {(xi, yi)}Ni=1 in
which xi ∈ R w×h,w and h defining the size of the patches.
The recursive algorithm evaluates each node t by dividing
L into two distinct subsets Lr and Ll so that Lr ∪ Ll = L
and Lr ∩ Ll = ∅. This is achieved by the chooseTest
function which ranks all possible binary tests with respect
to L given the spatial support of the descriptor defined by
w × h. The chooseTest function can be based on for ex-
ample pixel pairs, trios, or on any kind of function of pix-
els. If the test is fixed as a sign of the difference between a
pixel pair (like in our experiments) the function is defined
as f(xi) = sgn(xia−xib

), where a and b denote the pixel
positions in the patch. In this kind of setting, the number
of possible tests is given by the size of the patch xi so that
there are altogether

(
w×h

2

)
tests that could be evaluated. At

some point, especially while using larger image patches, the
number of possible tests may grow too high so that the eval-
uation must be based on random subsets of all possible tests.
Also, several different threshold values θ can be evaluated,
but one must remember that if the threshold is not fixed the
number of possible binary tests grows further.

The selection between unsupervised and supervised
learning then defines what is maximized. In unsupervised
scenario where class information is not utilized one can use
the Shannon’s split entropy which is defined as

H(L) = −
2∑

p=1

|Lp|
|L|

log2

|Lp|
|L|

, (1)

where |·| returns the size of the set and p stands for the par-
tition. The maximum is reached when both of the partitions
have equal number of training patches.

In supervised scenario, where the class information is
utilized, pixel value comparisons are ranked based on the
information gain of the split, defined as

I(L) = HC(L)−
2∑

p=1

|Lp|
|L|

HC(Lp), (2)

where HC is defined as

HC(L) = −
∑
c∈C

|Lc|
|L|

log2

|Lc|
|L|

, (3)

where |Lc| is the number of patches belonging to class c.
The Tree function is recursively called until it reaches

the maximum depth which is experimentally set. As it can
be seen, the main parameters of the overall process are the
desired level of supervision, the size of the descriptor’s spa-
tial support and the maximum depth. In our experiments,
the spatial support is fixed as square S×S, varying S be-
tween 3, 5, and 7. In general, however, there are no lim-
itations for using any rectangular or any other geometrical
shape for the neighborhood. In our experiments, the depth
is varied from 5 to 10.

For fern-like structures, the root node test is selected as
previously, but after that we must modify the given split
entropy and information gain so that both are functions of
all nodes at a depth l. Thus, if the root note is indexed as
0 and the rest in ascending order from left to right, the split
entropy, starting from the depth l=1, is defined as follows

Hl(L) = −
2l+1−2∑
j=2l−1

|Lj |
|L| log2

|Lj |
|L| , (4)

where j stands for the node index at a depth of l. Further,
the information gain is given as

Il(L) = HC(L)−
2l+1−2∑
j=2l−1

|Lj |
|L| HC(Lj), (5)

where j and l are as in (4), andHC(·) as in (3). The test that
gives the highest split entropy or information gain is then
selected as the (l+1)th component for the linear sequence
of the fern structure.



4. Experimental analysis
We evaluate the performance of the proposed de-

scriptor learning framework by conducting experiments
on two recognition problems: texture categorization and
biometrics-related human age group classification. For
texture categorization, we use CUReT and KTH-TIPS2a
benchmark datasets. In the human age group classification,
we consider the ImagesofGroups (IoG) database. The
evaluation for both experiments is easily reproducible.

We perform evaluation using descriptors constructed by
a random pick of pixel pairs, unsupervised learning using so
called natural images [8], and finally, both unsupervised and
supervised learning using images from the application. The
motivation for using natural images comes from the earlier
study where those together with Independent Component
Analysis (ICA) were used to learn general purpose image
descriptors. Like in [9], the aim is to evaluate whether pow-
erful descriptors could also be produced by decision tree
learning.

In our experiments, we only evaluate tree based struc-
tures leaving ferns for the future work.

4.1. Texture categorization

The CUReT dataset contains texture samples collected
from 61 different materials from real-world surfaces with
varying properties. We consider the publicly available
cropped dataset [6] having a total of 5,612 images with 92
samples per each material class. For training image patches,
we isolate a subset of 23 images per each material so that
those images are put aside after learning. A descriptor is
learnt by randomly sampling around 200,000 image patches
of a certain size taking an even number of samples per each
class. As this random process leads to a slightly different
tree descriptor each time, we train 50 descriptors to gain
statistically more relevant analysis. For the evaluation, we
handle the remaining 69 images per class so that 23 per
class is used for training a nearest-neighbor classifier and
the remaining 46 samples are used for testing. We train the
nearest-neighbor classifier 10 times randomly picking the
23 samples and then test it using the remaining 46 images.
The mean accuracy of those ten iterations is then consid-
ered as the final performance of the descriptor. Throughout
our texture categorization experiments we used L1 distance
metric for the nearest-neighbor classifier.

In the CUReT examination, we learnt the descriptors us-
ing natural images, images picked from the application spe-
cific dataset, and application specific images together with
the class information. The results, shown in Fig.1, validate
that learning the descriptor with any level of supervision
is more effective than randomly picking the pixel compar-
isons. They also show that in most of the cases, using ap-
plication specific training patches is better than using natu-
ral images. Using the class information, however, does not

seem to improve the accuracy but rather makes it worse.

Table 1. Mean accuracies of different descriptors on CUReT.
descriptor mean accuracies

LBP 8,2 / u2
8,2 / 10,2 / u2

10,2 .889 / .864 / .849 / .874

LQP 32 / 64 / 128 / 256 / 512 / 1024 .856 / .865 / .892 / .897 / .902 / .901

LBPunsup
tree 32 / 64 / 128 / 256 / 512 / 1024 .840 / .863 / .879 / .887 / .896 / .901

BRIEFunsup
tree 32 / 64 / 128 / 256 / 512 / 1024 .834 / .866 / .886 / .901 / .912 / .920

We compared the best two methods on 5×5 neighbor-
hoods against circular LBP and LQP using disk5 pattern
geometry with positive binary half [7]. The results, shown
in Table 1, indicate that decision tree based descriptors are
comparable to the benchmark methods. However, as can be
seen in Fig.1, the results improve while using 7×7 neigh-
borhood. Based on our experiments, especially LBP starts
to substantially suffer from larger support area which is un-
derstandable as fixing 8 or 16 samples from a circular neigh-
borhood, for example on a 7×7 neighborhood where there
are
(
7×7
2

)
pixel pairs available, can not always provide the

best set of those in the given application. Whereas for LQP,
as also mentioned by the authors in [7], densely sampling
larger support areas soon becomes infeasible ending up to
the need for handcrafting the sampling strategy.

The KTH-TIPS2a dataset contains images of 11 mate-
rials, each of these are also present in the CUReT dataset [4].
Each material class contains images from four different ma-
terial samples. For example, for the class cracker, sam-
ples of four different cracker qualities have been imaged.
In addition, the dataset provides images with variations
in scale, pose, and illumination. As a consequence, the
KTH-TIPS2a dataset has a lot more within class variation
in each material class than the CUReT dataset, yielding a
more complicated setting. The dataset contains 4,608 sam-
ples which are divided so that 40 out of 44 samples have
108 images and the rest contain only 72 images.

For the KTH-TIPS2a experiment, we pick 8 to 9 im-
ages per a sample material so that finally there are 392 im-
ages. These images are used for learning the descriptors
and then removed from further use like in the previous ex-
periment. The rest of the experiment goes as in the orig-
inal KTH-TIPS2a protocol: A nearest-neighbor classifier
is trained by using three of the samples as a training set
and then testing the classifier using the remaining sample.
This procedure is repeated four times so that each sample
is once used as a testing set. The final performance is then
the mean of these four repetitions. Likewise in the CUReT
experiment, we train a descriptor 50 times evaluating the
performance for each round, and finally report means, stan-
dard deviations, and the whole range of accuracies.

The results, summarized in Fig.2, show that while using
supervised setting in LBP-like sampling it is better to use
larger neighborhoods. The same fact goes for BRIEF-like
sampling. Most interestingly, the supervised setting with
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Figure 1. Experimental results on the CUReT database using LBP and BRIEF-like sampling strategies with 3×3, 5×5 and 7×7 neighbor-
hoods. (a), (b), and (c) illustrate the results using LBP-like sampling, and (d), (e), and (f) illustrate the results using BRIEF-like sampling.
The colored boxes stand for standard deviations of 50 descriptor learning iterations, whereas the thin lines stand for the minimum and
maximum accuracies.

BRIEF-like sampling seems to outperform other settings
with a significant margin. In overall, the results clearly indi-
cate the complexity of the KTH-TIPS2a dataset compared
with the CUReT dataset.

Obviously, regarding both texture categorization experi-
ments while using LBP-like sampling in supervised learn-
ing does not provide any improvement but rather makes
the performance worse. However, there are some evidence
that by enlarging the neighborhood could help which can
be explained by the risen number of possible pixel com-
parisons. The reason why on CUReT the margin between
supervised and unsupervised settings is far larger than on
KTH-TIPS2a can be partly explained by a lot bigger num-
ber of different classes in CUReT. Perhaps it is just too com-
plicated to learn a descriptor that manages to learn such
a coding which succeeds in dividing the feature space as
evenly as possible and, at the same time, separates each
class as much as possible.

In Table 2, we compare the results of the best descrip-
tors to LBP and LQP using different size of codebooks. We
conducted the comparative analysis using the 5×5 neigh-
borhood, as larger support areas seemed again to lower the

performance for LBP, whereas for LQP, the implementation
was infeasible due to the large size of the resulting look-up
table.

Table 2. Mean accuracies of different descriptors on
KTH-TIPS2a.

descriptor mean accuracies

LBP 8,2 / u2
8,2 / 10,2 / u2

10,2 .595 / .565 / .556 / .542

LQP 32 / 64 / 128 / 256 / 512 / 1024 .524 / .568 / .586 / .599 / .605 / .605

LBPunsup
tree 32 / 64 / 128 / 256 / 512 / 1024 .530 / .558 / .572 / .582 / .588 / .596

BRIEFunsup
tree 32 / 64 / 128 / 256 / 512 / 1024 .533 / .566 / .587 / .598 / .599 / .597

4.2. Age group classification

IoG consists of 28,231 facial images collected from
Flickr images, taken in uncontrolled conditions. Each face
is labeled with an age category defining seven age groups as
follows: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+.

We first align each face with respect to eye coordinates
provided by the database. We use a 64× 64 pixels size
of model to which all face images are fitted. Once nor-
malized, the face is processed using the binary descriptor,
and then, divided into 6× 6 non-overlapping cells from
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Figure 2. Experimental results on the KTH-TIPS2a database us-
ing different sampling strategies with 5×5 and 7×7 neighborhoods.
(a) and (b) illustrate the results using LBP-like sampling, and (c)
and (d) illustrate the results using BRIEF-like sampling.

which the descriptor labels are collected into a spatially en-
hanced histogram which is the final representation of the
face. For classification, we train a multi-class Support Vec-
tor Machine (SVM) using a linear kernel and setting the cost
C=1.

The IoG database provides some predefined face sets
that we utilize in this work: We use a predefined set of
3,500 face samples (500 faces per category) as a training
the SVM. From the remaining faces we randomly collect
50 overlapping face sets which each contain 1,400 samples
(200 faces per category). Then, in each descriptor learn-
ing round, we take 700 of those samples (100 faces per
category) and learn the binary descriptors like in the previ-
ous experiments, sampling around 200,000 training image
patches. The remaining 700 faces are then used in testing
the performance of the age model.

The results of the age group classification experiment are
shown in Fig. 3. Evidently, by growing the depth of the tree
one is able to improve classification accuracy. The best re-
sult is got using unsupervised BRIEF-like descriptor learnt
using application specific images. Nevertheless, learning by
natural images provides almost equally good results. The
most interesting is to notice the deteriorated performance of
LQP descriptors. Also, LBP using uniform patterns makes
the result worse. The large scale in accuracy for each de-
scriptor reveals the fact that their performance is heavily
dependent on the testing image sets. While the range in ac-

curacies for tree-based descriptors seems to be very large,
it is the same for LBP and LQP descriptors. To the best
of our knowledge, the highest classification accuracies us-
ing the IoG database is reported in [2] (∼ 0.56) and [21]
(∼0.52) which both use slightly different evaluation proto-
col yet report the results using only one fixed testing set. In
that regard, we believe our results are more approriate than
those in the reference studies.

5. Discussion

In overall, the proposed framework has potential espe-
cially while using larger neighborhoods in which case we
showed that better descriptors compared to LBP can be
learned in the given applications. While the LQP descriptor
remains a tempting method, using larger than 5×5 neigh-
borhoods the reported release from handcrafting pixel com-
parisons becomes hard to meet because of the implementa-
tional issues. Moreover, we showed that using our frame-
work one is able to produce competitive image descrip-
tors without using application-specific data in the learning
phase. These generic descriptors can be used as alterna-
tives for conventional hand-crafted descriptors using equiv-
alent or even shorter description lengths. The descriptors
produced by our framework can be used in different appli-
cations in a similar manner as LBP or BRIEF and no large
look-up tables are needed as in LQP.

6. Conclusions

In this paper we presented a unified framework for learn-
ing local image descriptors using binary decision trees. Our
framework is inspired by the several previously presented
binary descriptors such as LBP and BRIEF, and by the ob-
servation that those can be seen as a special cases of a more
general decision tree model. We manifested three different
levels of supervision under which the proposed framework
was evaluated. These levels included unsupervised learn-
ing based on so called natural images, and unsupervised
and supervised learning using application specific images.
Regardless of the utilized supervision, the proposed frame-
work constructs a tree-based descriptor which outputs a bi-
nary string for each pixel in a given image, which is then
used to construct a histogram representation acting as the
final description of the whole image.

We evaluated the performance of the descriptor learn-
ing framework by conducting experiments on two recogni-
tion problems, namely texture categorization and age group
classification based on facial images. In texture categoriza-
tion, we were able to learn descriptors that were at least
comparable to the LBP and LQP reference methods, while
in age group classification problem we demonstrated out-
perfoming results compared to the reference methods.



(a) (b)

Figure 3. Experimental results on the IoG database using LBP and BRIEF-like descriptors with (a) 5×5 and (b) 7×7 neighborhoods.
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