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Abstract: In this paper, we present a method for real-time multi-person human pose estimation from video by utilizing
convolutional neural networks. Our method is aimed for use case specific applications, where good accuracy
is essential and variation of the background and poses is limited. This enables us to use a generic network
architecture, which is both accurate and fast. We divide the problem into two phases: (1) pre-training and
(2) finetuning. In pre-training, the network is learned with highly diverse input data from publicly available
datasets, while in finetuning we train with application specific data, which we record with Kinect. Our method
differs from most of the state-of-the-art methods in that we consider the whole system, including person
detector, pose estimator and an automatic way to record application specific training material for finetuning.
Our method is considerably faster than many of the state-of-the-art methods. Our method can be thought of as
a replacement for Kinect in restricted environments. It can be used for tasks, such as gesture control, games,
person tracking, action recognition and action tracking. We achieved accuracy of 96.8% (PCK@0.2) with
application specific data.

1 Introduction

Human pose estimation in unconstrained environ-
ment is a problem where humans yet perform bet-
ter than computers. In recent years, the research has
moved from traditional methods (Felzenszwalb et al.,
2008; Andriluka et al., 2009; Yang and Ramanan,
2011; Sapp and Taskar, 2013) towards convolutional
neural networks (ConvNets) (Jain et al., 2013; Toshev
and Szegedy, 2014; Pfister et al., 2014; Jain et al.,
2014; Carreira et al., 2015; Pishchulin et al., 2015;
Pfister et al., 2015; Tompson et al., 2015; Lifshitz
et al., 2016; Wei et al., 2016; Newell et al., 2016;
Charles et al., 2016). Due to this, significant improve-
ments in accuracy have been accomplished. Con-
vNets became popular, when AlexNet (Krizhevsky
et al., 2012) was introduced. AlexNet could classify
images on different categories. Since then, several
more efficient network architectures have been pro-
posed, for both classification and human pose estima-
tion.

Many state-of-the-art ConvNet human pose esti-
mation methods uses more complex network archi-
tectures and they perform considerably well in uncon-
strained environments (Lifshitz et al., 2016), (Newell
et al., 2016), (Insafutdinov et al., 2016), where large
variations in pose, clothing, view angle and back-

ground exists. While these methods have high accu-
racy, they are usually slow considering real time pose
estimation. Recent research (Toshev and Szegedy,
2014), (Pfister et al., 2014) shows that by using a
generic ConvNet architecture, a competitive accuracy
can be achieved, while still maintaining a fast for-
ward pass time. This is the main motivation of our
research. With our method, we don’t aim for over-
all human pose estimation in diverse input data, but
rather target to specific use cases where high accuracy
and speed are required. In such cases, the problem
is different, because the environment is usually con-
strained, persons are in close proximity of the camera
and poses are restricted. Possible application for our
method are, for instance, gesture control systems and
games.

Our method is a multi-person human pose esti-
mation system, targeted for use case specific appli-
cations. In order to support multiple people, we use
a person detector, which gives locations and scales
of the persons in the target image. This brings our
method towards the practice, since person location
and scale are not expected to be known, which is
the case with many state-of-the-art methods (Lifshitz
et al., 2016), (Wei et al., 2016), (Newell et al., 2016).
We use a generic ConvNet architecture, with eight
layers. The key idea of our method is to pre-train



the network with highly diverse input data and then
finetune it with use case specific data. We show that
competitive accuracy can be achieved in application
specific pose estimation, while operating in real-time.
Our method can be used for higher level tasks, for
example, gesture control, gaming, action recognition
and action tracking.

The main contributions of our method are: (1) uti-
lization of person detector to crop person centered im-
ages in both training and testing, thus enabling multi-
person pose estimation in real world images, (2) abil-
ity to learn from heterogeneous training data, where
the set of joints is not the same in all the training
samples, thus enabling to use more varied datasets in
training, (3) utilization of Kinect for automatic train-
ing data generation, thus making it easy to generate
large amount of annotated training data, (4) somewhat
slower and less accurate depth sensor free alternative
for Kinect (Shotton et al., 2013) in restricted envi-
ronments. The frame rate of our method is about 13
Hz, when with Kinect it is 15 or 30 Hz, depending on
the lighting conditions. Our method works with RGB
cameras while Kinect needs also a depth sensor.

2 Related Work

Jain et al. (Jain et al., 2013) demonstrated that
ConvNet based human pose estimation can meet the
performance, and in many cases outperform, tradi-
tional methods, particularly deformable part mod-
els (Felzenszwalb et al., 2008) and multimodal de-
composable models (Sapp and Taskar, 2013). Their
network architecture consisted of three convolutional
layers, followed by three fully connected layers. They
trained the network for each body part (e.g. wrist,
shoulder, head) separately. Each network was applied
as sliding windows to overlapping regions of the input
image. A window of pixels was mapped to a single bi-
nary output: the presence or absence of that body part.
This made possible to use much smaller network, at
the expense of having to maintain a separate set of
parameters for each body part.

Another application to human pose estimation
was presented by Toshev and Szegedy (Toshev and
Szegedy, 2014). Their network architecture was sim-
ilar to AlexNet (Krizhevsky et al., 2012), but the last
layer was replaced by a regression layer, which out-
put joint coordinates. In addition to this, they trained
a cascade of pose regression networks. The cascade
started off by estimating an initial pose. Then at sub-
sequent stages, additional regression networks were
trained to predict a transition of the joint locations
from previous stage to the true location. Thus, each

subsequent stage refined the currently predicted pose.
Similar idea is applied in more recent work by Car-
reira et al. (Carreira et al., 2015).

A video based human pose estimation method was
introduced by Pfister et al. (Pfister et al., 2014). Their
method utilized the temporal information available in
constrained gesture videos. This was achieved by
training the network with multiple frames so that the
frames were inserted into the separate color chan-
nels of the input. The network architecture was sim-
ilar to AlexNet, having five convolutional layers, fol-
lowed by three fully connected layers, from which the
last one was a regression layer. However, there were
some differences compared to the previous architec-
tures. Some of the convolutional layers were much
deeper and pooling was non-overlapping, when in
most of the previous architectures it was overlapping.
The network produced significantly better pose pre-
dictions on constrained gesture videos than the previ-
ous work. For this reason, we base our method to this
network architecture.

3 Method

Our method is targeted for video inputs. The
rough steps for a single video frame in testing are:
(1) detect persons, (2) crop person centered images,
(3) feedforward person images to the pose estimation
network. We use an object detector (Ren et al., 2015)
to solve person bounding boxes from the input frame.
The pose estimation is done for each person individ-
ually. As a result of the pose estimation, our network
outputs locations of body keypoints.

We pre-train our network by using data from mul-
tiple publicly available datasets, thus offering good
initialization values for finetuning. We evaluate pre-
training and finetuning separately. For the evaluation
of the finetuning, we use data recorded with Kinect.
As for ConvNet framework, we use Caffe (Jia et al.,
2014) with small modifications.

3.1 Person Detection

Our method utilize Faster R-CNN (F-RCNN) (Ren
et al., 2015) to detect persons from training and test-
ing images. The forward pass time of the F-RCNN is
60ms or 200ms, depending on the used network. We
use the slower and more accurate model.

We noticed that sometimes F-RCNN gives false
positives. This is not a problem in training, since we
use both the ground truth and the F-RCNN together to
crop the training image. But in testing, the pose esti-
mation is also performed for false positives. However,



Table 1: Overview of used datasets in pre-training. Only the training set of the MPII Human Pose is used, because the
annotations are not available for the test set. In the BBC Pose, the training set is annotated semi-automatically (Buehler et al.,
2011), while the test set is manually annotated. We use only manually annotated data from the BBC pose. We use data
augmentation to expand the number of training images.

Person boxes we use
from the dataset

Person boxes we use for
pre-training and validation

Annotated
pointsDataset Train Test Total Train (aug.) Validation

MPII Human Pose (Andriluka et al., 2014) 1-16 28821 0 28821 71018 1160
Fashion Pose (Dantone et al., 2013) 13 6530 765 7295 14538 694
Leeds Sports Pose (Johnson and Everingham, 2010) 14 1000 1000 2000 5074 146
FLIC (Sapp and Taskar, 2013) 11 3987 1016 5003 14780 0
BBC Pose (Charles et al., 2013) 7 0 2000 2000 6764 0

40338 4781 45119 112174 2000

most likely these false positives could be filtered, es-
pecially with use case specific images, by adjusting
the parameters of the F-RCNN. In the evaluation, we
use also the ground truth to decide if the frame has
a person or not, so it is guaranteed that all the eval-
uation frames contain a person. Apart from this, we
ran the F-RCNN for the original finetuning evalua-
tion frames, where the ground truth was not yet used
for the frame selection. This resulted in false posi-
tive rate of 2.86% and false negative rate of 0.65%. In
all of the original evaluation frames, there is one fully
visible person making gestures in constrained envi-
ronment. Person detection was considered false if the
resulted bounding box did not contain a person, or if it
had partially visible person on the edges of the bound-
ing box. In other words, if the intersection-over-union
(IoU) ratio between the detection and the ground truth
was 0.5 or less.

3.2 Data Augmentation

The F-RCNN person detector is applied for each
training image. For each detected person, the IoU
between the detected person bounding box and the
expanded ground truth bounding box is calculated.
The expanded ground truth person box is the tight-
est bounding box, including all the joints, expanded
by a factor of 1.2. The person box having the biggest
IoU is selected as the best choice. Based on the best
IoU, the training image is augmented by using either
of the person bounding boxes, or both (see Table 2).

Table 2: The relation between the person box overlapping
ratio and the data augmentation.

Person box type used in augmentation

Overlapping ratio F-RCNN Ground truth

IoU > 0.7 X
IoU < 0.5 X
0.5 ≥ IoU ≤ 0.7 X X

In practice, this means that if the detected person
box is near to the ground truth expanded person box,
only the former is used to crop the person image. And
if the detected person box is far from the ground truth
expanded person box, only the latter is used to crop
the person. And in between of these, both person
boxes are used to crop the person, resulting in two
training images, where both have small differences in
translation and scale. The shortest side of a person
box is expanded to equal the longest side, resulting a
square crop area, defining the person image used in
training. Zero padding is added where needed. A sin-
gle cropped person image is rescaled to size 224×224
before feeding it to the network.

In addition to aforementioned, a training image is
augmented by doing a horizontal flip. All in all, a sin-
gle person image from a source dataset can result in
either two or four augmented person centered training
images.

3.3 Pre-training

We pre-train the model from scratch by using several
publicly available datasets (see Table 1). The number
of annotated joints varies between the datasets. The
MPII Human Pose (Andriluka et al., 2014), Fash-
ion Pose (Dantone et al., 2013) and Leeds Sports
Pose (Johnson and Everingham, 2010) have full body
annotations, while the FLIC (Sapp and Taskar, 2013)
and BBC Pose (Charles et al., 2013) have only upper
body annotated. Since we use a single point for the
head, and because the MPII Human Pose and Leeds
Sports Pose have annotations for the neck and head
top, we take the center point of these and use it as a
head point.

As we aim to study that whether additional par-
tially annotated training data brings improvement
over using only fully annotated samples, our valida-
tion samples should be fully annotated. Thus, we put
all the fully annotated (13 joints) person images to a



Figure 1: Example pose estimations with the pre-trained
network. Samples are taken randomly from the testing set
of the MPII Human Pose dataset. The green bounding
boxes are the results of person detection and the number
on the top-left corner is the probability of a box containing
a person.

Figure 2: Example pose estimations with the finetuned net-
work. Predictions are in red and Kinect ground truth in
green. On the columns are five different frames from the
evaluation data. The first row shows results of the full
finetuning (experiment 3) and the second row shows re-
sults of the phase 1 (experiment 1). Experiments are ex-
plained later in Section 4. Full videos are available at
https://youtu.be/qjD9NBEHapY and https://youtu.
be/e-P5SYL-Aqw.

single pool and sample 2000 images randomly for val-
idation. The validation images are then removed from
the pool. Next, we put all the partially annotated im-
ages to the same pool so that it eventually contains
person images with heterogeneous set of annotated
joints. Then we use the pool in training. The purpose
of the pre-trained model is to offer a good weight ini-
tialization values for finetuning. Pre-training takes 23
hours on three NVIDIA Tesla K80 GPUs. Fig. 1 con-
tains example pose estimations with the pre-trained
network.

3.4 Finetuning

The purpose of the finetuning is to adapt the pre-
trained model for the particular use case. For instance
a gesture control system or a game. The pre-trained
model alone is not a good enough pose estimator for
our use cases, because the shallow network we use
lacks the capacity to perform well with highly diverse
training data. More complicated network architec-
tures, such as (Newell et al., 2016), (Lifshitz et al.,
2016) would certainly give better results, but then the
speed gain achieved with shallow network architec-
ture would most likely be lost.

In finetuning, the pre-trained model is used for
weight initialization. When the network is finetuned
with use case specific data, for example to estimate
poses in gesture control system, the training data is

most likely consistent. This is a good thing when
thinking of accuracy. Even a shallow network can
produce very good estimations, if the training data is
limited to particular use case. Using more compli-
cated, and potentially slower, network architectures
in these situations is therefore not necessary. We use
Kinect in our experiments to produce annotations for
the finetuning data, but alternative methods can be
considered as well. Fig. 2 contains example pose es-
timations with the finetuning evaluation data.

3.5 Network Architecture

Our method utilizes generic ConvNet architecture,
having five convolutional layers followed by three
fully connected layers, from which the last layer is re-
gression layer (see Fig. 3). The regression layer pro-
duces (x,y) position estimates for human body joints.
More closely, one estimation for head, six for arms
and six for legs, a total of 13 position estimations.
The network input size is 224 × 224 × 3. We use
generic ConvNet architecture, because it has shown
to perform well in human pose regression tasks (To-
shev and Szegedy, 2014), (Pfister et al., 2014). The
forward pass time of the network is 16ms on Nvidia
GTX Titan GPU, which makes it highly capable for
real-time tasks.
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Figure 3: The architecture of the pose estimation network. Letters k and s denotes kernel size and stride.

3.6 Training Details

In model optimization, the network weights are
updated using batched stochastic gradient descent
(SGD) with momentum set to 0.9. In pre-training,
where the network is trained from scratch, the learn-
ing rate is set to 10−2, weights are initialized ran-
domly using Xavier algorithm (Glorot and Bengio,
2010) and biases are set to zero. In finetuning, the
learning rate is set to 10−3. The loss function we use
in optimization, penalizes the distance between pre-
dictions and ground truth. We use weighted Euclidean
(L2) loss

E =
1

2N

N

∑
i=1

wi

∥∥∥xgt
i − xpred

i

∥∥∥2

2
(1)

where vectors w, xgt and xpred holds joint coordi-
nates and weights in form of (x1, y1, x2, y2, ..., x13,
y13). Weight wi is set to zero if the ground truth of
the joint coordinate xgt

i is not available. Otherwise
it is set to one. This way only the annotated joints
contribute to the loss. This enables training the net-
work using datasets having only the upper body an-
notations, along with datasets having full body anno-
tations. Ability to utilize heterogeneous training data,
where the set of joints is not the same in all train-
ing samples, potentially leads to better performance
as more training data can be used.

As for comparison, we train the pre-trained model
also without using the weighted Euclidean loss. In
this case, we use only images with fully annotated
joint positions (13 joints), so that the training data
is homogenous regarding to joint annotations. Doing
this reduces the size of the training data from 112174
to 66598 images. The average joint prediction error
with heterogeneous and homogenous data are 15.7
and 16.6 pixels on 224× 224 images. With hetero-
geneous data, there is about 5% improvement on pre-
diction error.

In batched SGD, we use batch size of 256. Each
iteration selects images for the batch randomly from
the full training set. A training image contains

roughly centered person of which joints are anno-
tated. The training images are resized to 224× 224
before feeding to the network. Mean pixel value of
127 is reduced from every pixel component and the
pixel components are normalized to range [-1, 1].
Joint annotations are normalized to range [0, 1], ac-
cording to the cropped person centered image.

3.7 Testing Details

The person detector is applied for an image from
which poses are to be estimated. Person images are
cropped based on detections as described earlier. In
addition, for each person image, a horizontally flipped
double is created. Both the original and the dou-
bled person images are fed to the network. The final
joint prediction vector is average of the estimations
of these two (the predictions of the doubled image are
flipped so that they correspond predictions of the orig-
inal image). By doing this, a small gain in accuracy is
achieved.

4 Evaluation

We evaluate pre-training and finetuning with the
percentage of correct keypoints (PCK) metric (Sapp
and Taskar, 2013), where the joint location estimate
is considered correct, if its L2 distance to the ground
truth is at most 20% of the torso length. The torso
length is the L2 distance between the right shoulder
and the left hip.

We use 2000 randomly taken samples for the eval-
uation of the pre-training. For finetuning, we record
data with Kinect for Windows v2 (see Table 3). We
use the joint estimates produced by Kinect as a ground
truth. We made sure that the data was recorded in
a such way, that the error in the joint estimations is
minimal. Practically this means good lightning con-
ditions, no extremely rapid movements and no major
body part occlusions. The gestures performed in the
data tries to mimic different gesture control events,



where the hands are used for tasks like object selec-
tion, moving, rotating and zooming, in addition to
hand drawing and wheel steering.

For the evaluation of the finetuning, we record
additional 4000 frames with identical clothing . We
do three finetuning experiments, using different set of
training frames in each case (See Table 4). The exper-
iments 1 and 2 together uses the same training frames
as the experiment 3. Basically, the experiment 3 is the
same as the experiments 1 and 2 performed consecu-
tively. The purpose of this divide is to see the effect of
using the same/different clothing between the training
and testing data. The experiment 1 express more of
the ability of generalization (for all people) while the
experiments 2 and 3 of specificity (for certain people).

The results are displayed in Fig. 4 and Table 5. In
full finetuning (experiment 3), with the use case spe-
cific data, the accuracy of 96.8% is achieved. In fine-
tuning phase 1 (experiment 1), where no same cloth-
ing occurs between the training and testing data, the
accuracy is 90.6%. However, if we look at the ac-
curacy of wrist (pre-train: 24.5%, phase 1: 67.4%,
full: 89.2%), which is the most challenging body joint
to estimate, but perhaps also the most important one
considering a gesture control system, we can see that
additional case specific training data can significantly
improve the accuracy and make the system usable in
practice. This originates partially from the finetuning
data, where the wrist location variation is biggest. We
believe, that if more training data would be used, and
perhaps a better data augmentation, a better wrist ac-
curacy could be achieved with the current network ar-
chitecture. After all, the wrist accuracy is still decent,
making our method useful for many use cases.

The results indicate that a trade-off between gen-
eralization and specificity exists between pre-training
and finetuning. This can be seen by comparing ac-
curacies between the pre-trained and finetuned net-

Table 3: Kinect recorded finetuning data for training. All
the frames have similar background, person and gestures,
but clothing differs. For the evaluation, we additionally
record 4000 frames, which have identical clothing (cloth-
ing number 1).

Clothing Frames

1 27222
2 18760
3 20244
4 20726
5 10560
6 11666
7 10136

119314

works, first with the pre-train validation samples and
then with the finetuning validation samples. The pre-
train validation samples express the case of general-
ization as they contain a large variation of persons
and poses in unconstrained environment. On the con-
trary, the finetuning validation samples reflects the
case of specificity as they have restricted poses in con-
strained environment. After the full finetuning, the
accuracy on the pre-train validation set drops from
63.1% to 44.2% (light red and dark red curves in
Fig. 4), while in the same time, the use case specific
accuracy increases from 69.6% to 96.8% (blue and
magenta curves). In certain cases, the loss in gen-
eralization is acceptable, if at the same time, gain in
specificity is achieved. One example of a such case
is a gesture control system set up in a factory, where
all the persons wear identical clothing. Most impor-
tantly, while generic person detection in highly vary-
ing poses and contexts is an important and challeng-
ing problem, our results show that in some use cases
the state-of-the art for the generic problem may pro-
duce inferior results compared to a simpler approach
which has been specifically trained for the problem at
hand.

5 Conclusion

We introduced a real-time ConvNet based sys-
tem for human pose estimation and achieved accu-
racy of 96.8% (PCK@0.2) by finetuning the network
for specific use case. Our method can be thought
of as a replacement for Kinect in restricted environ-
ments. It can be used in various tasks, like gesture
control, gaming, person tracking, action recognition
and action tracking. Our method supports heteroge-
neous training data, where the set of joints is not the
same in all the training samples, thus enabling uti-
lization of different datasets in training. The use of
a separate person detector brings our method towards

Table 4: Finetuning experiments. The training data have
(1) different clothing from the testing data in every frame,
(2) the same clothing as the testing data in every frame, (3)
the same clothing as the testing data in some of the frames.
In phase 2, the finetuning is done over already finetuned
network of the phase 1. Otherwise it is done over the pre-
trained network.

# Name Initialization
network

Clothing in
training frames

1 phase 1 pre-train 2,3,4,5,6,7
2 phase 2 phase 1 1
3 full pre-train 1,2,3,4,5,6,7



Table 5: The results of pose estimation (PCK@0.2). The first three cases uses pre-train validation samples (2000 images) in
testing, while other models use finetuning validation samples (4000 frames).

Network Head Wrist Elbow Shoulder Hip Knee Ankle All

Mean pose 31.1 18.9 8.5 11.8 10.0 40.8 33.5 21.4
Pre-train 84.2 41.6 60.5 76.9 72.8 62.6 53.7 63.1
Finetune (full) 77.5 22.2 42.9 49.8 52.5 42.6 38.6 44.2

Pre-train 86.1 24.5 64.1 86.8 88.0 82.5 64.0 69.6
Finetune (phase 1) 95.3 67.4 87.3 98.4 96.3 96.4 95.5 90.6
Finetune (phase 2) 99.6 88.1 95.6 99.9 97.3 98.5 98.5 96.6
Finetune (full) 99.3 89.2 95.9 99.7 97.6 98.5 98.6 96.8
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Figure 4: The results of pose estimation (PCK@0.2). The dashed lines uses pre-train validation samples (2000 images) in
testing, while the solid lines use finetuning validation samples (4000 frames). To put it other way, the dashed lines represent
the accuracy of generalization, while the solid lines represent the use case specific accuracy. The label indicates which network
is used in testing.

the practice, where the person locations in the input
images are not expected to be known. In addition,
we demonstrated an automatic and easy way to cre-
ate large amounts of annotated training data by using
Kinect. The network forward time of our method is
16ms, without the person detector and with the per-
son detector, either 60+16=76ms or 200+16=216ms.

As for future work, there are several things that
could be considered in order to get better accuracy.
One option would be to use current network as a
coarse estimator and use another network for refining
the pose estimation. In addition, as our method is tar-
geted for video inputs, the utilization of the spatiotem-
poral data would most likely give accuracy boost. The
network forward time of the person detector is rela-
tively slow compared to the pose estimation network
(16ms vs. 60ms/200ms). While the person detec-
tor works well with diverse input data, perhaps, with
most pose estimation use cases, that is not necessary.
By using more restricted and possibly faster person

detector, a good enough performance in more con-
strained environments could be most likely achieved.
Also, with ConvNets, generally, holds that if more
data used in training, the better performance gained.
Hence, the use of more advanced data augmentation
methods, such as (Pishchulin et al., 2012), especially
in the finetuning, would most probably lead to better
accuracy. Advanced data augmentation could, for ex-
ample, change colors of the clothes, adjust limb poses
and change backgrounds.
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