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Joint depth and color camera calibration with
distortion correction

Daniel Herrera C., Juho Kannala, and Janne Heikkilä

Abstract—We present an algorithm that simultaneously calibrates two color cameras, a depth camera, and the relative pose
between them. The method is designed to have three key features: accurate, practical, and applicable to a wide range of sensors.
The method requires only a planar surface to be imaged from various poses. The calibration does not use depth discontinuities
in the depth image which makes it flexible and robust to noise. We apply this calibration to a Kinect device and present a
new depth distortion model for the depth sensor. We perform experiments that show an improved accuracy with respect to the
manufacturer’s calibration.

Index Terms—camera calibration, depth camera, camera pair, distortion, Kinect
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1 INTRODUCTION

COLOR and depth information provide comple-
mentary cues about a scene. Many applications

need to capture both simultaneously, like scene recon-
struction and image based rendering. This requires at
least two sensors as no single sensor is able to capture
both. A basic device for scene reconstruction is a
depth and color camera pair, which consists of a color
camera rigidly attached to a depth sensor (e.g. time-
of-flight (ToF) camera, laser range scanner, structured
light scanner). The increasingly popular Kinect device
is an example of such a camera pair.

In order to reconstruct a scene from the camera pair
measurements the system must be calibrated. This
includes internal calibration of each camera as well as
relative pose calibration between the cameras. Color
camera calibration has been studied extensively [2],
[3]. For depth sensors, different calibration methods
have been developed depending on the technology
used. ToF cameras simultaneously produce an inten-
sity and a depth image from the same viewpoint,
which simplifies calibration because color discontinu-
ities can be accurately localized [4]. Most structured
light systems can calibrate the projector and camera
separately. However, if the internals of the device are
not open, we might not have access to the original
intensity images. The Kinect device, for example, uses
an infrared camera to detect a projected dot pattern.
However, it returns a processed image that is not
aligned with the original infrared image.

There is a particular need to calibrate the Kinect
device because it delivers depth information in Kinect
disparity units (kdu) whose conversion to metric units
changes for each device. Furthermore, independent
calibration of the cameras may not yield the optimal
system parameters, and a comprehensive calibration
of the system as a whole could improve individual
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calibration as it uses all the available information.
Depth cameras have been observed to suffer from

complicated geometric distortions due to the pro-
cessing performed and the inevitable tolerances in
their manufacturing. Whereas a radial and tangential
distortion model is usually sufficient to correct the
2D pixel positions in color cameras, depth cameras
require a more complicated model to correct the 3D
measurement volume.

1.1 Previous work
A standard approach is to calibrate the cameras in-
dependently and then calibrate only the relative pose
between them [5], [6], [7]. This may not be the optimal
solution as measurements from one camera can im-
prove the calibration of the other camera. Moreover,
the independent calibration of a depth camera may
require a high precision 3D calibration object that can
be avoided using joint calibration.

Fuchs and Hirzinger [4] propose a multi-spline
model for time-of-flight (ToF) cameras. Their model
has a very high number of parameters and it requires
a robotic arm to know the exact pose of the camera.
Lindner and Kolb [8] use a high resolution color
camera to determine the pose of the camera, remov-
ing the need for a robotic arm. Lichti [9] proposes
a calibration method for an individual laser range
scanner using only a planar calibration object. It per-
forms a comprehensive calibration of all parameters.
However, it relies on the depth camera delivering
radiometric intensity and range for each pixel. This
is not directly applicable to a camera pair because
the color and depth information are not taken from
the same reference frame. Zhu et al. [10] describe a
method for fusing depth from stereo and ToF cameras.
Their calibration uses the triangulation from the stereo
cameras as ground truth. This may not be optimal as
it ignores the possible errors in stereo triangulation
and measurement uncertainties.
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ToF cameras are known to present distortions both
on the optical ray direction and on the measured
depth. Kim et al. [11] show a principled approach
to correcting these distortions. Cui et al. [12] show
that the depth distortion of ToF cameras is radially
symmetric and scene dependant. Thus they estimate
new distortion correction parameters for each image.
The Kinect device has also shown radially symmetric
distortions [13]. However, being a structured light
sensor, the nature of the distortions is different.

Kinect devices are calibrated during manufactur-
ing with a proprietary algorithm. The calibrated pa-
rameters are stored in the device’s internal memory
and are used by the official drivers to perform the
reconstruction. This is adequate for casual use, but
we have observed that the manufacturer’s calibration
does not correct the depth distortion. Other calibration
algorithms have been developed by the Kinect com-
munity. The first algorithms (e.g. [14]) calibrated only
the intrinsics (focal length and principal point) of the
infrared camera but did not calibrate the parameters
to convert kinect disparity units to meters. In our previ-
ous work [15], we make a comprehensive calibration
of all parameters of the camera pair. However, depth
distortion was not corrected. Using a similar formu-
lation, Zhang and Zhang [16] augment our previous
work with correspondences between the color and
depth images, but still do not address distortion of
the depth values. Smı́šek et al. [13] include a depth
distortion correction component as the average of
the residuals in metric coordinates. We propose a
disparity distortion correction that depends on the
observed disparity which further improves accuracy.

1.2 Motivation

As a motivation for our work, we propose three
requirements that an optimal calibration algorithm
must have. To the best of our knowledge, no available
calibration algorithm for a depth and color camera
pair fulfills all three criteria.

Accurate: The method should provide the best com-
bination of intrinsic and extrinsic parameters that
minimizes the reprojection error for both cameras over
all calibration images. This may seem like an obvious
principle but we stress it because partial calibrations,
where each camera is calibrated independently and
the relative pose is estimated separately, may not
achieve the lowest reprojection error.

Practical: It should be practical to use with readily
available materials. A high precision 3D calibration
object is not easy/cheap to obtain and a robotic arm
or a high precision mechanical setup to record the
exact pose of the camera pair is usually not practical,
whereas a planar surface is usually readily available.

Widely applicable: To be applicable to a wide range of
depth sensors, one cannot assume that color disconti-
nuities are visible on the depth image. Moreover, some

Fig. 1. Top: Sample calibration images from the
external camera. Bottom: Disparity images. Note the
inaccuracies at the edges and that the checkerboard is
not visible.

depth sensors, like the one used for our experiments,
may not provide accurate measurements at sharp
depth discontinuities. Thus, neither color nor depth
discontinuities are suitable features for depth camera
calibration. The method should use features based on
depth measurements that are most reliable for a wide
range of cameras (e.g. planes).

Finally, the increasing popularity of the Kinect de-
vices provides an additional motivation for our re-
search. For example, the work from Shotton et al. [17]
based on the Kinect was selected as the best paper in
CVPR 2011. We believe that many applications would
benefit from improved accuracy. We have previously
released a Kinect calibration toolbox [15] that has
been well received by the developer community. With
this work we aim to provide an improved calibration
algorithm for the Kinect community.

1.3 Overview of the approach

We use a planar checkerboard pattern for calibration
which can be constructed from any readily available
planar surface (e.g. a flat table, a wall). We use
multiple views of the calibration plane and for each
view all cameras take an image. The checkerboard cor-
ners provide suitable constraints for the color images,
while the planarity of the points provides constraints
on the depth images. The pixels at the borders of
the calibration object can be ignored and thus depth
discontinuities are not needed. Figure 1 shows sample
images from the external and depth cameras used for
calibration. The three orientations shown constrain the
three dimensions of the relative translation between
depth and color cameras.

In the color images, the checkerboard corners are
extracted. In the depth images, the area containing the
plane is located. To initialize the depth camera intrin-
sics, the user also selects the corners of the calibration
plane in the depth images. A standard calibration
based on user selected corners [3] is performed on
each image individually to initialize the calibration.
An iterative non-linear bundle adjustment is then
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performed so that our formulation allows for a closed-
form solution of the disparity distortion parameters.

2 CALIBRATION MODEL

Our setup consists of a depth and color camera pair
with an optional high resolution color camera rigidly
attached. Although the camera pair is sufficient for
calibration, in the case of a Kinect device, the internal
color camera has low quality. Therefore, if one needs
high quality color images with depth maps, an exter-
nal camera is very useful. Our system calibrates both
color cameras simultaneously. We will refer to the
high resolution camera as the external camera, while
the color camera from the camera pair will be referred
to simply as the color camera. Our implementation
and experiments use the Kinect sensor, which consists
of a projector-camera pair as the depth sensor that
measures per pixel disparity. The external camera is
a Canon EOS 5D Mark II.

2.1 Color camera intrinsics
We use a similar intrinsic model as Heikkilä [2] which
consists of a pinhole model with radial and tangential
distortion correction. The projection of a point from
color camera coordinates xc = [xc, yc, zc]

> to color
image coordinates pc = [uc, vc]

> is obtained through
the following equations. The point is first normalized
by xn = [xn, yn]

> = [xc/zc, yc/zc]
>. Distortion is then

performed:

xg =
[
2k3xnyn + k4(r

2 + 2x2n)
k3(r

2 + 2y2n) + 2k4xnyn

]
(1)

xk = (1 + k1r
2 + k2r

4 + k5r
6)xn + xg (2)

where r2 = x2n + y2n and kc = [k1, . . . , k5] is a vector
containing the distortion coefficients.

Finally, the image coordinates are obtained:[
uc
vc

]
=

[
fcx 0
0 fcy

] [
xk
yk

]
+

[
u0c
v0c

]
(3)

where f c = [fcx, fcy] are the focal lengths and p0c =
[u0c, v0c] is the principal point. The same model ap-
plies to the color and external cameras. The model
for each camera is described by Lc = {f c,p0c,kc}.

2.2 Depth camera intrinsics
In our experiments we used the Kinect as a depth
camera. Yet, the method allows different kinds of
depth sensors by replacing this intrinsic model. The
Kinect’s depth sensor consists of an infrared projector
that emits a constant pattern and an infrared camera
that measures the disparity between the observed
pattern and a pre-recorded image at a known constant
depth. The output consists of an image of scaled
disparity values in Kinect disparity units.

The transformation between depth camera coordi-
nates xd = [xd, yd, zd]

> and depth image coordinate

pd = [ud, vd]
> follows a similar model to that used for

the color camera. Eq. (3) is used with the respective
parameters fd and p0d. However, whereas the color
camera’s distortion is defined in terms of the forward
model (world to image), we define the geometric
distortion of the depth camera in terms of the back-
ward model (image to world). This is computationally
convenient in our case because our formulation of the
bundle-adjustment in Section 3.3 backward projects
optical rays for the depth camera but forward projects
optical rays for the color camera. Further, previous
studies have shown that the lens distortion model
defined by Eqs. (1) and (2) works well in both ways
[2], [18]. Thus, the geometric distortion model for the
depth camera is obtained by simply switching the role
of xn and xk in Eqs. (1) and (2).

The relation between the obtained disparity value
d and the depth zd contains two parts: a scaled
inverse and a distortion correction. The scaled inverse
has been observed by most previous calibration ap-
proaches to fit the observations, it is modeled by the
equation:

zd =
1

c1dk + c0
(4)

where c1 and c0 are part of the depth camera intrinsic
parameters to be calibrated and dk is the undistorted
disparity (i.e. after distortion correction). Note that for
all Kinect devices c1 is negative, which means that
higher disparity values correspond to points farther
away from the camera (the opposite of traditional
stereo disparity units).

When calibrated using only Equation (4) (i.e. with-
out distortion correction) the Kinect displays a fixed
error pattern in the measurements (Figure 2). Because
the internal algorithms of the Kinect are proprietary
and closed, it is not possible to pinpoint the exact
nature of this distortion. However, we can correct
it based on observations. It was suggested in [13]
that this distortion could be corrected by applying a
spatially varying offset Zδ to the calculated depth:

zdd = zd +Zδ(u, v) (5)

and it was observed that this usually reduces the
reprojection error. However, we have found that a
more accurate calibration is made by correcting for
the distortion directly in disparity units.

The shape of the error pattern is constant but its
magnitude decreases as the distance from the object
increases. To demonstrate this decay we took the er-
rors from planes at several distances and normalized
them (dividing all images by Figure 2). Figure 3 shows
the resulting median values for each measured dispar-
ity. The normalized error fits well to an exponential
decay. This led us to construct a distortion model that
has per-pixel coefficients and decays exponentially
with increasing disparity.
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Fig. 2. Error residuals (kdu) without distortion correc-
tion of a plane at 0.56m (left) and 1.24m (right).
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Fig. 3. Distortion magnitude with increasing disparity.

We use a spatially varying offset that decays as the
Kinect disparity increases:

dk = d+Dδ(u, v) · exp(α0 − α1d) (6)

where d is the distorted disparity as returned by the
Kinect, Dδ contains the spatial distortion pattern, and
α = [α0, α1] models the decay of the distortion effect.

Note that this models does not enforce any smooth-
ness on the spatial distortion pattern. To properly
constrain this pattern it is enough to include some
(four) images of a flat surface that spans the entire
depth image. We add images of an empty wall at
several depths. These images do not need the checker-
board pattern since they are only needed to constrain
the distortion pattern. This ensures that all pixels
in the depth image have samples to estimate their
coefficients Dδ(u, v).

Although this disparity distortion model was devel-
oped with the Kinect in mind, it bears similarities with
the model of a ToF camera. Kim et al. [11] obtained
results similar to Figure 3, except that they fit a 6th

degree polynomial instead of an exponential. Further-
more, the calibration of this ToF camera model is
simpler because they don’t use per-pixel coefficients.

Equations (4) and (6) are used when measured
disparities are transformed to metric coordinates, also
known as the backward model. The inverse of these
functions, the forward model, is also needed to com-
pute the reprojection errors. The inverse of Equation
(4) is straightforward:

dk =
1

c1zd
− c0
c1

(7)

But the inverse of Equation (6) is a bit more involved
because of the exponential. We perform two variable

substitutions to isolate the exponential product:

y =exp(α0 − α1dk + α1Dδ(u, v)y)

where y =
dk − d
Dδ(u, v)

y =exp(α1Dδ(u, v)y) exp(α0 − α1dk)

−ỹ
α1Dδ(u, v)

= exp(−ỹ) exp(α0 − α1dk)

where ỹ = −yα1Dδ(u, v)

ỹ exp(ỹ) =− α1Dδ(u, v) exp(α0 − α1dk)

The product can be solved using the Lambert W
function [19]. The Lambert W function is the solution
to the relation W (z) exp(W (z)) = z.

ỹ =W (−α1Dδ(u, v) exp(α0 − α1dk))

(d− dk)α1 =W (−α1Dδ(u, v) exp(α0 − α1dk))

d = dk +
W (−α1Dδ(u, v) exp(α0 − α1dk))

α1
(8)

Although the Lambert W function is a trascendental
function, there are many accurate approximations in
the literature [19] and modern mathematical packages
include implementations of it (e.g. Matlab).

The model for the depth camera is described by
Ld = {fd,p0d,kd, c0, c1,Dδ,α}, where the first 3
parameters come from the model described in section
2.1 and the last 4 are used to transform disparity to
depth values.

2.3 Extrinsics and relative pose

Figure 4 shows the different reference frames present
in a scene. Points from one reference frame can be
transformed to another using a rigid transformation
denoted by T = {R, t}, where R is a rotation and
t a translation. For example, the transformation of a
point xw from world coordinates {W} to color camera
coordinates {C} follows xc = WRCxw +W tC .

Reference {Vi} is anchored to the corner of the
calibration plane of image i and is only used for
initialization. The relative poses (DTC and ETC) are
constant, while each image has its own world to
camera pose WiTC . By design, the table and the
checkerboard are coplanar but the full transformation
between {V } and {W} is unknown.

3 CALIBRATION METHOD

A block diagram of our calibration method is pre-
sented in Figure 5. The individual steps are described
in the following sections.
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Fig. 4. Reference frames and transformations. {D},
{C}, and {E} are the depth, color, and external cam-
eras. For image i, {Vi} is attached to the calibration
plane and {Wi} is the calibration pattern.
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Fig. 5. Calibration algorithm. Before dashed line: ini-
tialization. After dashed line: non-linear minimization.

3.1 Corner based calibration

The calibration of a color camera is a well studied
problem, we use Zhang’s method [3] to initialize the
camera parameters. Briefly, the steps are the follow-
ing. The checkerboard corners are extracted from the
intensity image. A homography is then computed for
each image using the known corner positions in world
coordinates {Wi} and the measured positions in the
image. Each homography then imposes constraints on
the camera parameters which are solved with a linear
system of equations. The distortion coefficients are
initially set to zero.

The same method is used to initialize the depth
camera parameters. However, because the checker-
board is not visible in the depth image, the four
corners of the calibration plane are extracted (the gray
plane in Figure 1). These corners are very noisy and
are only used here to obtain an initial guess. The
homography is thus computed between {Vi} and {D}
also using Zhang’s method. This initializes the focal
lengths, principal point, and the transformation ViTD.
Using these initial parameters we obtain an estimate
for the expected depth of each selected corner. With
this expected depth and the measured disparity an
overdetermined system of linear equations is built
using (4), which gives an initial guess for the depth
parameters (c0 and c1).

3.2 Relative pose estimation
The relative pose between the external and color cam-
eras can be obtained directly because their pose with
respect to the same reference frame {W} is known.
For the depth camera, however, only the pose with
respect to {V } is known, which is not aligned to {W}.
To obtain the relative pose CTD we take advantage of
the fact that {V } and {W} are coplanar by design.
We extract the plane equation in each reference frame
and use it as a constraint. We define a plane using the
equation n>x− δ = 0 where n is the unit normal and
δ is the distance to the origin.

If we divide a rotation matrix into its colums R =
[r1, r2, r3] and choose the parameters of the plane in
both frames as n = [0, 0, 1]> and δ = 0, the plane
parameters in camera coordinates are:

n = r3 and δ = r>3 t (9)

where we use WiRC and WitC for the color camera
and ViRD and VitD for the depth camera.

As mentioned by Unnikrishnan and Hebert [6] the
relative pose can be obtained in closed form from
several images. The plane parameters for each image
are concatenated in matrices of the form: M c =
[nc1,nc2, ...,ncn], bc = [δc1, δc2, ..., δcn], and likewise
for the depth camera to form Md and bd. The relative
transformation is then:

CR′D =MdM
>
c (10)

CtD = (M cM
>
c )
−1M c(bc − bd)> (11)

Due to noise CR′D may not be orthonormal. We obtain
a valid rotation matrix through SVD using: CRD =
UV > where USV > is the SVD of CR′D.

3.3 Non-linear minimization
The calibration method aims to minimize the
weighted sum of squares of the measurement repro-
jection errors over all parameters (Lc,Ld,Le,ETC ,DTC ,
and ,WiTC for all images i). The error for the color
camera is the Euclidean distance between the mea-
sured corner position p̂c and its reprojected position
pc (the same for the external camera with p̂e and
pe respectively). Whereas for the depth camera it is
the difference between the measured disparity d̂ and
the predicted disparity d. The predicted disparity is
obtained by calculating the distance along the optical
ray of the calibration plane and transforming to dis-
parity using Eqs. (7) and (8). Because the errors have
different units, they are weighted using the inverse of
the corresponding measurement variance (σ2

c , σ2
d, σ2

e ).
The resulting cost function is:

c =

∑
‖p̂c − pc‖

2

σ2
c

+

∑
(d̂− d)2

σ2
d

+

∑
‖p̂e − pe‖

2

σ2
e

(12)

Note that (12) is highly non-linear and depends on
a lot of parameters (Dδ contains 307200 entries). To
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separate the optimization of the disparity distortion
parameters from the rest we make a slight modi-
fication to Equation (12). Instead of comparing the
reprojection in measured disparity space, we calculate
the residuals in undistorted disparity space:

c =

∑
‖p̂c − pc‖

2

σ2
c

+

∑
(d̂k − dk)2

σ2
d

+

∑
‖p̂e − pe‖

2

σ2
e

(13)
It is also possible to optimize Eq. (12) by inverting

the roles of Eqs. (6) and (8). However, including the
Lambert W function in the backward camera model
would make it cumbersome to use for transforming
measurements into 3D points. We tested both ap-
proaches and found no practical advantage of min-
imizing Eq. (12) over (13).

The optimization has three steps as shown in Fig.
5. The initialization gives a very rough guess of the
depth camera parameters and relative pose, whereas
the color camera parameters have fairly good initial
values. Thus, the first step optimizes only Ld and DTC
with all other parameters fixed. The optimization then
continues iteratively with two alternating steps. In the
first step Dδ is kept constant and Equation (13) is
minimized using the Levenberg-Marquardt algorithm
over all other parameters. In the second step the
spatial disparity distortion pattern Dδ is optimized
independently for each pixel. The initial values of the
depth distortion model (α and Dδ) are not critical
and initially assuming zero for both has proven to
yield accurate results. The algorithm iterates until the
residuals are stable.

3.4 Disparity distortion estimation
Optimizing Dδ separately is more efficient because
the entries in Dδ are independent from each other
and the estimation of Dδ(u, v) takes into account only
measurements obtained from pixel (u, v). Moreover,
when the other parameters are fixed we can solve for
Dδ(u, v) in closed-form.

Each disparity measurement d̂ is first undistorted
using Equation (6). We compute a predicted disparity
dk using the distance to the plane and Equation (7).
We minimize the following cost function to obtain the
distortion parameters:

cd =
∑

images

∑
u,v

(d̂+Dδ(u, v) · exp(α0 − α1d̂)− dk)2

(14)
This minimization is straightforward because Equa-
tion (14) is quadratic in each Dδ(u, v) and hence the
optimal value of each Dδ(u, v) is obtained by solving
a linear equation.

For comparison we also calibrated using the model
of Smı́šek et al. [13]. The value of Zδ(u, v) is calculated
as the mean difference between measured depth ẑd
and expected depth zd:

Zδ(u, v) =

∑
N zd − ẑd
N

(15)

(a) Our method: Dδ (b) Smı́šek et al.: Zδ
Fig. 6. Obtained distortion spatial patterns.

TABLE 1
Calibration with different distortion models. Std.

deviation of residuals with a 99% confidence interval.

Color Depth External
±0.02 px ±0.002 kdu ±0.05 px

A1
No correction 0.42 1.497 0.83
Smı́šek [13] 0.32 1.140 0.72
Our method 0.28 0.773 0.64

A2
No correction 0.36 1.322 0.83
Smı́šek [13] 0.33 0.884 0.85
Our method 0.38 0.865 0.79

B1
No correction 0.56 1.108 0.97
Smı́šek [13] 0.62 1.300 0.91
Our method 0.57 0.904 0.85

4 RESULTS

The color camera of the Kinect delivers images with
a resolution of 1280x1024, whereas the resolution of
the external camera was 2784x1856. Three different
data sets were captured (A1, A2, and B1). Two of
them were captured with the same Kinect (A1 and
A2) and one with a different Kinect (B1). For each set,
the captured images were divided into calibration and
validation groups with 60 and 14 images respectively.
The calibration images were used to estimate all the
parameters in the model, then the intrinsic parameters
were kept fixed to estimate only the rig’s pose (WTC)
for the validation images. All results presented here
were obtained from the validation images.

We implemented our algorithm in Matlab. The code
has been released as a toolbox for the research com-
munity. It can be found in the same website as our
previous work [15]. We used 60 plane orientations
for calibration. However, we found that comparable
accuracy is achieved with only 20 positions: 4 for each
orientation shown in Fig. 1 at different depths, and 4
of a flat surface that covers the entire depth image.
The calibration with 60 positions takes 15min on a
2.4GHz computer, but only 3min with 20 positions.

Normally, the different calibrations (A1, A2, and
B1) would produce slightly different error variances
(σc,σd, and σe). To compare the data sets the variances
were kept constant (σc = 0.18px, σd = 0.9kdu, and
σe = 0.30px).
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TABLE 2
Calibration without the external camera. Std. deviation

of residuals with a 99% confidence interval.

Color Depth
±0.02 px ±0.002 kdu

A1 0.26 0.765
A2 0.36 0.873
B1 0.60 0.902

4.1 Calibration accuracy
Figure 6 shows the obtained spatial patterns for the
distortion correction using Eqs. (6) and (5). We can
observe a very similar pattern in both images. Table
1 shows a comparison of the calibration results ob-
tained using both types of distortion correction and
no correction. The three models were calibrated using
the same data sets and the table shows the results of
validation against the respective validation set.

The distortion correction proposed by Smı́šek et
al. [13] improves the reprojection error for data sets
A1 and A2. However, because it reduces the error
in metric space it increases the reprojection error
for B1. In contrast, our approach produces the best
results for all cases. The standard deviation of the
reprojection errors for all sets were both very low
(< 1px and < 1kdu), which demonstrates an accurate
calibration. Also note that even though no spatial
smoothness was enforced for the spatial distortion
pattern, the obtained pattern is smooth, proving that
the procedure provides enough constraints.

Table 2 shows the results of calibration without the
external camera. The calibration accuracy remains the
same. The external camera is thus not necessary for
an accurate calibration. Still, its joint calibration is a
useful feature for many applications that need a high
quality external camera.

4.2 Comparison with manufacturer calibration
The drivers provided by the manufacturer (Prime-
sense) use factory calibrated settings to convert the
disparity measurements to 3D points. We used these
calibration parameters and compared their perfor-
mance to that of our calibration. Using the disparity
images from the A2 data set, both calibrations were
used to obtain 3D points. The calibration of our
method was done with the A1 data set to avoid any
bias. A plane was fitted to each cloud of points and the
measured depth was compared to the expected based
on the plane’s depth at the given pixel. The error
measurements are shown in Figure 7 for both calibra-
tions. The measurements were grouped by depth in
64 bins from 0.4m to 3.7m. For each bin, the standard
deviation of the error was plotted.

The uncertainty was also simulated using the cal-
ibrated model. For a given depth, the expected dis-
parity for each pixel was calculated using Equations
(7) and (8). Gaussian noise (µ = 0 and σ = 0.6) was
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Fig. 7. Measurement uncertainty for varying depths.

applied to this disparity and the corrupted depth is
obtained through Equations (4) and (6). The standard
deviation of the error between the initial and cor-
rupted depths is plotted as a solid line in Figure 7.
We can see that these virtual results are very close to
our experimental results.

Like any stereo camera, the Kinect is expected to
be more accurate the closer the object is. Due to the
inverse relation between disparity and depth, zero
mean noise with constant variance on the measured
disparity will result in higher depth uncertainty as
the depth increases. This relation is shown in Figure
7. Our method clearly outperforms the manufacturer
calibration in ranges up to 1.5m. At 1m distance the
manufacturer calibration has twice the uncertainty.
After 1.5m the distortion correction has a smaller
influence in the reconstruction and both calibrations
have similar accuracies.

It is suspected that the infrared image is not distor-
tion corrected before the depth estimation algorithm is
applied, which produces the depth distortion pattern.
This is why the disparity distortion has the same spa-
tial distribution as a radial distortion (i.e. concentric
circles). It is unclear why the depth distortion decays
with depth. The depth estimation algorithm locates
known point patterns in the infrared image. At far
distances, the point patterns might be closer to the
factory memorized position and the distortion in the
infrared image could have less impact.

4.3 Variability of Kinect devices

To justify the need for calibrating the Kinect we
used the calibration of one data set on the validation
images of another data set. The external camera was
not used for the validation here because its relative
pose is different between the different data sets. The
results are presented in Table 3. They show that the
reconstruction using the calibration of another Kinect
is highly inaccurate and increases the reprojection
error considerably, both for color and depth camera.
Thus supporting the idea that each Kinect must be
individually calibrated to achieve maximum accuracy.
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TABLE 3
Variability of Kinects. Std. dev. of residuals using

different sets. Dark cells indicate a device mismatch.

CalibA1 CalibA2 CalibB1
ValidA1 0.26px, 0.77kdu 0.29px, 0.83kdu 1.35px, 1.55kdu
ValidA2 0.45px, 0.76kdu 0.36px, 0.86kdu 1.77px, 1.80kdu
ValidB1 1.81px, 1.52kdu 1.72px, 1.49kdu 0.56px, 0.89kdu

Fig. 8. 3D reference cube. Color and disparity images.

4.4 3D ground truth
We also compared the accuracy of calibration by re-
constructing a hollow cube whose sides are known to
be at 90◦ from each other. Figure 8 shows the reference
cube. A point cloud was obtained from the disparity
image and planes were fitted to the points from each
side. Table 4 shows how much the angle between
the obtained planes deviates from 90◦. Our method
clearly achieves a better reconstruction accuracy.

5 CONCLUSION

We have presented a calibration algorithm for a depth
and color camera pair that is optimal in the sense
of the postulated principles. The algorithm takes into
account color and depth features simultaneously to
improve calibration of the camera pair system as a
whole. It requires only a planar surface and a simple
checkerboard pattern.

The results show that our algorithm achieved a
better calibration for the Kinect than that provided
by the manufacturer. The disparity distortion cor-
rection model considerably improved reconstruction
accuracy, better than previously proposed models.
At 1m distance our calibration showed twice the
reconstruction accuracy than the manufacturer’s cal-
ibration. Moreover, we have released our code as a
Matlab toolbox to the research community.

The extension of the calibration to several external
color cameras is straighforward and is already imple-
mented in the released toolbox. In addition, we be-

TABLE 4
Angular error between reconstructed planes. ∠ab is

the angle between planes a and b.

Manufacturer Smı́šek [13] Our method
90◦ − ∠12 -1.4 1.2 0.6
90◦ − ∠13 -1.1 1.2 -0.2
90◦ − ∠23 1.0 -1.0 0.1

lieve that our algorithm is flexible enough to be used
with other types of depth sensors by replacing the
intrinsics model of the depth camera. The constraints
used can be applied to any type of depth sensor.
Future work can include the calibration of a ToF and
color camera pair.
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[2] J. Heikkilä, Geometric camera calibration using circular control

points. IEEE Transcations on Pattern Analysis and Machine
Intelligence 22(10), 1066-1077.

[3] Z. Zhang, Flexible camera calibration by viewing a plane from
unknown orientations, in: ICCV, 1999, pp. 666–673.

[4] S. Fuchs, G. Hirzinger, Extrinsic and depth calibration of ToF-
cameras, in: CVPR, 2008, pp. 1–6.

[5] Q. Zhang, R. Pless, Extrinsic calibration of a camera and laser
range finder (improves camera calibration), in: IROS, Vol. 3,
2004, pp. 2301–2306.

[6] R. Unnikrishnan, M. Hebert, Fast extrinsic calibration of a
laser rangefinder to a camera, Tech. Rep. CMU-RI-TR-05-09,
Robotics Institute, Pittsburgh (2005).

[7] D. Scaramuzza, A. Harati, R. Siegwart, Extrinsic self calibra-
tion of a camera and a 3D laser range finder from natural
scenes, in: IROS, 2007, pp. 4164–4169.

[8] M. Lindner, A. Kolb, Calibration of the intensity-related dis-
tance error of the PMD TOF-Camera, in: SPIE: Intelligent
Robots and Computer Vision XXV, Vol. 6764, 2007.

[9] D. Lichti, Self-calibration of a 3D range camera, ISPRS 37 (3).
[10] J. Zhu, L. Wang, R. Yang, J. Davis, Fusion of time-of-flight

depth and stereo for high accuracy depth maps, in: CVPR,
2008, pp. 1–8.

[11] Y. Kim, D. Chan, C. Theobalt, S. Thrun, Design and calibration
of a multi-view ToF sensor fusion system, in: IEEE CVPR
Workshop on Time-of-flight Computer Vision, 2008.

[12] Y. Cui, S. Schuon, D. Chan, S. Thrun, C. Theobalt, 3d shape
scanning with a time-of-flight camera, in: Proc. of IEEE CVPR,
2010, pp. 1173–1180.
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