
3D Point Representation For Pose Estimation:
Accelerated SIFT vs ORB

K.K.S. Bhat(B), Juho Kannala, and Janne Heikkilä

Center for Machine Vision Research, University of Oulu, Oulu, Finland
{sbhatkid,jkannala,jth}@ee.oulu.fi

Abstract. Many novel local image descriptors (Random Ferns, ORB
etc) are being proposed each year with claims of being as good as or supe-
rior to SIFT for representing point features. In this context we design a
simple experimental framework to compare the performances of different
descriptors for realtime recognition of 3D points in a given environment.
We use this framework to show that robust descriptors like SIFT per-
form far better when compared to fast binary descriptors like ORB if
matching process uses approximate nearest-neighbor search (ANNS) for
acceleration. Such an analysis can be very useful for making appropriate
choice from vast number of descriptors available in the literature. We fur-
ther apply machine learning techniques to obtain better approximation
of SIFT descriptor matching than ANNS. Though we could not improve
its performance, our in-depth analysis of its root cause provides useful
insights for guiding future exploration in this topic.

Keywords: 3D point recognition · Augmented Reality · Interest Points

1 Introduction and Background

Estimating pose (position and orientation) of a camera in a given image is at the
heart of many applications in Augmented Reality and Visual Robot Navigation.
Over the past few years interest point or keypoint based 3D point recognition
has facilitated substantial progress in vision based camera pose estimation. 3D
point recognition provides the necessary input for well known PnP (Perspec-
tive n-Point) framework [13,15,29] for computing pose. Many high dimensional
robust keypoint descriptors [3,18] have been developed in order to identify 3D
points in images under the challenge of variation in camera viewpoint. SIFT
descriptors are consistently proven to be one of the best candidates for point
matching [8,19]. While they have been successfully applied on problems involv-
ing computation of camera pose [4,25], their cost of computation and matching
prevents their use in applications which require real-time speed on video frames.

For achieving real-time speed on video frames, many keypoint recognition
approaches which employ simple binary decisions based on raw pixel comparisons
are being proposed. In [14] sequence of binary decisions based on comparing
random pair of pixels around interest points (extremas of Laplacian of Gaussian
c© Springer International Publishing Switzerland 2015
R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 79–91, 2015.
DOI: 10.1007/978-3-319-19665-7 7

80 K.K.S. Bhat et al.

filter) are used to identify the keypoints. Random Ferns framework [22] uses
similar pixel comparisons, but the sequence of decisions are converted to binary
coding which is indexed directly to attribute values for faster recognition. In
[27] boosting is used to arrive at the optimal binary coding scheme for an image
patch around a keypoint. In [24] depth values from Kinect sensors are also used
along with the color information while learning the sequence of binary decisions.

Despite claims of significant success in each new approach, the effort to pro-
duce new methods to match the performance of SIFT seems to be still continu-
ing. The reason may lie in the failure of those approaches to stand up to their
claims in independent evaluations. For example, in [17] , it is shown that SIFT
descriptors perform better than random ferns in terms of ability and accuracy of
matching. Evaluation in [11] claims that SIFT outperforms many popular binary
descriptors like BRIEF [6], BRISK [16], ORB [23].In this context we feel that
it is immensely necessary to perform careful evaluation for a newly designed
descriptor before claiming improvement over SIFT. Moreover, it is preferable
if the evaluation framework can be applied on images of any environment and
not limited to datasets which either have dense depth information [30] or put
limitations on the geometric variations [1].

1.1 Contribution and Overview

In order to make a fair evaluation, we feel that it is necessary to match SIFT
descriptors with operations having similar computational complexity as that of
the type of descriptor with which it is being compared. We use approximate near-
est neighbor search (ANNS) to accelerate SIFT based matching and compare its
accuracy with that of ORB binary descriptor [23]. The choice of ORB is justified
by the fact that ORB, like SIFT, has invariant property w.r.t. rotation and it is
shown to be better compared to other binary descriptors in the presence of scale
and rotation change [12]. We design an evaluation framework which needs only
a sparse set of 3D points and camera positions in a set of images of the environ-
ment. This information can be obtained for any environment by simply running
Structure from Motion (SfM) [28] on a set of images. The results from this
experiment motivates us to explore further in the direction of improving tech-
niques for matching SIFT descriptors rather than trying to design new binary
descriptors. We train axis-parallel decision trees (APDT, decision trees which
use only one attribute of the feature vector in a node to take decision) to learn
SIFT based matching. We exploit the fact that SIFT descriptors are integer val-
ued and perform exhaustive search to obtain optimal decision threshold at each
node of the tree. We find that ANNS still performs slightly better than APDTs.
Next we employ Canonical Correlation Analysis (CCA) [26] and train oblique
decision trees whose decision boundaries need not strictly align to the axes of
the SIFT descriptor space. Though we do not succeed in obtaining improvement
over ANNS by using oblique decision trees for SIFT based matching, the insight
obtained through these experiments which are detailed in this paper are useful
for future exploration in this topic.

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 81

This paper is organized as follows. In section 2, we present the decision tree
framework we used for accelerating SIFT based matching. The three types of
different decision trees we use in our experiments are described in subsections 2.2,
2.3 and 2.4 respectively. Our evaluation framework and the results we obtained
through experiments are presented in section 3. Finally, we mention concluding
remarks and future work in section 4.

2 Decision Trees for Fast SIFT Descriptor Matching

Let Q = {Q1, Q2, ..., QN} be a sparse set of 3D points in the target environment.
Let S = {fi} bet a set of SIFT vectors extracted from images of the environment.
We use decision tree to identify 3D points using SIFT vectors extracted from
images. For training decision tree we need class labels C = {ci} where each label
ci is associated with fi ∈ S. For the task of 3D point recognition, labels are such
that ci = k if fi corresponds to 3D point Qk, otherwise ci = 0. For a vector f ,
we use the superscript f j to denote the value of jth attribute. We can obtain
Q, S, C by performing Structure from Motion (SfM) [28] on a set of images of the
environment (as described with experimental setup in section 3.1). Rest of this
section is as follows. First, we provide a brief description of general framework
for training axis-parallel decision tree (APDT) in section 2.1. For APDT, the
decision at each node is based on one of the attribute values of the descriptor
vector. Two subsequent subsections present the methods we use for random and
exhaustive search for optimal decision boundaries for APDT. In section 2.4 we
present the method we used to learn oblique decision trees through Canonical
Correlation Analysis [26]. Oblique decision trees use linear combination of values
of multiple attributes of descriptor vector for decision at each node.

2.1 Training APDT

Decision trees are built recursively during training. Each tree node (starting
with root node which receives all the training samples) decides whether the
given set of training samples (S,C) should be split or not based on an entropy
measure. The tree building procedure we employ at every tree node is described
in Algorithm 1. If the samples need to be split, then an optimal combination of
attribute tS and threshold θS is computed. The training samples f with f tS ≤ θS
are directed towards left node. The rest are directed towards right node. If the
samples need not be split, then a leaf node is created which stores the dominant
label cS and pointers to all the samples provided to it. We use Information Gain
(IG) based measure [7] to choose optimal values θS and tS . Optimal decision
parameters maximize the IG. When a set S is split into SL and SR, IG of this
division (denoted by G(S)) is defined as

G(S) = H(S) −
∑

i∈{LR}

|Si|
|S| H(Si) (1)

82 K.K.S. Bhat et al.

Algorithm 1. Tree(S,C) : Basic tree growing algorithm
Description: This algorithm is recursively applied to build APDT from a set
S = {fi} of SIFT descriptor training vectors with corresponding labels C = {ci}.
In each recursion, an information entropy value based on the class distribution
of S is computed to decide whether the samples in S need to be split or not. If
S need not be split, then a leaf node is created containing all the samples in S.
Otherwise a decision node is created which splits S into two subsets by applying
a threshold θS on one of the attributes tS . The optimal value for the pair (tS , θS)
is selected so as to increase the IG (as defined in equation 1).

1: if SamplesNeedToBeSplit(S,C) then
2: Create a decision node with attribute tS and threshold θS which optimally splits

S into two groups Sl and Sr with labels Cl and Cr respectively. (For details see
section 2.1)

3: Add the nodes Tree(Sl,Cl) and Tree(Sr,Cr) respectively as the left and right
children of the decision node. Next level of recursion is applied on these two
child-nodes.

4: else
5: Create a leaf node storing the dominant label cS and pointers to elements of S.
6: end if

where H(S) is the information entropy of a set S defined as

H(S) = −
∑

c∈C

p(c)log p(c) (2)

We stop growing a tree node (and declare it as a leaf node) when the number
of training samples available to it is less than Nmin or when the entropy of the
samples given to the node is less than Hmin. As in [20], we set Nmin = 2 and
Hmin = 0, that is, the training algorithm keeps on splitting the samples until all
the samples in a subset belong to the same 3D point.

2.2 Random Search for Optimal Decision Parameters

In general, it is difficult to compute the best value for the decision parameters
since SIFT vectors have 128 attributes and the number of different values that
a descriptor attribute can have is very large. Hence, at each node, the IG mea-
sure is evaluated only on a small set of random pair of values (tS , θS) and
the best value among them is chosen. Multiple decision trees are learned with
such strategy. During testing the outcome of those multiple trees are aggregated
to obtain the final class label for a test sample. Aggregation is performed dur-
ing testing through weighted voting scheme (More details in section 3.3). In
our implementation we try 500 random decision values for each node. First, we
randomly select 500 attributes between 1 to 128. For each random attribute,
we choose a random threshold value between minimum and maximum value
attained for the attribute by the samples used to train the node. We train 10
such trees during training.

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 83

Algorithm 2. FindBestThreshForAttribute(S,C,t)
Description: Finds threshold value for attribute t which optimally splits S for
a given entropy measure
1: Find unique set of values (in the increasing order) A = {a1, a2, ..., ak} the samples

in S take for attribute t.
2: Compute mid-values B = {bi =

ai+ai+1
2

}.
3: Compute gap-values gi = ai+1 − ai

4: for all i ∈ {1, 2, ..., k − 1} do
5: Compute Sl = {f ∈ S : f t ≤ bi} and Sr = {f ∈ S : f t > bi}
6: Gi ← IG (equation 1) due to splitting S in to Sl and Sr using threshold bi
7: end for
8: Return the bi and gi corresponding to the highest Gi.

2.3 Exhaustive Search for Optimal Decision Parameters on SIFT
Training Vectors

The attributes of SIFT descriptors take integer values between 0 to 255 (provided
they are not normalized to unit length). Hence, each attribute can partition S
in at most 254 different ways. This enables us to perform exhaustive search for
optimal attribute-threshold values. The procedure for performing this exhaustive
search for a given attribute t on the set of training samples S with labels C is
explained in Algorithm 2. We perform this search on each attribute of S to
compute the optimal decision value.

It is easy to notice in Algorithm 2 that any threshold value in an interval
[ai, ai+1) will split S in the same way and hence lead to same value for IG
(equation 1). Hence, we need to try only one threshold value for each interval
in order to search for best IG. For each interval we use mid-value for threshold
bi = ai+ai+1

2 in order to maximize the margin between left and right samples.
For threshold value bi, the IG (Gi) is computed and the best threshold value
bj with highest IG is chosen. The algorithm also returns gap between left and
right samples which is gj = aj+1 − aj . This algorithm is executed on all the
attributes and the attribute threshold pair leading to highest IG is chosen. If
there are multiple such decision parameters, then, we choose the one which gives
maximum gap gj .

2.4 Training Oblique Decision Tree Through Canonical Cross
Correlation (CCA)

Given two matrices X = [x1, x2, ..., xn] ∈ Rn×d and Y = [y1, y2, ..., yn] ∈ Rn×k,
CCA [26] computes two projection vectors wx ∈ Rd and wy ∈ Rk such that the
correlation coefficient

ρ =
wT

x XY Twy√
(wT

x XXTwx)(wT
y Y Y Twy)

(3)

84 K.K.S. Bhat et al.

is maximized. If X contains training SIFT vectors as its columns and Y contains
corresponding class labels as its columns in 1-of-k binary coding scheme, (i.e.,
in ith column of Y the jth element is 1 if the SIFT vector xi is associated with
3D point Qj , otherwise it is zero) then the projection vector wx can be used to
obtain oblique decision at each node as follows. If X is the set of sample vectors
provided to a tree node during training, we compute its wx (which maximizes
equation 3). For a threshold value θ, the training vectors satisfying wT

x xi ≤ θ are
directed towards left node and the rest are directed towards right node. Optimal
value for θ is chosen based on the IG of the split. In our experiments we have
used the regularized version of the CCA (rCCA) which solves the generalized
eigenvalue problem

XY T (Y Y T + λyI)−1Y XTwx = η(XXT + λxI)wx (4)

in order to compute wx [26]. We set λy = 0, λx = 0.1.
In [9] CCA is used to reduce the dimension of the input data and then

Random Ferns [22] are trained to perform classification instead of decision trees.
In such a framework, each class label needs F ×2d

′
number of double values to be

stored during the classification process, where F is the number of ferns and d
′
is

the reduced dimension of the vector space. For the parameter values used in the
experiments of [9] this amounts to a memory storage requirement of more than
10MB per 3D point. This is very costly since SfM on a small target environment
(eg. a single office room) may produce thousands of 3D points. In contrast the
decision trees need only 128 double values (128 is the dimension of the SIFT
vector) at each node. In our experiments the tree contained nearly 100k nodes
which requires less than 100MB memory in total.

3 Experiments

In this section, we present the experimental setup for evaluating 3D point recog-
nition accuracy for pose estimation (Sec. 3.1), list the software libraries used in
our experiments (Sec. 3.2) and, then, present experimental results and discussion
based on those results (Sec. 3.3).

3.1 Evaluating Accuracy

For evaluating the accuracy of keypoint recognition methods for camera pose
estimation we need the following information:
1. Camera positions corresponding to the images
2. 3D coordinates of at least some of the keypoints in the images

This information can be obtained by performing SfM [28] on the set of
given images as follows. Keypoint descriptors extracted from the images can be
matched to obtain point-to-point correspondences between each pair of images.
Using these 2D matches, SfM computes the camera position in each image and
the 3D coordinates of the points corresponding to matched image locations. The

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 85

keypoint descriptors associated with the 2D matches of a 3D point can be labeled
with the ID of the 3D point. The descriptor vectors not associated with any 3D
point can be labeled as 0. Thus we obtain information (1) and (2) mentioned
above.

Sometimes camera positions are given along with images (as in the case
of 7Scenes dataset[24] we use). For such cases we can establish correspondence
between the keypoint descriptors and 3D points through triangulation as follows:
1. Extract keypoint descriptors from each image
2. Obtain point-to-point matches between each pair of images by matching the

descriptors extracted from those images
3. Discard those point-to-point matches which do not comply with epipolar

constraints based on the fundamental matrix between a pair of images
4. The matched descriptors are tracked across images to obtain clusters
5. For each cluster obtain the 3D coordinates by performing triangulation [2]

using the given camera positions
6. Label each descriptor vector associated with a 3D point using the ID of the

3D point. Otherwise the label is 0
Once we have the camera positions and labeled keypoint descriptors for a given
set of images we can evaluate the accuracy of a 3D point identification method
through reprojection error. We divide the set of images into Train and Test
sets. The keypoint descriptors from the Train image set are used as samples for
training. During testing the keypoint descriptors from test images are assigned
one of the class labels. If a test descriptor is associated with a 3D point, then,
we can measure its reprojection error in pixels using camera pose of the test
image. In our experiments the matches which have less than 8 pixel error of
reprojection are treated as good matches and those having higher error than
that are considered as bad matches.

3.2 Libraries for ANNS, CCA and ORB

For performing ANNS on SIFT we use Balanced Box Decomposition (BBD)
structure based library [21]. BBD is also a tree structure built using training set
of vectors where each node is associated with a region in the descriptor vector
space. It has many interesting properties like (i) the cardinality and geometric
size of the region associated with a node reduce exponentially as one descends
the tree, (ii) reasonable bound based on the tolerance ε on the distance ratio of
the retrieved nearest neighbor (NN) to the actual NN while performing approxi-
mate search. For CCA, we use the code provided along with [26]. For computing
ORB keypoints and descriptors we use OpenCV [5] library.

3.3 Results

In our experiments we use sequence 1 and 2 of the office sequences in 7Scenes
dataset [24]. Both sequences contain 1000 images each. We subsample them by
selecting 1 in every 8 images. We use the descriptors (SIFT and ORB) from 125
images of seq 1 for training and those from the other 125 images in seq 2 for

86 K.K.S. Bhat et al.

Table 1. APDT based classification on SIFT descriptors and hamming distance based
classification on ORB descriptors. For descripton of columns please see section 3.3.
Average time per image for Exh-Tree T-250 is 2 milliseconds, Random Tree with Maj
vote takes 20 milliseconds, Random Tree with threshold and inv-dist vote takes 25
milliseconds. ORB descriptors take nearly 3 seconds per image (BruteForce matching
in OpenCV [5]). Exh-Tree T-250 clearly outshines ORB in accuracy and speed.

Exh-Tree
Exh-Tree Exh-Tree Rand-10 Rand-10 Rand-10

ORB
T-200 T-250 Maj T-250 Inv-Dist Vote

Good 12.59 10.7 11.79 6.70 27.99 10.73 10.35

Bad 35.52 1.4 3.50 1.39 5.80 1.71 15.86

testing. There are around 90k and 80k SIFT descriptors in Train and Test set
respectively. There are around 110k ORB descriptors each in Test and Train set.

Results with APDT and ORB. Results are shown in table 1, 2 and 3. Each
column in these tables corresponds to a particular type of classification. There
are two rows in each table showing the accuracy values. The ‘Good’ and ‘Bad’
rows indicate the % of matches that are good and bad respectively based on
the reprojection error. The rest of the test vectors either matched with those
training vectors which are not associated with any 3D point or did not match
any training vector at all.

Table 1 shows the accuracy for APDT and ORB. Columns 2 to 7 show results
of using different decision trees trained using SIFT training vectors. The last
column shows the result of using hamming distance threshold based classification
of ORB descriptors (we use the threshold 30). Exh-Tree in column 2, 3 and 4
indicates single decision tree trained using exhaustive search for optimal decision
parameters. Column 2 (Exh-Tree) shows the result of assigning the class label
of leaf node training samples to each test vector to which it reaches during
classification. It contains only 12.59% good matches and 35.52% bad matches
which is very large. In order to reduce bad matches we computed the distance
between the test vector and the training samples at the leaf node and discarded
those having distance higher than a particular threshold. Column 3 and 4 shows
the result of Exh-Tree for distance threshold 200 and 250 respectively. We can
see that thresholding at leaf reduces the bad matches significantly. But in order
to perform thresholding at leaf we have to store all the training vectors even at
run time. The time required for performing computation is 2 milliseconds which
indicates that this method can be applied even in a larger environment to obtain
real-time performance.

Next three columns (5, 6 and 7) show the results of classification by aggre-
gating the outcome of 10 trained trees using random search for optimal decision
parameters. Column 4 uses majority vote, column 5 applies a threshold on the
distance to the NN among all the leaf samples of 10 trees and column 6 uses a
voting mechanism in which each leaf sample’s vote is weighed by inverse of its
distance from the test vector. We can see that the only case having significantly

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 87

Table 2. ENN Classification using SIFT descriptors. Average time needed to compute
the first neighbor is 7 seconds/image. Please refer to subsection “Results with ANNS”
below for details.

NN
R-of-NN T-on-NN

0.6 0.7 0.8 0.9 100 150 200 250 300

Good 37.07 1.54 3.58 7.73 16.48 8.73 19.72 28.76 34.44 36.76

Bad 21.35 0.03 0.08 0.24 1.35 0.40 2.07 5.65 11.47 18.24

Table 3. ANN Classification using SIFT descriptors. Average time needed to compute
the first neighbor is 2 milliseconds/image when approximation tolerance is set to 40.
Please refer to subsection “Results with ANNS” below for details.

NN
R-of-NN T-on-NN

0.6 0.7 0.8 0.9 100 150 200 250 300

Good 19.35 5.49 7.73 10.53 14.22 5.76 11.79 15.79 17.96 18.97

Bad 36.70 0.24 0.85 2.98 10.10 0.28 1.50 4.58 9.76 17.72

higher good matches from Exh-Tree T-200 is column 6 (Rand-10 T-250). But
the computational cost increases for it by a factor of 10 (20 milliseconds). Hence,
using a single trained tree with exhaustive search by exploiting the integral value
property of SIFT descriptors helps in achieving faster computation of matches.

The last column corresponding to ORB has 10.35% good matches and 15.86%
bad matches. Such high % of incorrect matches is not suitable for pose estimation.
We computed pose for each test image using the matches provided by Exh-Tree
T-200. We use the algorithm [15] to compute pose with 1000 RANSAC [10]
trials in order to reject outliers. After obtaining the pose, those images whose
position is within 5cm and orientation is within 5◦ from the ground truth are
declared to be correct (same as in [24]). We found that 92% of the camera posi-
tions obtained by our method are correct. This is better than that reported in
[24] (86.8% when frame-to-frame tracking is used and 79.1% otherwise) which
also uses depth information provided by the Kinect sensor along with the color
image. This clearly indicates that it is better to use robust descriptors like SIFT
with fast matching method rather than using binary descriptors for identifying
3D points for pose estimation.

Another thing we observe is that matching SIFT vectors through decision
trees is much faster to matching ORB without any acceleration strategies. If
approximate matching approaches are used for ORB for acceleration, it will
only deteriorate the accuracy further from what is already considered very poor.

Results with ANNS. Table 2 and 3 show results of Exact Nearest Neighbor
(ENN) and Approximate Nearest Neighbor (ANN) based classification respec-
tively on SIFT descriptor vectors. The three column titles are described below:

88 K.K.S. Bhat et al.

• NN corresponds to NN classification (test vector is associated with the label
of the closest training vector).

• R-of-NN corresponds to classification based on threshold on ratio of distances
to two closest NNs belonging to different class labels. We compute 5 closest
NNs for a test vector. If all the 5 training vectors belong to the same class,
then the test vector is assigned to that class. Otherwise, we compute the
ratio of distance of the NN and to the second NN belonging to a different
class than the NN. If this ratio is less than a particular threshold, then, we
assign the test vector to the class label of the NN. Otherwise, we discard it.

• T-on-NN classifies a test vector by applying a threshold on the distance.
The different threshold values applied on each case are indicated in the sec-

ond row of these tables. From table 2, it is clear that ENN based classification
provides better results than decision trees. For example T-on-NN with thresh-
old 150 provides 19.72%, 2.07% good and bad matches which can be considered
better than the results provided by Exh-Tree in columns 2, 3, 4 of table 1. But,
ENN classification requires 7 seconds to finish computation where as Exh-Tree
needs only 2 milliseconds. In order to accelerate NN matching we increased the
tolerance value ε of ANNS to 40 at which the computation finished in 2 millisec-
onds per image. The results are shown in table 3. Though the approximation
has reduced the accuracy of nearest neighbor matching it is still slightly better
than decision trees. For example, T-on-NN with threshold 150 in table 3 gives
11.79%, 1.50% good and bad matches. Despite reduced accuracy it is still better
than columns 2, 3, 4 of table 1.

Results with Oblique Decision Tree Based on CCA: We also experi-
mented with oblique decision tree in order to improve the accuracy further. Due
to the increased flexibility in decision boundaries we hoped to obtain better
results. But, with oblique decision tree trained using CCA the results on test
data only got much worse compared to APDT. In order to analyze the results we
scaled down the problem to 4-class classification by selecting samples from only 4
clusters. We performed training and testing for one node on this reduced dataset
using APDT and oblique decision trees. Fig. 1 shows typical decision bound-
aries and, the values of training and test samples on which decision threshold is
applied. There are two subfigures each corresponding to axis-parallel (Fig. 1.a)
and oblique tree (Fig. 1.b) respectively. The scalar values corresponding to the
training and test samples used at the node of the respective decision trees are
plotted along the x-axis. Each ’+’ mark indicates this scalar value. Its color
(green, red, blue and magenta) indicates its class label. The training and test
samples are shown at y=1 and y=-1 respectively. The vertical red line indicates
the threshold value.

First, let us consider the distribution of training samples in Fig. 1.a and 1.b.
APDT divides the training samples magenta and blue to left. The red and green
training samples are spread at the right of the vertical line. Oblique decision tree
divides red, green training samples to left and the rest to the right. In addition,
we can see that Oblique decision tree packs the training samples tightly based

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 89

0 50 100 150
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

MaxGap −Tree Train

MaxGap Decision Tree

MaxGap −Tree Test

Axis-parallel Tree

Train

Test
dlohserhT noi si ce

D

(a) Decision of APDT

−0.105 −0.1 −0.095 −0.09 −0.085 −0.08 −0.075 −0.07 −0.065
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

CCA −Tree Train

CCA

CCA −Tree Test

Oblique tree

Train

Test

dlohserhT noi si ce
D

(b) Decision of oblique tree

Fig. 1. Along x-axis these two figures show the attribute values of training and test
samples used for decision making. Each ’+’ mark represents the attribute value of
a sample. The samples to the left of the red vertical line are directed towards left
and vice-versa. Its color (green, red, blue and magenta) indicates its class label. The
training and test samples are displayed at y=1 and y=-1 respectively. By comparing
the decision boundaries of test and train samples we can say (b) is a clear case of
overfitting.

on the class label. All the training samples belonging to a class have almost
same projected value and well separated from others. As one would expect, this
indicates that oblique decision tree fits better to the provided training samples.

When we observe the distribution of test samples it reveals the reason for
poor accuracy of oblique decision tree. APDT is more consistent with its behavior
during training when compared to Oblique decision tree. For Oblique decision
tree the test samples are scattered close to the decision boundary and some of
them are even misclassified. It seems to be the case of overfitting. This problem
cannot be mitigated by using more training samples because even if we increase
the training samples the tree nodes at the lower level will receive only a small
portion of it. Hence the same problem will appear at the lower levels. Perhaps
a combination of using more flexible oblique decision tree nodes at the top level
and APDT at lower level may improve the results.

4 Conclusion and Future Work

Our experiments show that we can obtain real-time performance for 3D point
recognition with SIFT descriptors if we use ANNS based matching. The accuracy
we obtain with such a method is better than binary descriptor based matching
even when color and depth information are used. However, we could not improve
this performance with SIFT even by using oblique decision trees. This was due to
overfitting at lower levels which obtain very few training samples. We would like
to mitigate this problem by using oblique decision trees at the top level nodes

90 K.K.S. Bhat et al.

(which get large number of training samples) and APDT at lower level. It may
also turn out that only NN based matching suits SIFT descriptors and hence
using oblique decision trees at top level may also produce misclassification. In
that case we would like to use BBD at the top level. BBD structure exponentially
reduces the size of the region in the feature space associated with a node as we
descend down. This will be similar to applying ANN classification at the top
level. Then, APDTs can be used within the bounded regions at the lower levels.

References

1. Affine Covariant Regions data from Visual Geometry Group, Oxford University.
http://www.robots.ox.ac.uk/∼vgg/research/affine/

2. Matlab functions for multiple view geometry. http://www.robots.ox.ac.uk/∼vgg/
hzbook/code/

3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
Computer Vision and Image Understanding 110(3), 346–359 (2008)

4. Bhat. S., Berger, M.O., Sur, F.: Visual words for 3D reconstruction and pose
computation. 3DIMPVT 2011 (2011)

5. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
6. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF:

Computing a Local Binary Descriptor Very Fast. PAMI 2012 (2012)
7. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image

Analysis. Springer Publishing Company, Incorporated (2013)
8. Dahl, A.L., Aanæs, H., Pedersen, K.S.: Finding the best feature detector-descriptor

combination. In: 3DIMPVT 2011 (2011)
9. Donoser, M., Schmalstieg, D.: Discriminative feature-to-point matching in image-

based localization. In: CVPR 2014 (2014)
10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24(6), 381–395 (1981)

11. Hartmann, J., Klussendorff, J., Maehle, E.: A comparison of feature descriptors
for visual slam. In: European Conference on Mobile Robots 2013 (2013)

12. Heinly, J., Dunn, E., Frahm, J.-M.: Comparative evaluation of binary features. In:
Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer
Vision-ECCV 2012. LNCS, vol. 2012, pp. 759–773. Springer, Heidelberg (2012)

13. Hesch, J., Roumeliotis, S.: A direct least-squares (dls) method for pnp. In: ICCV
2011 (2011)

14. Lepetit, V., Fua, P.: Keypoint Recognition using Randomized Trees. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI) (2006)

15. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An Accurate O(n) Solution to the
PnP Problem. IJCV 2009 (2009). http://cvlab.epfl.ch/software/EPnP/

16. Leutenegger, S., Chli, M., Siegwart, R.: Brisk: Binary robust invariant scalable
keypoints. In: ICCV 2011 (2011)

17. Lieberknecht, S., Benhimane, S., Meier, P., Navab, N.: A dataset and evaluation
methodology for template-based tracking algorithms. In: ISMAR (2009)

18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 2004
(2004)

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
http://cvlab.epfl.ch/software/EPnP/

3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB 91

19. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630
(2005)

20. Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image clas-
sification. PAMI 2008 (2008)

21. Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor search-
ing. http://www.cs.umd.edu/∼mount/ANN

22. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition using
Random Ferns. PAMI 2012 (2012)

23. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to
sift or surf. ICCV 2011 (2011)

24. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene
coordinate regression forests for camera relocalization in rgb-d images. CVPR 2013
(2013)

25. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in
3d. ACM Trans. Graph. 2006 (2006)

26. Sun, L., Ji, S., Ye, J.: Canonical correlation analysis for multilabel classification:
A least-squares formulation, extensions, and analysis. PAMI 2011 (2011). http://
www.public.asu.edu/∼jye02/Software/CCA/index.html

27. Trzcinski, V.L.T., Christoudias, M., Fua, P.: Boosting Binary Keypoint Descrip-
tors. Computer Vision and Pattern Recognition 2013 (2013)

28. Wu, C.: Towards linear-time incremental structure from motion. In: 3DV 2013
(2013)

29. Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K., Okutomi, M.: Revisiting the pnp
problem: a fast, general and optimal solution. In: ICCV 2013 (2013)

30. Zhou, Q.-Y., Koltun, V.: Dense scene reconstruction with points of interest.
ACM Trans. Graph. 2013 (2013). http://www.stanford.edu/∼qianyizh/projects/
scenedata.html

http://www.cs.umd.edu/~mount/ANN
http://www.public.asu.edu/~jye02/Software/CCA/index.html
http://www.public.asu.edu/~jye02/Software/CCA/index.html
http://www.stanford.edu/~qianyizh/projects/scenedata.html
http://www.stanford.edu/~qianyizh/projects/scenedata.html

	3D Point Representation For Pose Estimation: Accelerated SIFT vs ORB
	1 Introduction and Background
	1.1 Contribution and Overview

	2 Decision Trees for Fast SIFT Descriptor Matching
	2.1 Training APDT
	2.2 Random Search for Optimal Decision Parameters
	2.3 Exhaustive Search for Optimal Decision Parameters on SIFT Training Vectors
	2.4 Training Oblique Decision Tree Through Canonical Cross Correlation (CCA)

	3 Experiments
	3.1 Evaluating Accuracy
	3.2 Libraries for ANNS, CCA and ORB
	3.3 Results

	4 Conclusion and Future Work
	References

