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Abstract. Recent studies have underlined the significance of high-dimensional
features and their compression for face recognition. Partly motivated by these
findings, we propose a novel method for building unsupervised face represen-
tations based on binarized descriptors and efficient compression by soft assign-
ment and unsupervised dimensionality reduction. For binarized descriptors, we
consider Binarized Statistical Image Features (BSIF) which is a learning based
descriptor computing a binary code for each pixel by thresholding the outputs of
a linear projection between a local image patch and a set of independent basis
vectors estimated from a training data set using independent component anal-
ysis. In this work, we propose application specific learning to train a separate
BSIF descriptor for each of the local face regions. Then, our method constructs
a high-dimensional representation from an input face by collecting histograms
of BSIF codes in a blockwise manner. Before dropping the dimension to get a
more compressed representation, an important step in the pipeline of our method
is soft feature assignment where the region histograms of the binarized codes are
smoothed using kernel density estimation achieved by a simple and fast matrix-
vector product. In detail, we provide a thorough evaluation on FERET and LFW
benchmarks comparing our face representation method to the state-of-the-art in
face recognition showing enhanced performance on FERET and promising re-
sults on LFW.

1 Introduction
Automatic face recognition from images is a major research area in computer vision.
The high societal impact and practical significance of face recognition technologies
is evident given the ever-increasing digital image databases and wide availability of
cameras in various consumer devices (e.g. smart phones, Google Glasses). Thus, face
recognition has many applications in several areas, including, for example, content-
based image retrieval, security and surveillance (e.g. passport control), web search and
services (e.g. automatic face naming in services like Facebook) and human computer
interaction.

The first studies on automatic face recognition emerged already in 1970’s and since
then various methods have been developed resulting in continuous improvements in
performance. Examples of well known early techniques include the Eigenfaces and
Fisherfaces methods [1, 2]. A comprehensive review of the field from its early days
until the beginning of 2000’s is presented in [3]. However, despite decades of research
and all the developments and efforts, there is still a clear gap in accuracy and robustness
between the automatic face recognition systems and human level of performance. In
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fact, the problem of automatic face recognition is still a very active research topic and
there are plenty of recent developments [4–13]. Important driving forces behind the
recent progress are public datasets and benchmarks that are used for comparing and
evaluating different methods. Examples of well known and widely used benchmarks
are the Facial Recognition Technology (FERET) database [14] and the Labeled Faces
in the Wild (LFW) database [15].

A typical face recognition system consists of detection, alignment, representation,
and classification steps. In this paper, along with many other recent studies, our focus
is on face representation. Usually, face representation is composed of two distinct steps
where (i) a certain kind of face representation is first generated from a normalized input
face image and then (ii) subspace analysis is performed to produce a significantly lower
dimensional representation [16]. The step (i) can be performed by common signal pro-
cessing techniques, such as Gabor wavelets and Discrete Fourier Transform, whereas
the step (ii) by applying Principal Component Analysis (PCA) or Linear Discriminant
Analysis (LDA). The way the input face is processed divides the face representation
methods further into holistic and so called local methods. Especially, the use of meth-
ods based on local image descriptors has resulted in a great success, the notable ones
including gradient based Scale Invariant Feature Transform (SIFT), Histograms of Ori-
ented Gradients (HOG), and Local Binary Patterns (LBP). Especially binarized local
image descriptors, like LBP, have gained a great favour in a wide spectrum of face anal-
ysis studies. An essential part of local face description methods is the use of statistical
histograms over a discrete vocabulary of the resulting local descriptor features.

In this paper, we propose a novel unsupervised face representation method which
builds on the recently proposed local image description method called Binarized Statis-
tical Image Features (BSIF) [17]. BSIF is a learning based method which computes a
binary code for each pixel by thresholding the inner products between a vectorized local
image patch outputs of a linear projection between a local image patch and a set of ba-
sis vectors which are learnt via Independent Component Analysis (ICA) from training
image patches. The BSIF method is inspired by LBP and its derivatives, but in contrast
to many of them, BSIF does not use a manually predefined set of filters but learns them
by utilizing the statistics of images under interest. In particular, in this paper we show
that it is beneficial to learn separate sets of linear filters for different face regions by
utilizing training image patches from face images. Thus, the binary codes for pixels of
a certain face region are obtained by using the corresponding filters, specifically learnt
to describe patches in that region. This is in contrast to [17] which uses the same fil-
ters for all pixels and learns them from natural images (but not specifically from face
images). The face regions are finally represented by histograms of the resulting binary
codes and the final face descriptor is obtained by concatenating the histograms of dif-
ferent regions, as in [18] and [17]. As an important step of our representation, before
compressing the histogram based face representation to a lower dimensional subspace
using Whitening PCA (WPCA), we propose to smooth each region histogram using a
kernel method suitable for n-dimensional binary data. Most importantly, we show that
the smoothing can be accomplished by a simple matrix-vector product. Unlike other
recent learning based descriptors, our approach does not need hand-crafted local pixel
patterns and vector quantization, for example, using k-means during learning and, most
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importantly, it avoids cumbersome large look-up tables at test time. Our contributions
include: (i) we advance descriptor based methods; (ii) we provide insights to benefits
of unsupervised application specific descriptor learning; (iii) we introduce a practical
method for local descriptor soft-assigments; and (iv) we show the importance of soft-
assigment as a predecessor for dimensionality reduction.

Based on our evaluations, by using the face representation method proposed herein
one is able to gain the state-of-the-art performance on the widely used FERET dataset.
We also validate our proposal on more challenging conditions using the popular LFW
dataset showing promising results.

2 Related Work
There is a lot of previous research on different aspects of automatic face recognition
systems [19]. Some studies focus on the first stages of the pipeline, i.e. face detection
and alignment [20], whereas others focus on learning classifiers or similarity metrics for
chosen face representations [10]. However, this paper concentrates on the representation
problem as it has been shown to be a crucial component for robust performance in
challenging real-world scenarios [15, 13]. We next review some recent works that we
consider to be the most closely related to our work.

High-dimensional features have been found very potential in designing represen-
tations in object recognition. For example in [21], it was shown that together with the
chosen feature itself, equally important is to consider how many of them to use and how
dense or in how many scales they are extracted. Indeed, these are the key elements that
are acknowledged in many studies for obtaining an informative representation. The only
setback is that a method which embodies all of these elements usually outputs a very
high-dimensional representation. To compress the representation for a more practical
usage, efficient dimension reduction methods are needed as noted in [7].

In [7], Chen et al. discussed about benefits of a high-dimensional face representa-
tion and practically showed that the increase in dimensionality has a positive impact
on the accuracy while applied to face verification. Their method was based on face
landmark detection following encodings of the detected keypoints (such as eyes, nose,
and mouth corners). They compared several local descriptors which all ended up to
improved recognition accuracy while the feature dimension was increased by varying
landmark numbers and sampling scales. In [11], a high-dimensional representation was
constructed concatenating LBP histograms computed from the whole face area using
overlapping blocks and different kinds of LBP parameter configurations. However, the
authors argued that the added accuracy in high-dimensional face representation can be
revealed only after dimensionality reduction, which they showed using whitening PCA
among other methods.

Although the claimed pivotal role of high-dimensionality, there are some clear hints
that the underlying feature extraction method has its own impact and should be taken
into careful consideration. To this end, learning encoders for hand-crafted descriptors
has lately been shown to yield outperforming results compared to completely hand-
crafted ones. For example, the best performing descriptor in [22], an LBP-based de-
scriptor combined with unsupervised codebook learning via k-means outperformed
such descriptors as the conventional LBP and HOG, in all given settings. In turn, a quite
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recent supervised descriptor, proposed in [8], is based on first fixing the LBP-like sam-
pling strategy and then learning discriminative filters and so-called soft-sampling using
a formulation similar to two-dimensional Linear Discriminant Analysis. Finally, the
method was shown to outperform many of the existing LBP-based, completely hand-
crafted descriptors.

Our approach connects all aspects of the methods discussed above for producing a
discriminative face representation. The desired high-dimensionality [7] is reached at the
descriptor level, using a local binary descriptor called BSIF [17]. In our method, we ba-
sically learn descriptors that produce higher dimensional histograms but, unlike LBP, in
a more justified manner without sacrificing further loss of information during the encod-
ing of pixel neighborhoods. Like in [8], we learn the descriptors in a blockwise manner
from aligned face images, but apart from that, our approach does not need hand-crafted
local pixel patterns and vector quantization using large look-up tables. We use overlap-
ping blocks, like in [11], but before compression we further propose to smooth each
region based histogram using kernel density estimation. Finally, an efficient compres-
sion is achieved by projecting the whole representation into a lower dimension using
the whitening PCA method.

3 Our Method
In this section, we review the most important steps of our face representation method.
We first introduce the BSIF descriptor and then present the utilized soft-assignment
method suitable for binary descriptors. Finally, we introduce the WPCA dimensionality
reduction method and provide some discussion about the used face matching methods
together with other related details.

Binarized Statistical Image Features. Binarized Statistical Image Features (BSIF) is
a data-driven local image description method which is widely inspired by LBP and its
derivatives. In BSIF, a predefined number of linear filters are learnt using a set of train-
ing image patches using a criterion which aims to maximize the statistical independence
between the responses of the convolutions of each individual filter and the given image
patches [17]. Evidently, by maximising the statistical independence one is able to learn
the most optimal set of filters with respect to the following independent quantization
of the response vector coordinates, which is the fundamental part of all local binary
descriptor methods. Moreover, the maximization of the statistical independence results
in entropy growth between the coordinates leading to an effective description process in
overall. This is also the main difference to the LBP method where the derivative pixel
neighborhood tests are usually set without taking any criterion into consideration. This
discussion above should justify the reason why we call BSIF as an optimal binarized de-
scriptor. If a binarized descriptor is used to produce a high-dimensional representation,
it is highly important to take the full advantage of the descriptor’s encoding capability.

One BSIF operation is a linear matrix vector product, s = Wx, where x is a vector
containing all the pixels of a local image patch of a size w×w (i.e. x ∈ Rw×w), and W
is a matrix of a size n×w2 containing the n linear filters which are stacked row by row.
The output, vector s ∈ Rn, is then binarized by thresholding each of its elements si at
zero finally yielding an n-bit long binary string treated as a codeword characterising the
contents of the local neighborhood area on a certain location in the image.



5

For learning the linear filters, one needs to sample a training set consisting of im-
age patches of the same size than the window of the desired descriptor. In the original
paper [17], the training set was sampled from natural images, but the images can also
be sampled from application-specific images, like it is done in this study. In the very
beginning, the mean luminance is removed from each patch. Then, the linear filters are
learnt so that the matrix W is first decomposed into two parts by W = UV, where V
is a whitening transformation matrix learnt from the same training image patches and
U is then finally estimated using Independent Component Analysis (ICA). The whiten-
ing transformation, usually accomplished via PCA, may also contain the reduction of
dimensionality which in general lightens our computations but also reduces the effects
caused by different image artefacts in image patches which are usually recorded by the
last principal components. Here, we reduce the dimension of our training vectors to the
length equal to the desired number of filters. Finally, to accomplish ICA we applied
FastICA [23].

Soft-assigned BSIF descriptors. Originally, the idea of descriptor-space soft assign-
ment was to tackle the problems caused by hard assignment of descriptors to discrete
visual codewords. In this procedure, also known as the bag-of-visual-words represen-
tation, two image feature descriptors are treated identical if they are assigned to the
same visual codeword of the visual vocabulary generated by some clustering algorithm,
such as k-means. As noted in [24], such a hard quantization leads to errors as even a
small variation in the feature value may cause totally different assignments. In soft-
assignment the objective is to describe an image patch by a weighted combination of
visual words. In general, soft-assignment has been investigated in both with using vi-
sual vocabularies generated by some clustering algorithm [24] and with binarized local
descriptors [25]. The soft-assignment method we are using is based on kernel density
estimation. The normal kernel, proposed by [26], is given by

Kλ(l|l′) = λn−d(l,l
′)(1− λ)d(l,l

′), (1)

where l and l′ are both n-dimensional binary codewords, d(l, l′) is the Hamming dis-
tance between the codewords, and λ ∈ [ 12 , 1) is the bandwidth (smoothing) parameter.

The smoothing operation is put into action by first constructing a kernel matrix S
so that

Sλ =

 Kλ(0|0) . . . Kλ(0|2n − 1)
...

. . .
...

Kλ(2
n − 1|0) . . . Kλ(2

n − 1|2n − 1)

 . (2)

Descriptor space soft-assignment is then accomplished by introducing a matrix-vector
product Sλh ∈ R2n

+ where h is a histogram (in column format) of binary codewords on
a certain image area and n is the number of filters.

The amount of weighting among the codewords is controlled by the smoothing pa-
rameter λ. Letting λ = 1 coincides with the naive estimator, i.e. the basic histogram of
codewords. In that case the kernel matrix Sλ equals the identity matrix. On the contrary,
by setting λ = 1/2 all codewords are given the same weight 2−n which finally yields to
evenly distributed codewords. It is noteworthy that the kernel in (1) is analogous with
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the well-known Gaussian kernel that operates in continuous domain. Although soft as-
signment with binarized descriptors is quite well-known, we show its efficiency while
combined with dimensionality reduction which, to the best of our knowledge, was not
considered in previous studies.

Whitening PCA. To compress the high-dimensional representation we use Whitening
Principal Component Analysis (WPCA). WPCA has proven to provide extra boost to
the face recognition performance in many studies [27, 6, 8, 11]. The first benefit of using
WPCA is the resulting reduced dimension of the final representation. In our algorithm,
for example, it turns out useful as the length of the descriptor histogram is 2n, where
n is the number of filters. If the input face is divided into 7 × 7 blocks the final repre-
sentation yields 2n × 7× 7 which can finally prove too large in certain circumstances.
The second benefit comes from the whitening part where the features projected along
the principal components are divided by their standard deviations. It has been shown
that the whitening part is important in order to equalize the influence of the principal
components to the matching process which is often performed using the Cosine sim-
ilarity. The PCA part is accomplished using the Turk-Pentland strategy where instead
of calculating the covariance matrix AAT, where A = [a1a2 . . .aM ] collects mean-
subracted feature vectors in column format, we calculate ATA which is a matrix of a
much smaller size. The eigenvectors of AAT are then ui = Avi/ ‖Avi‖2, where vi
are the eigenvectors of ATA [1].

In general, PCA may suffer with sparse and high-dimensional data leading to the
overfitting problem [28]. One reason of this problem in our case is that while using
BSIF with increasing number of filters the resulting histograms of descriptor labels will
become larger and sparser since the number of descriptor label occurrences is always
constrained according to the block size. The result is that applying PCA most likely
overfits as the correlation between the possible pairs of coordinates is most probably
represented by only a few samples in the data. Based on our results, it seems that the
overfitting problem can be most likely alleviated by introducing the smoothing oper-
ation which ensures that there are much less non-zero elements in the concatenated
representation than in the non-smoothed one.

Matching faces. For matching faces, we used the Hellinger distance. According to [29],
this distance can be calculated as

d(x,y)2 = ‖x‖22 + ‖y‖
2
2 − 2x>y = 2− 2x>y, (3)

where both x and y are properly preprocessed face representations. If we used the L2
normalized representations of x and y, we would be measuring the Euclidean distance
between them. To measure the distance based on the Hellinger kernel, before applying
(3), we first (i) L1-normalize both representations and then (ii) replace all coordinate
values by their square roots (see the detailed reasoning in [29]). Following the majority
of previous face recognition studies, for the WPCA projected representation we use the
Cosine distance. To accomplish this, we further L2-normalize the WPCA compressed
representation and apply (3), which can be easily shown to be equal as measuring the
Cosine distance between the input representations.
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In our FERET evaluation, we straightly calculate the distance between two input
representations using the steps given above. However, in the LFW evaluation, we use an
additional step which has been used in some recent studies to gain some additional boost
in performance. In detail, we use the flip-free strategy described in [30]. That means,
instead of direct distance calculations of two input representations we horizontally flip
all images before feature extraction and calculate the average of the distances between
all possible four combinations of the representations stemming from the original and
horizontally flipped images.

4 Experiments

We use the Face Recognition Technology (FERET) [14] and the Labeled Faces in the
Wild (LFW) [15] datasets. To better understand the possible benefits of using application-
specific images in learning the descriptor for high-dimensional representation, we com-
pare the face-based BSIF descriptor to the one which was learnt using natural images.
Our baseline is the popular LBP descriptor with different bit lengths and several differ-
ent radii. Finally, we compare our proposal to the state-of-the-art methods which were
reported using the given two datasets. For LFW experiments, we evaluate our method
barely in the unsupervised evaluation category using the recently updated protocol [15].

Setup. FERET [14] is a standard dataset for benchmarking face recognition methods in
constrained imaging conditions. FERET is composed of several different subsets with
varying pose, expression, and illumination. We are interested in the frontal profile im-
ages of it, which are divided into five sets known as fa, fb, fc, dup1, and dup2. For
gallery, we use fa containing 1,196 images of 1,196 subjects. For probes, we use the
rest four subsets, where fb contains 1,195 images covering varied expressions, fc con-
tains 194 images with varied illumination conditions, dup1 contains 722 images taken
later in time, and dup2, which contains 234 images taken at least one year after the
corresponding gallery images. LFW [15], regarded as de-facto evaluation benchmark
for face verification in unconstrained conditions, consists of 13,233 images of 5,749
subjects. LFW is organized in to two disjoint subsets called View 1 and 2. View 1 is a
development set containing 2,200 face image pairs for training and 1,000 pairs for test-
ing. View 2, which is meant to be used in reporting the final performance, is a 10-fold
cross-validation set of 6,000 face pairs. Herein we use the LFW aligned (LFW-a) [31]
version where all the original LFW images are aligned using a commercial face align-
ment system.

As it will be seen, we evaluate the proposed method on two face recognition modes,
namely in identification and verification. For the former we use the FERET dataset
whereas for the latter we use the LFW dataset. In this paper, the major part of the pa-
rameters used in the LFW evaluation is set based on the results of the preceding FERET
evaluation. We are also trying to utilize as much as possible the existing knowledge on
different LFW experiments found from the literature to minimise parameter tuning.

Face identification on FERET. We first align all face images based on the provided
eye coordinates and rescale them to the size of 150× 130 pixels. We further prepro-
cess all face images by applying the method proposed in [32] (see Fig. 1 (a)). Then, we
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(a) (b)

Fig. 1. (a) An example of a cropped and preprocessed face used in the FERET experiments, and
a crop used in the LFW experiment. (b) The effect of the descriptor’s length (in bits) and the
support area. The curves are for raw representations each having a length of 7× 7× 2n, where n
is the number of bits of the descriptor dup2.

divide the face into 7× 7 blocks which are of 30× 28 pixels using a vertical and hori-
zontal overlap of 10 and 11 pixels, respectively. Finally we apply the given local binary
descriptor, record the frequencies of the resulting codewords in the given block, and
store them to separate histograms. After processing the whole face area, the resulting
block-based histograms are concatenated to form the final representation of the face.
While the soft-assignment of the codewords is applied, it is done separately for each
block-based histogram before they are concatenated.

To see whether application-specific learning is beneficial for constructing local bi-
nary descriptors for describing faces, we form a specific training set and perform de-
scriptor learning locally for each separate block resulting in a bank of descriptors, each
of them specialized in describing some particular facial region. Indeed, it has been
shown many times that different face regions provide different contributions to face
recognition [18, 8]. In practice, we use a standard training set, which contains alto-
gether 762 faces, provided by the CSU package [33]. Using the desired descriptor win-
dow size we then randomly sample each separate face region by evenly taking 50,000
image patches from the given 762 images and perform the descriptor learning. As we
use the method given in [32], the training images are preprocessed accordingly. We
compare the resulting descriptors with the corresponding ones learnt from 13 natural
images [17]. For the baseline, we use the circular 8, 10 and 12 bit LBP descriptors with
several different radii. To compare all these representations we use the nearest neighbor
classifier applying the Hellinger distance. To take a stand on the issue of the fast growth
in the representation based on local binary descriptors, we reduce the length of the fi-
nal representation to 1,195 via WPCA and finally report the results using the Cosine
distance. For computing the WPCA transform, we use all faces in the gallery.

The parameters we must tune are the window size of the descriptor and its dimen-
sion. For LBP, the dimension equals to the number of neighborhood pixels used in the
feature calculation. For BSIF, the dimension is the number of filters, or statistically in-
dependent basis vectors. To see the influence of the window size and the dimension, we
show the mean accuracy of dup1 and dup2 in Fig. 1 (b). The results indicate that BSIF
clearly outperforms LBP and that the same window size 11×11 performs consistently
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well for all tested descriptors. The best dimension, however, seems to differ as for the
BSIF descriptor based on natural image patches (BSIFN ) it seems to be 10, and for the
BSIF based on face image patches (BSIFF ), all four starting from 9 to 12 bits, seem
to perform well. From now on, we fix the number of filters as 11, for both BSIFN and
BSIFF descriptors.

For comprehensiveness, we report the results on all subsets using 11-bit BSIF de-
scriptors. We also attest the usefulness of soft-assignment, setting λ as 0.9, before com-
pressing (WPCA and Cosine distance) the representation. Based on the results in Ta-
ble 1, using face image patches in descriptor learning clearly benefits. One also observes
that the result of compression is remarkable. Moreover, the utilized soft-assignment
method further boosts up the performance while combined with compression. In gen-
eral, we noticed that by using BSIFF combined with soft-assignments and compres-
sion, the performance was better in 16 out of 20 test cases (from 8 to 12 bits and from
7×7 to 13×13 size of filters) compared with its compressed non-smoothed version. The
mean accuracies over all parameter combinations and over all subsets for the smoothed
and non-smoothed BSIFF were 96.1% and 95.5%, respectively.

Table 1. Comparative results on FERET using 11-bit and 11×11 size of descriptors. The first two
columns are for raw features with the Hellinger distance metric, and sa refers to soft-assignment.

BSIFN BSIFF BSIFF + WPCA BSIFsa
F + WPCA

fb 97.9 99.0 99.7 99.7
fc 100 100 100 100
dup1 84.3 88.2 93.9 95.2
dup2 82.9 85.0 91.9 94.4
mean 91.3 93.1 96.4 97.3

Comparing our best result to the state-of-the-art, shown in Table 2, we can observe
that the accuracy of our method is the best one. It must be noted that the earlier best
methods, the DFD and LGXP descriptors, are based on supervised learning. Moreover,
at least POEM, I-LQP, and G-LQP uses horizontal image flipping to further boost the
performance, whereas our method does not use any flipping strategies in this experi-
ment. Finally, according to [6], G-LQP is based on fusion on decision level, which has
also shown to provide some gain in performance compared to using descriptors sepa-
rately.

Face verification on LFW. In this experiment, after geometrical alignment we rescale
all faces to the size of 150 × 81 using a slightly different cropping than in the previ-
ous experiment, see Fig. 1 (a). This time the face is divided into 14 × 8 blocks which
are of 20 × 18 pixels using a horizontal and vertical overlap of 10 and 9, respectively.
These selections are made largely based on the results provided by [34]. Based on the
FERET experiment, we use 11-bit coding for both the BSIFN and BSIFF descriptors.
For BSIFF , we learn the descriptors locally for each block this time resulting in 112
specialized face descriptors. Soft-assignment is performed like previously but for the
compression the final dimension is fixed to 2000, like in [6]. Unlike in the previous ex-
periment, we do not apply preprocessing as it did not seem to provide any improvement
based on the evaluations on View 1.

The setting of the LFW protocol forces us to learn the descriptor bank 10 times,
separately for each fold. For learning a BSIF bank for one fold under evaluation, we
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Table 2. Comparison to the state-of-the-art on FERET. The first value is for raw features and the
second (after slash mark) is for compressed features. All but LGXP uses WPCA for compression.
LGXP uses supervised Fisher Linear Discriminant (FLD) approach.

POEM [27] DFD [8] LGOP [35] LGXP [16] I-LQP [6] G-LQP [6] Ours
fb 97.6 / 99.6 99.2 / 99.4 98.8 / 99.2 98.0 / 99.0 99.2 / 99.8 99.5 / 99.9 99.0 / 99.7
fc 95.0 / 99.5 98.5 / 100 99.0 / 99.5 100 / 100 69.6 / 94.3 99.5 / 100 100 / 100
dup1 77.6 / 88.8 85.0 / 91.8 83.5 / 89.5 82.0 / 92.0 65.8 / 85.5 81.2 / 93.2 88.2 / 95.2
dup2 76.5 / 85.0 82.9 / 92.3 83.8 / 88.5 83.0 / 91.0 48.3 / 78.6 79.9 / 91.1 85.0 / 94.4
mean 86.7 / 93.2 91.4 / 95.9 91.3 / 94.2 90.8 / 95.5 70.7 / 89.6 90.0 / 96.0 93.1 / 97.3

randomly picked a set of 1800 face images from the rest nine folds. This procedure
confirms that we do not learn from those persons that appear in the testing set. Also,
for computing the WPCA transform we used only those images that belong to the nine
training folds. According to the updated protocol for evaluating methods under unsuper-
vised paradigm, we report the performances in terms of ROC curves and by measuring
the area under these curves (AUC).

The results, shown in Fig. 2 and in Table 3, indicate that our method is comparable
with other methods reported in the literature. If we compared only raw features (with-
out compression) our method would actually produce the highest AUC value. How-
ever, comparing our proposed approach to the top-performers, Pose-adaptive filtering
(with WPCA according to [36]) and MRF-Fusion-CSKDA [37], it should be noticed
that these methods use different kind of pose correction and therefore the results are
not directly comparable in terms of image features. Moreover, it should be noted that
among all of those methods using the aligned version of the LFW dataset (LFW-a), our
proposed representation yields the best result.

( (pw (pc (p) (pt (p5 (p6 (p7 (p8 (p9 w
(

(pw

(pc

(p)

(pt

(p5

(p6

(p7

(p8

(p9

w

FPR

T
P

R

SD−MATCHESKoImageoregionow((×w85Kofunneled
GJD−BC−w((KoImageoregionow((×w85Kofunneled
HX−S−t(KoImageoregiono8w×w5(Kofunneled
LARKounsupervisedKoalignedo
LHSKoaligned
MRF−LBPoJwpcaBKoaligned
PAFoJwpcaB
BSIF

F
JrawofeaturesBKoaligned

BSIF
F
sa JwpcaBKoaligned

Fig. 2. ROC curves averaged over 10 folds of
View 2 under unsupervised evaluation cate-
gory.

Table 3. Comparison to the state-of-the-art
methods on LFW in the unsupervised evalua-
tion category.

method AUC
SD-MATCHES, 125×125, funneled [34] 0.5407
GJD-BC-100, 122× 225, funneled [34] 0.7392
H-XS-40, 81× 150, funneled [34] 0.7547
LARK unsupervised, aligned [38] 0.7830
LHS, aligned [39] 0.8107
MRF-LBP (WPCA) [40], aligned 0.8994
Pose Adaptive Filtering (WPCA) [36] 0.9405
MRF-Fusion-CSKDA (WPCA) [37] 0.9894
BSIFN , aligned 0.8026
BSIFF , aligned 0.8843
BSIFsa

F (WPCA), aligned 0.9318

5 Conclusions
Recent studies have pointed out the importance of high-dimensional features for im-
proving the accuracy of face recognition. In this paper, we contributed to this aspect



11

by presenting an optimal way of learning local image descriptors that we applied in
building unsupervised face representations. The descriptor, which our face representa-
tion builds on, is based on the recent Binarized Statistical Image Features (BSIF). We
showed that by learning the BSIF descriptors regionally from distinct face parts results
in a very discriminative representation. In boosting up the recognition performance, we
empirically approved the remarkable role of the whitening PCA (WPCA) transforma-
tion. To boost up it even further, before applying WPCA, we proposed a preprocessing
step that we named histogram smoothing. We showed the histogram smoothing opera-
tion is accomplishable via a simple matrix-vector product.

Our proposed face representation yielded outperforming results compared with the
current state-of-the-art on the widely known FERET benchmark. This was achieved
without any kind of feature fusion or image flipping strategies that are used by most of
the earlier best methods. To complement this, after slight modifications, the face repre-
sentation proved highly competitive in more demanding face recognition scenarios. As
for these scenarios, the method was inspected following the guidelines of the unsuper-
vised evaluation category of the updated LFW benchmark protocol yielding promising
results.
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