Merging overlapping depth maps into
a nonredundant point cloud

Tomi Kyostild, Daniel Herrera C., Juho Kannala, and Janne Heikkil&a

University of Oulu, Oulu, Finland
tomikyos@paju.oulu.fi
{dherrera, jkannala, jth}Qee.oulu.fi

Abstract. Combining long sequences of overlapping depth maps with-
out simplification results in a huge number of redundant points, which
slows down further processing. In this paper, a novel method is pre-
sented for incrementally creating a nonredundant point cloud with vary-
ing levels of detail without limiting the captured volume or requiring
any parameters from the user. Overlapping measurements are used to
refine point estimates by reducing their directional variance. The algo-
rithm was evaluated with plane and cube fitting residuals, which were
improved considerably over redundant point clouds.

Keywords: point cloud simplification, surface modeling

1 Introduction

Creating a point cloud from large indoor environments using a depth camera
(such as the Kinect from Microsoft) without any simplification results in a lot of
redundant points. This is caused by the sequence of depth maps having overlap,
which is necessary for view registration. The redundancy unnecessarily increases
memory requirements and computation time when the cloud is further processed.

This problem could be approached by first combining all depth maps into a
single redundant point cloud and then simplifying it. This would require storing
the whole cloud in memory and applying the simplification as a post-process.

Instead, we present a method for incrementally creating a point cloud from
sequential depth maps without adding redundant points. The measurements
from the depth sensor have directional variance, and this is taken into account
by having a covariance matrix for each point. New measurements reduce the
variances of existing nearby points instead of adding redundant points. Existing
points are never removed, which allows for varying the level of detail by varying
the distance from the sensor to the measured surface. Thus, it is not necessary
for the user to predecide the point density, point count, or any such parameter
for the resulting cloud. Moreover, our method does not impose a limit on the
size of the captured volume.

2 Related work

Most existing methods of point cloud simplification require the user to supply
parameters such as the desired point density [1], point count [2, 3], or a threshold
for clustering [4]. These methods concentrate on capturing individual items, and
when capturing large varied environments, picking optimal parameters can be
time consuming or even impossible.

Merrell et. al [5] investigated the 3D reconstruction of entire building exte-
riors from video in real time. They fused adjacent depth maps to reduce the
error from their stereo algorithm and finally triangulated a mesh from the fused
maps. The algorithm of [5] is mainly designed for rejecting outliers, which are
common in depth maps obtained by passive stereo imaging, and it does not
utilize uncertainties of different depth estimates in the merging process in a sta-
tistically justified manner like we do. Also, in such cases where a surface mesh
is the desired output of depth map fusion, our nonredundant point cloud can be
transformed into a mesh, as in [5] or [6].

Recently, due to the emergence of inexpensive depth cameras, such as the
Kinect, there has been a lot of interest for 3D-modeling techniques that use
image sequences captured with a moving depth camera. Many of these recent
approaches are real-time mapping methods which represent the world with a
voxel grid [7-10]. These methods are limited by a fixed resolution imposed by
the grid and are not very convenient for large environments, although there have
been some efforts to increase their applicability [9, 10].

Henry et. al [11] modeled large indoor environments using surfels (or surface
elements) [12] instead of a point cloud. Surfels are discs with position, normal,
and size properties. They also included with each surfel a measure of confidence,
which increased when a surfel was seen from multiple angles. However, such a
heuristic measure of confidence does not have a sound statistical justification
and may imply suboptimal merging of different measurements.

In our method, the confidence of the position of a point is described with
a covariance matrix which appropriately takes into account the measurement
uncertainty of each point. For example, points originating from the same physi-
cal location of a surface may have widely varying measurement uncertainties in
different depth maps due to the varying camera locations with respect to the sur-
face. That is, the accuracy of depth cameras depends heavily on the observation
distance [13] and our approach takes this into account in the merging process.
To the best of our knowledge, such an approach has not been previously used
for integrating depth maps into a point cloud.

3 Merging depth maps

This section describes our approach. A general overview of the algorithm is
outlined first and the details are explained in subsections 3.2 and 3.3.

3.1 Overview

Given a sequence of depth maps with known camera poses, we represent the
localization uncertainty of each point of each depth map using a 3 x 3 covariance
matrix, which corresponds to an ellipsoid in the 3D world frame. We then uti-
lize these covariance matrices in a sequential merging process, which produces
a nonredundant point cloud by incrementally adding new depth maps to the
existing point cloud so that redundant new depth measurements near previously
added points are used to refine the location of existing points, i.e. without in-
creasing the point count. New points are added to the point cloud only if they
represent previously uncovered parts of the scene. The refinement process is
based on a recursive implementation of the so called best linear unbiased esti-
mator (BLUE) [14] as detailed in subsection 3.3.

Hence, as described above, the output of the algorithm is a nonredundant
point cloud and the input is a sequence of registered views, which consist of a
depth map, a color image, and extrinsic parameters of the camera. In addition,
we have connectivity information for the views. That is, for each view we know
its connected views whose fields of view overlap and may hence contain common
points. This implies that for each incremental addition of a depth map one only
needs to consider overlap with those previously added points which are visible
in the views connected to the current view. Since the number of connected views
is bounded in practice and usually small even for long image sequences, our
approach is scalable to large environments. The connectivity information for the
views can be inferred from the camera poses (see e.g. [15]) or it may be directly
obtained as a by-product of the registration process, which is typically carried
out by solving the simultaneous localization and mapping problem (SLAM).
Nevertheless, if the number of views in the sequence is small and there is no
need for optimizing the performance, one may also assume that all the views are
directly connected with each other.

An overview of our approach is described in pseudocode in Algorithm 1. In
this algorithm all the points (i.e. those already added to the point cloud and those
back-projected from the depth maps) consist of a 3D position estimate and its
covariance matrix which characterizes the uncertainty of the estimate. The form
of the covariance matrix for each individual depth measurement is described
in subsection 3.2 below and the procedure for updating the position estimate
and its covariance matrix during the merging process (procedure RefinePoints
in Algorithm 1) is described in subsection 3.3.

3.2 Uncertainty of individual depth measurements

A depth camera can be considered as a mapping f from the three-dimensional
camera coordinate frame to measurements, i.e.

m = f(p), (1)
e m = (u,v, w)T is the measurement point corresponding to scene point
p = (v,9,2)" so that (u,v) are the pixel coordinates and w is the observed

Algorithm 1 The depth map merging algorithm

1: function MERGEVIEWS(views)

2 cloud + @

3 processed_views <— I

4 for all curr_view € views do

5: used_measurements <— @

6 for all proc_view € processed_views do

7 if curr_view and proc_view are connected then

8: REFINEPOINTS(cloud, proc_view, curr_view, used_measurements)
9: end if

10: end for

11: for all measurement € curr_view do

12: if measurement ¢ used_-measurements then
13: insert measurement into cloud

14: end if

15: end for

16: insert curr_view into processed_views

17: end for

18: return cloud

19: end function

20: procedure REFINEPOINTS(cloud, proc_view, curr_view, used-measurements)

21: for all p € (points inserted into cloud from proc_view) do

22: if p projects onto the pixel grid of curr_view then

23: pixel_coordinates <— the position where p projects onto the pixel grid

24: P < the measurement point from curr_view at pizel_coordinates

25: P’ < a refined point created from p and p

26: if MAHALANOBISDISTANCE(p', p) < 3 and
MAHALANOBISDISTANCE(p', p) < 3 then

27: replace p in cloud with p’

28: insert p into used_measurements

29: end if

30: end if

31: end for
32: end procedure

disparity (or depth) value in the depth map. The back-projection of a point
m is obtained by the inverse mapping p = f~!(m). Given an estimate of the
measurement noise, represented by the covariance matrix D of m, one may
compute the first-order approximation of the covariance matrix C of the back-
projected point p by using the so-called backward transport of covariance [16]
as follows

C=J"'D 'y, (2)

where J is the Jacobian matrix of f evaluated at p.

However, since in our case the depth camera is a Kinect device, which is
calibrated using the camera model of [13] for which the evaluation of J is te-
dious, we simplify the computations by using a simpler diagonal model for the

covariance matrix C. That is, given the back-projected point p we model its
covariance matrix C as a diagonal matrix whose elements depend only on the
depth coordinate z.

As shown in [13], the measurement noise causes the variances of coordinates
of p to be depth dependent in such a manner that they can be approximated
with a quadratic function. We fit a quadratic curve to the reprojection errors to
estimate the variance along the optical axis (i.e. in z-direction) [13] so that we
get

Var(z) = (2% + 12 + ag)? (3)

where ag = 0.0032225, a3 = —0.0020925, and as = 0.0022078. Along the image
plane, the variance results from pixels back-projecting into rectangles in the real
world. The actual position of a point is assumed to have a uniform distribution
inside the rectangle of the corresponding pixel. The pixels back-project into
rectangles instead of squares due to the camera having different focal lengths
along the z- and y-axes. At a distance of 1m, the rectangles have a width of
Bx = 0.0017228 m and a height of B, = 0.0017092m. Thus, by utilizing the
formula for the variance of a uniform distribution, we get

Var(z) = (Bez/V12)? (4)
and
Var(y) = (Byz/V12)? . (5)

Possible alignment errors are taken into account by scaling variances along
the image plane by A; and variances along the optical axis by A2. Each point
then has a covariance matrix

A1 Var(z) 0 0
C= 0 A1 Var(y) 0 (6)
0 0 Ao Var(z)

in the camera reference frame. We used fixed constant values for parameters \;
and Ao in all our experiments.

Finally, since the points originating from different depth maps are merged
into a single nonredundant point cloud in the world coordinate frame, we need to
transform the covariance matrices to the world frame as well. Given the rotation
matrix R between the world frame and the camera coordinate frame, we may
transform the covariance matrix C' to the world frame by

C =RCR' (7)

3.3 Point cloud refinement

As shown in Algorithm 1, our algorithm proceeds in a sequential manner and, at
each iteration, it incrementally adds points from the currently processed depth
map to the existing point cloud. Before adding a new point from the current
depth map to the point cloud, the point is compared to the existing points of

the cloud which originate from views directly connected to the current view
and which project to the same pixel in the current view as the new point under
consideration. If it turns out that the new point is located very near some existing
points, in terms of a Mahalanobis distance, the new point is not added to the
cloud but it is used to update the position estimates of the nearby existing points
and their covariance matrices.

The refinement process is formulated as a recursive least-squares estimation
problem [14]. That is, we assume that each reconstructed surface point has a
true location p and each measurement p of this surface point is a noise-corrupted
version of the true point, i.e.

p=p+u, (8)
where v is a random noise vector having a zero-mean Gaussian distribution
with a covariance matrix C. Further, we assume that the existing, previously
added point of the cloud, which is currently under consideration, has a position
estimate p with covariance matrix C. This setting is schematically illustrated
in Fig. 1, where covariance matrices C and C are illustrated by the ellipsoids,
which visualize the uncertainty of p and p.

Before deciding whether the new point p and the existing point p are consid-
ered as the same surface point, in which case they would be merged by updating
P, we compute the result of the hypothesized merger. That is, we compute the
estimate p’ of the point p by simply assuming that p would be a measurement of
the same surface point as our current estimate p. According to a well-known re-
cursive estimation formula, i.e. using the best linear unbiased estimator (BLUE)
of [14, page 130], we get the updated estimate by

N N A <=1 .
p=p+CC (b—p) (9)
where €' is the covariance matrix of the updated estimate and is obtained by
A~/

¢ =@+ hH (10)

Now, given p’, the result of the merger of p and p, we compute its Maha-
lanobis distances d; and d2 to p and p, respectively, using the corresponding
covariance matrices C and C), i.e.,

~—1

b =@ - pTE) (1)

N ~ ~—1, -
&=\ -57C @ — D). (12
If both distances d; and ds are smaller than a threshold 7 we update the
existing point in the cloud by setting
pep and CC. (13)

This case is illustrated in Fig. 1 where the point p’ is located within the confi-
dence ellipsoids of both p and p. In our experiments we used a fixed value 7 = 3,
as shown in Algorithm 1.

2 mm—
C \ A\\ m———— -
N D SO L7 SN
S [i{ S
S \\\ ~ N -
\\\§ [J)] [D \’ C
~ 7/
P -

e e

Fig. 1. Two points, p and P, in the three-dimensional space illustrated with their
confidence ellipsoids represented by the covariance matrices C and C. Point P’ is the
result of the merger of p and p when their covariances are properly taken into account
in the merging. In this case p’ is located within the confidence ellipsoids of both p and
P, which means that they can be merged.

Otherwise, if either d; > 7 or dy > 7, the existing point p is not updated
in the cloud. Further, if there does not exist any previously added point in the
cloud that would be updated by the point p of the current depth map (according
to the aforementioned rules), we add a new point to the cloud and initialize
its position and covariance estimates by setting p < p and C+« C. In fact,

this kind of initialization directly follows from (9), (10) and (13) if we first set
C o 0, which corresponds to the case of a completely unknown point (which

is maximally uncertain).

Finally, in addition to position and its covariance, we have a color value for
each back-projected measurement point (obtained from the color image associ-
ated with the depth map). During the merging process we also refine the colors
of the points at each update. For this, a running total of color values is kept
for each point. When a refined point is created, its total is set to the sum of
the totals of the existing point and new measurement. After all views have been
processed, the final color of a point is the average, i.e., the running total divided
by the number of color values it includes.

4 Results

The results were evaluated by creating point clouds of a whiteboard and a three-
sided cube and by fitting a plane and a cube to the clouds, respectively. In each
case the models were fitted to a redundant cloud including all the original points
and to a simplified cloud output by the algorithm. The measurement variances
were scaled with \; = 40 and Ay = 20. The algorithm improved the residuals
considerably as can be seen in Table 1. Slice images of the whiteboard and cube
data sets before and after processing are shown in Fig. 2.

The performance of our implementation was evaluated on a 2 GHz Intel
Core 2 processor with the whiteboard and cube data sets and an office data
set. The results are listed in Table 2. The point clouds of the data sets are vi-
sualized in Figs. 3-5. These visualizations show that the proposed approach is
able to significantly reduce the redundancy of point clouds without reducing the
coverage. Moreover, Figs. 2 and 5 confirm that our approach also improves the
accuracy of modeled surfaces by successfully fusing multiple measurements.

Table 1. Fitting results

Data set Residual standard deviation (m) Maximum residual (m)
whiteboard (redundant) 0.0033 0.0192
whiteboard (simplified) 0.0023 0.0184
cube (redundant) 0.0018 0.0074
cube (simplified) 0.0011 0.0068

(c) (d)

Fig. 2. Top-down slices of (a) the whiteboard point cloud before running the algorithm
and (b) after running the algorithm and of (c) the three-sided cube point cloud before
and (d) after. The whiteboard slice has a width of 1 meter and the cube has a side
length of 20 centimeters. The input images for the cube had some misalignment, which
created two parallel walls. Still, the algorithm managed to merge the points into a
single wall and reduce the noise making the walls thinner. Also, the resulting corner is
no smoother than in the input.

Table 2. Performance results

Data set cube whiteboard office

View count 4 15 22
Point count before simplification 977701 3883839 5315 546
Point count after simplification 437483 990561 823659
Ratio of reduction 55 % 74 % 85 %
Mean merging time per view (s) 0.16 0.19 0.21
Peak memory usage (MiB) 181 622 809

(a) (b)

Fig. 3. The cube data set as (a) an unprocessed redundant point cloud and (b) a
simplified point cloud. The point count was reduced from 977 701 to 437483 (reduced
by 55 %).

(b)

Fig. 4. The whiteboard data set as (a) an unprocessed redundant point cloud and (b) a
simplified point cloud. The point count was reduced from 3 883 839 to 990 561 (reduced
by 74 %).

Fig.5. The office data set as (a) an unprocessed redundant point cloud and (b) a
simplified point cloud. The (c) top-down view of the redundant cloud and (d) top-
down view of the simplified cloud demonstrate how the the walls become thinner after
running the algorithm. The point count was reduced from 5 315 546 to 823 659 (reduced
by 85 %).

5 Discussion

As shown in Algorithm 1 and explained below, our approach is scalable to large
amounts of data in terms of both memory and computational cost. Hence, it can
be applied to long image sequences of large environments.

First, the memory cost of the algorithm depends on the number of points
added to the cloud for each new view. Thus, it depends on the amount of novel
content in each view. If there is little movement between views, most of the new
measurements are used to refine existing points instead of adding new points.

Second, the computational cost of adding a new view is bounded by the
number of connected views it has. This is the result of only projecting points
from connected views. Two views are considered connected if they might contain
common points which should be merged. When processing long sequences of large
environments, a view usually has only few connected views.

Further, considering possibilities for future improvements, we would like to
note that capturing thin objects from both sides may be problematic using our
algorithm as the two sides might get merged together when refining points. This
issue could be fixed by introducing surface normal information to the points and
not merging points whose normals differ too much. This can be accomplished
by using a surfel cloud [12] instead of a point cloud as was done by Henry et. al
[11] or by simply assigning a surface normal vector for each point as in e.g. [17].

Finally, the performance of the algorithm could be improved by offloading
some processing to the GPU and further optimizing the implementation. For
example, point projection is well suited for such a parallelizing optimization,
and it was employed by Merrell et al. [5].

6 Conclusion

A new method has been presented for creating a nonredundant point cloud from
overlapping depth maps. This point cloud simplification significantly reduces the
number of points compared to an unprocessed point cloud. This in turn results
in lower memory and computational cost in later stages in a processing pipeline.
Additionally, the points more precisely represent the true surface since they
are estimates from multiple nearby measurements. In particular, multiple mea-
surements of the same surface location are combined in a statistically justified
manner, unlike in many previous approaches.

References

1. Moenning, C., Dodgson, N.: Intrinsic point cloud simplification. Proc. 14th Graph-
iCon 14 (2004)

2. Song, H., Feng, H.: A global clustering approach to point cloud simplification with
a specified data reduction ratio. Computer-Aided Design 40(3) (2008) 281-292

3. Yu, Z., Wong, H., Peng, H., Ma, Q.: ASM: An adaptive simplification method for
3D point-based models. Computer-Aided Design 42(7) (2010) 598-612

10.

11.

12.

13.

14.

15.

16.

17.

Shi, B., Liang, J., Liu, Q.: Adaptive simplification of point cloud using k-means
clustering. Computer-Aided Design 43(8) (2011) 910-922

Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J., Yang, R., Nistér,
D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: IEEE 11th
International Conference on Computer Vision (ICCV). (2007) 1-8

Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction
from range data. Comput. Graph. Forum 28(8) (2009) 2275-2290

Newcombe, R., Davison, A., Izadi, S., Kohli, P., Hilliges, O., Shotton, J.,
Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time
dense surface mapping and tracking. In: 10th IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). (2011) 127-136

Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.:
Kintinuous: Spatially Extended KinectFusion. Technical report, MIT CSAIL,
(2012)

Roth, H., Vona, M.: Moving Volume KinectFusion. In: British Machine Vision
Conference (BMVC). (2012)

Heredia, F., Favier, R.: Kinect Fusion extensions to large scale environments (2012)
[Accessed: 19-November-2012].

Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth
cameras for dense 3D modeling of indoor environments. In: the 12th International
Symposium on Experimental Robotics (ISER). Volume 20. (2010) 22-25
Habbecke, M., Kobbelt, L.: A surface-growing approach to multi-view stereo re-
construction. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2007) 1-8

Herrera C., D., Kannala, J., Heikkila, J.: Joint depth and color camera calibration
with distortion correction. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2012)

Mendel, J.: Lessons in Estimation Theory for Signal Processing, Communications,
and Control. Prentice Hall (1995)

Jancosek, M., Shekhovtsov, A., Pajdla, T.: Scalable multi-view stereo. In: IEEE
12th International Conference on Computer Vision Workshops (ICCV Workshops).
(2009) 1526 —1533

Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press (2000)

Ylimé&ki, M., Kannala, J., Holappa, J., Heikkild, J., Brandt, S.: Robust and accu-
rate multi-view reconstruction by prioritized matching. In: International Confer-
ence on Pattern Recognition. (2012)

