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Abstract. Many 3D reconstruction methods produce incomplete depth
maps. Depth map inpainting can generate visually plausible structures
for the missing areas. We present an inpainting method that encourages
�at surfaces without favouring fronto-parallel planes. Moreover, it uses
a color image to guide the inpainting and align color and depth edges.
We implement the algorithm e�ciently through graph-cuts. We compare
the performance of our method with another inpainting approach used
for large datasets and we show the results using several datasets. The
depths inpainted with our method are visually plausible and of higher
quality.
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1 Introduction

Existing 3D reconstruction methods have di�erent strengths and weaknesses.
Some are more robust than others, but they all have cases where the recon-
struction fails and no depth is estimated for an area of the image. For example,
Time-of-Flight cameras and structured lighting methods like the Kinect, cannot
reconstruct over or under-exposed areas. Stereo methods fail when there is no
visible texture in the surface.

This often results in a semi-dense depth map that has accurate depth for
some pixels but no depth for others. Estimating the depth of these missing
regions is a severely ill-posed problem since there is very little information to
be used. Recovering the true depth would only be possible with very detailed
prior knowledge of the scene. However, in some applications (e.g. image-based
rendering) it is enough to estimate a visually plausible structure for the scene.
Depth map inpainting can then be a good solution to estimate the depth of the
missing regions.

We consider two requisites for a scene to have a visually plausible structure.
First, a surface is expected to be continuous and smooth. Second, depth dis-
continuities between surfaces are expected to be aligned with intensity or color
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discontinuities. During inpainting, the pixels around the boundary of the miss-
ing region can be used to address the smoothness constraint and, since most 3D
reconstruction methods produce a depth map aligned with a color image, we can
use this color image to satisfy the edge alignment constraint.

Because depth map inpainting is so ill-posed, the prior assumptions on the
scene structure play a dominant role. Simple priors lead to poor estimations
but complicated priors can be intractable to solve. Our contribution consists of
a depth map inpainting method that produces visually plausible structures en-
couraging piecewise planar surfaces. The solution is e�ciently computed through
Quadratic Pseudo-Boolean Optimization (QPBO) [1] using a second-order prior
that favors a constant depth gradient while aligning depth and color discontinu-
ities.

2 Previous work

Most stereo methods also include a prior on the generated depth map [2]. If a
dense depth map is desired, a prior is necessary to regularize areas with low
texture. Traditionally, a robust (�rst order) smoothness prior has been used.
However, this favours fronto-parallel planes and leads to a staircase e�ect, thus
higher order priors are recommended [3].

Herrera et al. [4] implemented a planarity constraint directly in their depth
map inpainting algorithm. However, color and depth are used independently
without exploiting the joint information. Levin et al.'s inpainting algorithm [5]
has been succesfully used to inpaint depth maps [6]. Although it was originally
meant for colorization, color and depth share a similar relation to intensity and
the results are visually pleasing.

Yang et al. [7] exploit the relation between intensity and depth to perform
super resolution of depth maps. They use bilateral �ltering to align the up-
sampled depth discontinuities with the high-resolution intensity edges. They
obtain visually pleasing results but their formulation cannot be easily extended
to other applications. Gandhi et al. [8] also start with a low resolution depth
map, but they use it to construct a prior for a stereo camera system. Their prior
improves the stereo reconstruction, but depends on an active Time-of-Flight
camera.

In some situations, as in image-based rendering, the depth map is only an
intermediate step. Fitzgibbon et al. [9] apply the prior directly on the color of
the synthesized view, thus ignoring depth ambiguities arising from similar colors.
In the multi-view case, the priors do not necessarily have to be applied on the
image level. Gargallo and Sturm [10] implement a multi-view depth map prior
in 3D space. It enforces depth map overlap and smoothness with discontinuities.
The prior is expensive but is crafted so that it can be e�ciently applied to small
sets of neighbouring points.

Woodford et al. [3] introduced a multi-view stereo method that can e�ciently
solve a second-order prior using QPBO [1]. They formulate the problem as an
energy minimization. The prior is implemented through triplets of neighbouring
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pixels. They showed that QPBO can �nd very good local minima for such an
energy even though it is NP-hard to �nd the global minimum. Our inpainting
approach uses a similar formulation for the second-order prior and also uses
QPBO to minimize it. However, being an inpainting method, the prior has a
greater in�uence than the data term and the proposal generation scheme is
di�erent.

3 Energy framework

In the depth map inpainting problem we have two images, the depth map Z
and the color image I, both in the same reference frame. The depth map is
incomplete, for example because it was produced by the Kinect. Therefore it has
regions with missing values that we wish to estimate, whereas the color image
is complete.

We de�ne our energy over these two images as a combination of a data term
and a smoothness term. The data term applies to individual pixels while the
smoothness term is de�ned over pixel triplets.

E =
∑
p

Ed(p) + λ
∑

{p,q,r}∈N

Es(p, q, r), (1)

where p, q, and r are pixel coordinates of the form [u, v]>. N contains all three
consecutive pixels, horizontally and vertically, so that p is the left or top-most
pixel and r the right or bottom-most. Finally, λ adjusts the relative weight
between the terms.

3.1 Data term

In most inpainting problems we know nothing about the missing values, thus
no data term is needed. However, in some cases, like when inpainting depth
maps acquired with the Kinect, the pixels around the boundary of the missing
region are known to be noisy. In these cases we can include the pixels around
the boundary in the inpainting process and include a data term that favours the
observed values

Ed(p) =

{
ρd(φ̂(p)− φ(Z(p))) if ∃φ̂p
0 else,

(2)

where φ̂(p) is the observed depth value for pixel p in measurement units and
Z(p) is the inpainted depth value in metric units for pixel p. The function φ(·)
transforms the depth from metric units to measurement units and depends on
the measurement device. ρd is the robust measure

ρd(x) = min(x2, τ2d ) (3)

that limits the contribution of each pixel. The argument τd depends on the
measurement units and the expected noise of a measurement that is not an
outlier.
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3.2 Second-order prior

The smoothness prior penalizes changes in the depth derivative, thus encouraging
regions of constant derivative (i.e. �at planes). The cost for each triplet is

Es(p, q, r) =Ws(p, q, r)ρs(Z(p)− 2Z(q) + Z(r)). (4)

The argument Z(p)−2Z(q)+Z(r) directly measures the second derivative of the
depth map. ρs is a robust measure that limits the contribution of each triplet
and allows discontinuities

ρs(x) = min (|x|, τs) . (5)

We note that the absolute value was used for ρs instead of the square of the
argument because QPBO is not able to minimize the energy otherwise.

The triplet weighting term Ws is used to decrease the strength of the prior
in areas where the color gradient is high. This weighting is de�ned over pixel
triplets but the color gradient is de�ned over pixel pairs. We de�ne a pairwise
weighting and take the minimum weight of the two pairs of consecutive pixels,
i.e. Ws(p, q, r) = min(W (p, q),W (q, r)).

The pairwise weighting W (p, q) can be for pixels that are horizontally or
vertically consecutive. However, we use the color gradient magnitude in either
case and not just it's horizontal or vertical component. Slanted edges may have a
weak component in one direction but we still consider this pixel part of an edge
and it should not enforce the smoothness constraint any further. The weighting
function is then de�ned as

W (p, q) = exp

(
−|∇I(p)|2

2σ2
I

)
, (6)

regardless of whether it is a horizontal or vertical pair. σ2
I is the variance of the

expected noise in the color gradient. The color gradient itself is de�ned as

∇Ix(p) = |I(p)− I(p+ [1, 0]>)| (7)

∇Iy(p) = |I(p)− I(p+ [0, 1]>)| (8)

|∇I(p)| =
√
∇Ix(p)2 +∇Iy(p)2. (9)

We used a simple Euclidean distance in RGB space to compute the magnitude
of a color di�erence in Equations 7 and 8. It is expected that a better color
distance measure would be more robust, however it was not necessary in our
experiments.

4 Optimization

We now have an energy E that is a continuous function of a depth map and
its color image. We reduce the minimization of this energy to a series of bi-
nary problems in a similar fashion to [3, 11]. Each binary problem can then be
represented as a graph-cut problem.
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4.1 Binary problems

The binary problems are a generalization of the α-expansion algorithm [1]. Sup-
pose we have a current depth map estimate Z[t] and a proposal estimate Z′. We
have one binary variable for each pixel bp that indicates if it retains the depth
from the current estimate or takes the depth from the proposal. Thus, the depth
after this binary problem is

Z(p)[t+1] = (1− bp)Z(p)[t] + bpZ(p)
′. (10)

In the basic α-expansion algorithm [12] each proposal would be a fronto-
parallel plane, however this leads to a poor local minimum in our case. We use
more complicated proposals as detailed in the next section.

Each binary problem can then be represented as a graph-cut problem. How-
ever, as for [3], this leads to a non-submodular graph. We use QPBO [1] which
is able to optimize non-submodular energies.

QPBO is not always able to label all pixels. Pixels with a set label (�0�
or �1�) are guaranteed to be the optimal labelling for this binary problem. If
the �unknown� labels are set to �0�, QPBO guarantees that the energy will not
increase, i.e. E[t+1] ≤ E[t]. The number of unlabelled nodes depends strongly
on the chosen energy and the image structure. For example, using a truncated
square function for ρs produces almost only unlabelled pixels, while using a
truncated absolute value produces very few unlabelled pixels. We select a label
for the unknown pixels using an approach named QPBO-R in [3]. The unlabelled
pixels are split into strongly connected regions as in [13]. For each region we
independently select the labelling �0� or �1� which gives the lowest total energy.

4.2 Generating proposals

It is necessary to generate meaningful proposals for the optimization to work. In
order to do this, pixels with valid depth are used to generate candidate planes.

First, the pixels to be inpainted are separated into connected regions and
each connected region is processed separately. For each region the algorithm
iterates around its boundary, generating one proposal for each boundary pixel.
At each boundary pixel, three random pixels with valid depths are selected from
a 10x10 neighbourhood. Each of these three random pixels de�nes a 3D point
P = [u, v, z]>, where u and v are pixel coordinates and z is the metric depth. A
plane is �tted to these three points. The proposal depth for the region is then
obtained by calculating the depth of this plane at each pixel.

5 Experiments

We demonstrate the performance of our algorithm by inpainting depth map holes
in a synthetic example and in several real life datasets. We compare our results
with those produced with Levin et al.'s [5] approach. We selected Levin et al.'s
approach as a comparison because it has been used for depth map inpainting in
the NYU dataset [6].
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5.1 Synthetic example

To demonstrate the advantages of using a second-order prior over a �rst-order
we inpaint with a synthetic example. We generated a synthetic image of two
curved surfaces that intersect each other, shown in Figure 1. The surfaces have
two distinct colors. Salt and pepper noise with a magnitude of 4mm was added
to the depth map so that the surfaces were not perfectly smooth. The pixels to
be inpainted lie across the surface boundary.

(a) Color image (b) Depth map

Min

Max

(c) Depth scale

(d) Inpaint mask (e) Ground truth (f) Levin result (g) Our result

Fig. 1: Ground truth and results of the synthetic tests. Results rendered in 3D.

Levin's approach uses a �rst-order prior, i.e. it favors constant depth. Whereas
our second-order prior favors constant depth derivative. This is clearly seen in the
results of Figure 1. Levin's approach correctly separates the surfaces but �lls the
missing pixels with a constant depth, while our method provides a smooth result
that matches the ground truth shape. The root-mean-square error (RMSE) for
Levin's result is 34.6mm while ours is only 5.2mm. The RMSE of our approach
is only 1mm larger than the original noise.

5.2 Inpainting the Kinect

We applied both algorithms to inpaint holes in depth maps captured with the
Kinect. The Kinect is not able to reconstruct all surfaces and thus the depth
maps produced have holes. There is no ground truth for these holes however, so
the comparison can only be done qualitatively. In addition to the missing depth,
it is also known that the pixels in the boundary of the hole are noisy. Therefore
the mask for the pixels to inpaint was dilated with a 5x5 square element. The
data term of Eq. 2 was used to include these noisy values.

Figure 2 shows the inpainting of an image from the NYU depth dataset
V2 [6]. The inpainted depth map is overlayed on the color image to show the
alignment of the depth and color edges. We see that both algorithms align the
edges properly. However, Levin's approach produces smooth edges, which creates
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artefacts in the form of pixels with intermediate depth. Our approach produces
aligned and sharp boundaries.

(a) Color image (b) Inpaint mask

(c) Levin's result (full and zoom) (d) Our result (full and zoom)

Fig. 2: Edge alignment with Kinect inpainting. The zoomed area shows the lower
left edge of the toilet seat. Both algorithms align the edges but our result is
sharper. The similar color between the seat and the �oor tile causes both algo-
rithms to extend the surface over the tile.

Figure 3 shows more inpaintings of Kinect images. The �rst two images are
also from the NYU dataset and the last three were taken by ourselves. In all
instances our algorithm produces sharper depth edges that are aligned with the
strong color edges. In cases where the color image doesn't provide strong enough
edges to determine a clear boundary (see Fig. 2 and the chairs in Fig. 3) our
method still produces a sharp boundary but is not able to align it properly.

5.3 Quantitative comparison

To obtain a quantitative comparison we perform inpainting in two datasets that
have depth map ground truth. The �rst is the Middlebury 2005 stereo dataset
[14]. It contains six images with ground truth but the depth is heavily quantized.
The second are the multi-view dense stereo evaluation images from Strecha et
al. [15]. We used six of the images with a ground truth model (i.e. fountain-P11
and Herz-Jesu-P8). In both datasets arti�cial holes were created manually to
demonstrate inpainting performance.
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(a) Color image (b) Inpaint mask (c) Levin's result (d) Our result

Fig. 3: Kinect inpainting results. Our algorithm produces sharper boundaries,
specially over large areas (see the upper part of the chair).

Figure 7 shows the inpainting results on the Middlebury dataset. Our algo-
rithm has consistently sharper boundaries that align well with the color image.
Table 1 presents the root mean squared error (RMSE) of both algorithms. Al-
though our results look more visually plausible than Levin's, the RMSE is worse
for our approach. However, the robust root-median-squared error (RMdSE) is
consistently worst for Levin's results.

This is not yet conclusive, because the RMSE is susceptible to outliers,
whereas the RMdSE is robust to outliers but can ignore up to 50% of the data.
Thus we analyse the structure of the errors more carefully. Figure 4 shows his-
tograms of the errors over all Middlebury images. Our error distribution is clearly
narrower, implying better performance. This means that a few outliers are dis-
turbing the RMSE measure.

To eliminate outliers but avoid using the median measure, we drop 2% of the
pixels with the highest error and use the remaining pixels to calculate the RMSE.
Figure 5 shows the pixels that were dropped for a couple of images. We see that
they are mostly at the object boundaries, which is to be expected from small
misalignments with the ground truth. Table 2 shows the RMSE and RMdSE
without these pixels. The RMSE now shows clearly better performance for our
algorithm, con�rming the suspicion that outliers were skewing the mean of the
error distribution. These outliers mean that for some pixels the result provided
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Table 1: Error measure for the Middlebury dataset. Levin's approach has better
RMSE but our error is lower with the robust RMdSE.

File RMSE (mm) RMdSE (mm)
Levin's Ours Levin's Ours

Art 35.3 36.8 3.1 1.5

Books 23.3 16.1 1.5 0.0

Dolls 12.0 16.4 2.9 2.4

Laundry 37.6 31.2 1.1 0.0

Moebius 25.5 39.0 2.9 1.0

Reindeer 27.2 32.2 3.3 1.1

Total 27.7 29.7 2.4 0.7
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Fig. 4: Histogram of errors. Levin's approach has a wider error distribution. The
peak is out of scale for both graphs.

by the proposed approach may be slightly further away from the ground truth
than the overly smooth result by Levin's approach. This is expected because the
problem is severely ill posed, but in practice these cases are not very signi�cant
and appear rarely. Moreover, they are still more visually plausible because they
are sharper and align with color edges.

(a) Levin's (b) Ours (c) Levin's (d) Ours

Fig. 5: Dropped pixels. Red areas show the 2% of pixels with highest error.

We also compare the performance of both algorithms with the Strecha dataset.
Figure 6 shows some of the inpainting results and Table 3 shows the evaluation
with ground truth. We observe the same behaviour as with the Middlebury
dataset.
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Table 2: Error measure for the Middlebury dataset without the 2% highest errors.
Our approach has consistently better performance.

File RMSE (mm) RMdSE (mm)
Levin's Ours Levin's Ours

Art 20.1 4.7 3.0 1.4

Books 13.1 8.6 1.4 0.0

Dolls 8.2 6.6 2.8 2.3

Laundry 21.1 3.1 1.0 0.0

Moebius 17.0 22.6 2.8 0.8

Reindeer 14.8 13.7 3.2 1.0

Total 16.1 12.3 2.3 0.6

(a) Color (b) Mask (c) Levin's result (d) Our result

Fig. 6: Inpainting with the Strecha dataset. Results are plotted in 3D. Levin's
results are noisier than ours and the boundaries are not always sharp.

6 Conclusions

We presented a method to inpaint depth maps using a second-order prior and
a color image as guidance. The second-order prior encourages smooth and pla-
nar surfaces without favouring fronto-parallel planes. The algorithm has been
e�ciently implemented using graph-cuts.

The inpainting performance of our algorithm has been demonstrated, both
qualitatively and quantitatively, on a variety of datasets. Our results show a
few outliers that are not consistent with our ground truth. However, the ground
truth is only one instance of the possible visually plausible structures that could
be inpainted. Given the ill-posed nature of the problem, this kind of outliers are
expected. Moreover, they are not signi�cant and appear rarely.

The results obtained demonstrate that the inpainted structures are visually
plausible, i.e. the edges are sharp and aligned with color edges. We also demon-
strate better performance than another approach used for depth map inpainting
in the literature.
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Table 3: Error measure for the Strecha dataset.
RMSE (mm) RMdSE (mm)
Levin's Ours Levin's Ours

All pixels 119.5 145.7 17.1 4.1

2% dropped 61.8 54.3 16.4 3.9
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(a) Color (b) Mask (c) Levin's result (d) Our result

Fig. 7: Inpainting with the Middlebury 2005 dataset. The arti�cial holes were
done across object boundaries which are the most challenging cases. The depth
edges are clearly sharper for our algorithm.


