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Abstract. In this paper we describe a dense motion segmentation method for
wide baseline image pairs. Unlike many previous methods our approach is able to
deal with deforming motions and large illumination changes by using a bottom-
up segmentation strategy. The method starts from a sparse set of seed matches
between the two images and then proceeds to quasi-dense matching which ex-
pands the initial seed regions by using local propagation. Then, the quasi-dense
matches are grouped into coherently moving segments by using local bending
energy as the grouping criterion. The resulting segments are used to initialize the
motion layers for the final dense segmentation stage, where the geometric and
photometric transformations of the layers are iteratively refined together with the
segmentation, which is based on graph cuts. Our approach provides a wider range
of applicability than the previous approaches which typically require a rigid pla-
nar motion model or motion with small disparity. In addition, we model the pho-
tometric transformations in a spatially varying manner. Our experiments demon-
strate the performance of the method with real images involving deforming mo-
tion and large changes in viewpoint, scale and illumination.

1 Introduction

The problem of motion segmentation typically arises in a situation where one has a
sequence of images containing differently moving objects and the task is to extract
the objects from the images using the motion information. In this context the motion
segmentation problem consists of the following two subproblems: (1) determination of
groups of pixels in two or more images that move together, and (2) estimation of the
motion fields associated with each group [1].

Motion segmentation has a wide variety of applications. For example, represent-
ing the moving images with a set of overlapping motion layers may be useful for video
coding and compression as well as for video mosaicking [2, 1]. Furthermore, the object-
level segmentation and registration could be directly used in recognition and reconstruc-
tion tasks [3, 1].

Many early approaches to motion segmentation assume small motion between con-
secutive images and use dense optical flow techniques for motion estimation [2, 4]. The
main limitation of optical flow based methods is that they are not suitable for large
motions. Some approaches try to alleviate this problem by using feature point corre-
spondences for initializing the motion models [5, 6, 1]. However, the implementations
described in [5] and [6] still require that the motion is relatively small and approxi-
mately planar. The approach in [1] can deal with large planar motions.



Fig. 1. An example image pair, courtesy of [3], and the extracted motion components (middle)
with the associated geometric and photometric transformations (right).

In this work, we address the motion segmentation problem in the context of wide
baseline image pairs. This means that we consider cases where the motion of the objects
between the two images may be very large due to non-rigid deformations and viewpoint
variations. Another challenge in the wide baseline case is that the appearance of objects
usually changes with illumination. For example, spatially varying illumination changes,
such as shadows, occur frequently in wide baseline imagery and may further compli-
cate object detection and segmentation. In order to address these challenges we propose
a bottom-up motion segmentation approach which gradually expands and merges the
initial matching regions into smooth motion layers and finally provides a dense assign-
ment of pixels into these layers. Besides segmentation, the proposed method provides
the geometric and photometric transformations for each layer.

The previous works closest to ours are [1, 7, 8]. In [1] the problem statement is the
same as here, i.e., two-view motion segmentation for large motions. However, the solu-
tion proposed there requires approximately planar motion and does not model varying
lighting conditions. The problem setting in [7] and [8] is slightly different than here
since there the main focus is on object recognition. Nevertheless, the ideas of [7] and
[8] can be utilized in motion segmentation and we develop them further towards a dense
and deformable two-view motion segmentation method. In particular, we use the quasi-
dense matching technique of [8] for initializing the motion layers. This allows us to
avoid the planar motion assumption and makes the initialization more robust to ex-
tensive background clutter. In order to get the pixel level segmentation, we use graph
cut based optimization together with a somewhat similar probabilistic model as in [7].
However, unlike in [7], we do not use any presegmented reference images but detect
and segment the common regions automatically from both images. Furthermore, we
propose a spatially varying photometric transformation model which is more expres-
sive than the global model in [7].

In addition to the aforementioned publications, there are also other recent works
related to the topic. For example, [9] describes an approach for computing layered mo-
tion segmentations of video. However, that work uses continuous video sequences and
hence avoids the problems of large geometric and photometric transformations which
make the wide baseline case difficult. Another related work is [10] which describes a
layered image formation model for motion segmentation. Nevertheless, [10] does not
address the problem of model initialization which is essential for large motions.



Algorithm 1: Outline of the method

Input:
two images I and I ′ and a set of seed matches
Algorithm:
1. Grow and group the seed matches [8]
2. Verify the grown groups of matches
3. Initialize motion layers
4. Perform dense segmentation of both images
5. Enforce the consistency of segmentations
Output:
a dense assignment of pixels to layers which
define the motion for each pixel

Algorithm 2: Dense motion segmentation

Input:
• the image to be segmented (I) and

the other image (I ′)
• a set of motion layers (Lj) with geometric

and photometric transformations (Gj and Fj)
• initial segmentation S
Algorithm:
1. Update the photometric transformations Fj

2. Update the geometric transformations Gj

3. Update the segmentation S
4. Repeat steps 1-3 until S does not change

2 Overview
This section gives a brief overview of our approach whose main stages are summarized
in Algorithm 1. The particular focus of this paper is on the dense segmentation method
which is described in Algorithm 2 and detailed in Section 3.

2.1 Hypothesis generation and verification

First, given a pair of images and a sparse set of seed matches between them, we com-
pute our motion hypotheses by region growing and grouping. That is, we first use the
match propagation technique [8] to obtain more matching pixels in the spatial neigh-
borhoods of the seed matches, which are acquired using standard region detectors and
SIFT-based matching [11]. After the propagation, the coherently moving matches are
grouped together by using a similar approach as in [8], where the neighboring quasi-
dense matches, connected by Delaunay triangulation, are merged to the same group if
the triangulation is consistent with the local affine motions estimated during the propa-
gation. However, instead of the heuristic criterion in [8], we use the bending energy of
locally fitted thin plate splines [12] to measure the consistency of triangulations.

Then, the grouped correspondences are verified in order to reject incorrect matches.
The idea is to improve the precision of keypoint based matching by examining the
grown regions, as in [3, 8, 13, 14]. In our current implementation the verification is
based on the size of the matching regions [8] but also other decision criteria could
be used in the proposed framework (cf. [14]). Finally, the verified groups of correspon-
dences are used to initialize the tentative motion layers illustrated in Fig. 2.

2.2 Motion segmentation

The tentative motion layers are refined in the dense segmentation stage (Step 4, Alg. 1)
where the assignment of pixels to layers is first done separately for each image where-
after the final layers are obtained by checking the inverse consistency of the two as-
signments as in [1] (Step 5, Alg. 1). The segmentation procedure (Alg. 2) iterates the
following steps: (1) estimation of photometric transformations for each color channel,
(2) estimation of geometric transformations, and (3) graph cut based segmentation of
pixels to layers. The details of the iteration are described in Sect. 3 but the core idea
is the following: when the segmentation is updated some pixels change their layer to a



Fig. 2. Left: the seed regions (yellow ellipses) and the propagated quasi-dense matches. Middle:
the grouped matches (each group has own color, the yellow lines are the Delaunay edges joining
initial groups [8]). Right: the six largest groups and their support regions.

better one and this allows to improve the estimates for the geometric and photometric
transformations of the layers (which then again improves the segmentation and so on).

The final motion layers for the example image pair of Fig. 2 are illustrated in the
last column of Fig. 1 where the meshes illustrate the geometric transformations and
the colors visualize the photometric transformations. The colors show how the gray
color, shown on the background layer, would be transformed from the other image to
the colored image. The result indicates that the white balance is different in the two
images. Note also the shadow on the corner of the foremost magazine in the first image.

3 Dense and deformable motion segmentation
3.1 Layered model

Our layer-based model describes each one of the two images as a composition of layers
which are related to the other image by different geometric and photometric transfor-
mations. In the following, we assume that image I is the image to be segmented and I ′

is the reference image. The other case is obtained by changing the roles of I and I ′.
The model consists of a set of motion layers, denoted by Lj , j = 0, . . . , L. The

segmentation of image I is defined by the label matrix S which has the same size as I
(i.e. m×n). So, S(p) = j means that the pixel p in I is labeled to layer j. The layer
j = 0 is the background layer reserved for those pixels which are not visible in I ′.
The label matrix S is sufficient for representing the final assignment of pixels to layers.
However, it is not sufficient for the initialization of our iterative segmentation method
since some of the tentative layers may overlap as shown in Fig. 2. Therefore, for later
use, we introduce additional label matrices Sj so that Sj(p) = 1 if p belongs to layer j
and Sj(p) = 0 otherwise.

The geometric transformation associated to layer j (j 6=0) is denoted by Gj . In de-
tail, the motion field Gj transforms the pixels in I to the other image and is represented
by two matrices of size m×n (one for each coordinate). Thus, Gj(p) =p′ means that
pixel p is mapped to position p′ in the other image if it belongs to layer j.

The photometric transformation of layer j (j 6= 0) is denoted by Fj and its pa-
rameters define an affine intensity transformation for each color channel at every pixel.



Hence, if the number of color channels is K, then Fj is represented by a set of 2K
matrices each of which has size m×n. So, the modeled intensity for color channel k at
pixel p is defined by

Îk
j (p) = Fk

j (p) · I ′k(Gj(p)) + F (K+k)
j (p), (1)

where the superscript of Fj indicates which ones of the 2K transformation parameters
correspond to channel k.

Given the latent variables S, Gj , Fj and the reference image I ′, the relation (1)
provides a generative model for I . In fact, the goal in the dense segmentation stage is to
determine the latent variables so that the resulting layered model would explain well the
observed intensities in I . This is acquired by minimizing an energy function which is
introduced in Sect. 3.3. However, first, we describe how the layered model is initialized.

3.2 Model initialization

The motion hypotheses which pass the verification stage are represented as groups of
two-view point correspondences and each of them is used to initialize a motion layer.

First, the initialization of the label matrices Sj is obtained directly from the support
regions of the grouped correspondences. That is, we give a label j > 0 for each group
and assign Sj(p) = 1 for those pixels p that are inside the support region of group
j. At this stage there may be pixels which are assigned to several layers. However,
these conflicting assignments are eventually solved when the final segmentation S is
produced (see Sect. 3.4).

Second, the initialization of the motion fields Gj is done by fitting a regularized
thin-plate spline to the point correspondences of each group [12]. The thin-plate spline
is a parametrized mapping which allows extrapolation, i.e., it defines the motion also for
those pixels that are outside the particular layer. Thus, each motion field Gj is initialized
by evaluating the thin-plate spline for all pixels p.

Third, the coefficients of the photometric transformations Fj are initialized with
constant values determined from the intensity histograms of the corresponding regions
in I and I ′. In fact, when Fk

j (p) and FK+k
j (p) are the same for all p, (1) gives simple

relations for the standard deviations and means of the two histograms for each color
channel k. Hence, one may estimate Fk

j and FK+k
j by computing robust estimates for

the standard deviations and means of the histograms. The estimates are later refined in
a spatially varying manner as described in Sect. 3.5.

3.3 Energy function

The aim is to determine the latent variables θ={S,Gj ,Fj} so that the resulting layered
model explains the observed dataD={I, I ′}well. This is done by maximizing the pos-
terior probability P (θ|D), which is modeled in the form P (θ|D) = ψ exp (−E(θ,D)),
where the normalizing factor ψ is independent of θ [9]. Maximizing P (θ|D) is equiv-
alent to minimizing the energy

E(θ,D) =
∑
p∈P

Up(θ,D) +
∑

(p,q)∈N

Vp,q(θ,D), (2)



where Up is the unary energy for pixel p and Vp,q is the pairwise energy for pixels p
and q, P is the set of pixels in image I andN is the set of adjacent pairs of pixels in I .

The unary energy in (2) consists of two terms,∑
p∈P

Up(θ,D) =
∑
p∈P
− logPp(I|θ, I ′)− logPp(θ) =

L∑
j=0

∑
p|S(p)=j

− logPl(I(p)|Lj , I
′)− logP (S(p)=j), (3)

where the first one is the likelihood term defined by Pl and the second one is the pixel-
wise prior for θ. The pairwise energy in (2) is defined by

Vp,q(θ,D) = γ(1− δS(p),S(q)) exp

(
−maxk |∇Ik(p) · p−q

||p−q|| |
2

β

)
, (4)

where δ·,· is the Kronecker delta function and γ and β are positive scalars. In the fol-
lowing, we describe the details behind the expressions in (3) and (4).

Likelihood term The term Pp(I|θ, I ′) measures the likelihood that the pixel p in I
is generated by the layered model θ. This likelihood depends on the parameters of the
particular layer Lj to which p is assigned and it is modeled by

Pl(I(p)|Lj , I
′) =

{
κ j = 0
Pc(I(p)|Îj)Pt(I(p)|Îj) j 6= 0

(5)

Thus, the likelihood of the background layer (j = 0) is κ for all pixels. On the other
hand, the likelihood of the other layers is modeled by a product of two terms, Pc and
Pt, which measure the consistency of color and texture between the images I and Îj ,
where Îj is defined by Gj , Fj , and I ′ according to (1). In other words, Îj is the image
generated from I ′ by Lj and Pl(I(p)|Lj , I

′) measures the consistency of appearance
of I and Îj at p.

The color likelihood Pc(I(p)|Îj) is a Gaussian density function whose mean is de-
fined by Îj(p) and whose covariance is a diagonal matrix with predetermined variance
parameters. For example, if the RGB color space is used then the density is three-
dimensional and the likelihood is large when I(p) is close to Îj(p).

Here the texture likelihood Pt(I(p)|Îj) is also modeled with a Gaussian density.
That is, we compute the normalized grayscale cross-correlation between two small im-
age patches extracted from I and Îj around p and denote it by tj(p). Thereafter the
likelihood is obtained by setting Pt(I(p)|Îj) = N(tj(p)|1, ν) , where N(·|1, ν) is a
one-dimensional Gaussian density with mean 1 and variance ν.

Prior term The term Pp(θ) in (3) denotes the pixelwise prior for θ and it is de-
fined by the probability P (S(p) = j) with which p is labeled with j. If there is no
prior information available one may here use the uniform distribution which gives equal
probability for all labels. However, in our iterative approach, we always have an initial
estimate θ0 for the parameters θ while minimizing (2), and hence, we may use the ini-
tial estimate S0 to define a prior for the label matrix S. In fact, we model the spatial



distribution of labels with a mixture of two-dimensional Gaussian densities, where each
label j is represented by one mixture component, whose portion of the total density is
proportional to the number of pixels with the label j. The mean and covariance of each
component are estimated from the correspondingly labeled pixels in S0.

The spatially varying prior term is particularly useful in such cases where the col-
ors of some uniform background regions accidentally match for some layer. (This is
actually quite common when both images contain a lot of background clutter.) If these
regions are distant from the objects associated to that particular layer, as they usually
are, the non-uniform prior may help to prevent incorrect layer assignments.

Pairwise term The purpose of the term Vp,q(θ,D) in (2) is to encourage piecewise
constant labelings where the layer boundaries lie on the intensity edges. The expres-
sion (4) has the form of a generalized Potts model [15], which is commonly used in
segmentation approaches based on Markov Random Fields [1, 7, 9]. The pairwise term
(4) is zero for such neighboring pairs of pixels which have the same label and greater
than zero otherwise. The cost is highest for differently labeled pixels in uniform image
regions where ∇Ik is zero for all color channels k. Hence, the layer boundaries are
encouraged to lie on the edges, where the directed gradient is non-zero. The parameter
γ determines the weighting between the unary term and the pairwise term in (2).

3.4 Algorithm

The minimization of (2) is performed by iteratively updating each of the variables S, Gj

and Fj in turn so that the smoothness of the geometric and photometric transformation
fields, Gj andFj , is preserved during the updates. The approach is summarized in Alg. 2
and the update steps are detailed in the following sections.

In general, the approach of Alg. 2 can be used for any number of layers. However,
after the initialization (Sect. 3.2), we do not directly proceed to the multi-layer case but
first verify the initial layers individually against the background layer. In detail, for each
initial layer j, we run one iteration of Alg. 2 by using uniform prior for the two labels
in Sj and a relatively high value of γ. Here the idea is that those layers j, which do not
generate high likelihoods Pl(I(p)|Lj , I

′) for a sufficiently large cluster of pixels, are
completely replaced by the background. For example, the four incorrect initial layers in
Fig. 2 were discarded at this stage. Then, after the verification, the multi-label matrix
S is initialized (by assigning the label with the highest likelihood Pl(I(p)|Lj , I

′) for
ambiguous pixels) and the layers are finally refined by running Alg. 2 in the multi-label
case, where the spatially varying prior is used for the labels.

3.5 Updating the photometric transformations

The spatially varying photometric transformation model is an important element of our
approach. Given the segmentation S and the geometric transformation Gj , the coef-
ficients of the photometric transformation Fj are estimated from linear equations by
using Tikhonov regularization [16] to ensure the smoothness of solution.

In detail, according to (1), each pixel p assigned to layer j provides a linear con-
straint for the unknowns Fk

j (p) and F (K+k)
j (p). By stacking the elements of Fk

j and

F (K+k)
j into a vector, denoted by fk

j , we may represent all these constraints, generated



by the pixels in layer j, in matrix form Mfk
j = b, where the number of unknowns in fk

j

is larger than the number of equations. Then, we use Tikhonov regularization and solve

min
fk
j

||Mfk
j − b||2 + λ||Lfk

j ||2, (6)

where λ is the regularization parameter and the difference operator L is here defined so
that ||Lfk

j ||2 is a discrete approximation to∫
||∇Fk

j (p)||2 + ||∇F (K+k)
j (p)||2dp. (7)

Since the number of unknowns is large in (6) (i.e. two times the number of pixels in
I) we use conjugate gradient iterations to solve the related normal equations [16]. The
initial guess for the iterative solver is obtained from the current estimate of Fj . Since
we initially start from a constant photometric transformation field (Sect. 3.2) and our
update step aims at minimizing (6), thereby increasing the likelihood Pl(p|Îj) in (3), it
is clear that the energy (2) is decreased in the update process.

3.6 Updating the geometric transformations

The geometric transformations Gj are updated by optical flow [17]. Given S andFj and
the current estimate of Gj , we generate the modeled image Îj by (1) and determine the
optical flow from I to Îj in a domain which encloses the regions currently labeled to
layer j [17] (color images are transformed to grayscale before computation). Then, the
determined optical flow is used for updating Gj . However, the update is finally accepted
only if it decreases the energy (2).

3.7 Updating the segmentation

The segmentation is performed by minimizing the energy function (2) over different
labelings S using graph cut techniques [15]. The exact global minimum is found only
in the two-label case and in the multi-label case efficient approximate minimization is
produced by the α-expansion algorithm of [15]. Here the computations were performed
using the implementations provided by the authors of [15, 18–20].

4 Experiments

Experimental results are illustrated in Figs. 3 and 4. The example in Fig. 3 shows the
first and last frame from a classical benchmark sequence [2, 4], which contains three
different planar motion layers. Good motion segmentation results have been obtained
for this sequence by using all the frames [2, 6, 9]. However, if the intermediate frames
are not available the problem is harder and it has been studied in [1]. Our results in
Fig. 3 are comparable to [1]. Nevertheless, compared to [1], our approach has better
applicability in cases where (a) only a very small fraction of keypoint matches is correct,
and (b) the motion can not be described with a low-parametric model. Such cases are
illustrated in Figs. 1 and 4.

The five examples in Fig. 4 show motion segmentation results for scenes containing
non-planar objects, non-uniform illumination variations, multiple objects, and deform-
ing surfaces. For example, the recovered geometric registrations illustrate the 3D shape



Fig. 3. Left: two images and the final three-layer segmentation. Middle: the grouped matches
generating 12 tentative layers. Right: the layers of the first image mapped to the second.

of the toy lion and the car as well as the bending of the magazines. In addition, the vary-
ing illumination of the toy lion is correctly recovered (the shadow on the backside of
the lion is not as strong as elsewhere). On the other hand, if the changes of illumination
are too abrupt or if some primary colors are not present in the initial layer (implying
that the estimated transformation may not be accurate for all colors), it is difficult to
achieve perfect segmentation. For example, in the last column of Fig. 4, the letter “F”
on the car, where the intensity is partly saturated, is not included in the car layer.

Besides illustrating the capabilities and limitations of the proposed method, the re-
sults in Fig. 4 also suggest some topics for future improvements. Firstly, improving the
initial verification stage might give a better discrimination between the correct and in-
correct correspondences (the magenta region in the last example is incorrect). Secondly,
some postprocessing method could be used to join distant coherently moving segments
if desired (the green and cyan region in the fourth example belong to the same rigid ob-
ject). Thirdly, if the change in scale is very large, more careful modeling of the sampling
rate effects might improve the accuracy of registration and segmentation (magazines).

5 Conclusion

This paper describes a dense layer-based two-view motion segmentation method, which
automatically detects and segments the common regions from the two images and pro-
vides the related geometric and photometric registrations. The method is robust to ex-
tensive background clutter and is able to recover the correct segmentation and registra-
tion of the imaged surfaces in challenging viewing conditions (including uniform image
regions where mere match propagation can not provide accurate segmentation). Impor-
tantly, in the proposed approach both the initialization stage and the dense segmentation
stage can deal with deforming surfaces and spatially varying lighting conditions, unlike
in the previous approaches. Hence, in the future, it might be interesting to study whether
the techniques can be extended to multi-frame image sequences.
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