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Abstract

Geometric camera calibration is a prerequisite for making accurate geometric
measurements from image data and it is hence a fundamental task in computer
vision. This article gives a discussion about the camera models and calibration
methods used in the field. The emphasis is on conventional calibration methods
where the parameters of the camera model are determined by using images
of a calibration object whose geometric properties are known. The presented
techniques are illustrated with real calibration examples where several different
kinds of cameras are calibrated using a planar calibration object.

1 Introduction

Geometric camera calibration is the process of determining geometric properties
of a camera. Here the camera is considered as a ray-based sensing device and
the camera geometry defines how the observed rays of light are mapped onto
the image. The purpose of calibration is to discover the mapping between the
rays and image points. Hence, a calibrated camera can be used as a direction
sensor where both the forward-projection and back-projection are known, i.e.,
one may compute the image point corresponding to a given projection ray and
vice versa.

The geometric calibration of a camera is usually performed by imaging a
calibration object whose geometric properties are known. The calibration ob-
ject often consists of one to three planes which contain visible control points
in known positions. The calibration is achieved by fitting a camera model to
the observations which are the measured positions of the control points in the
calibration images. The camera model contains two kinds of parameters: the
external parameters relate the camera orientation and position to the object co-
ordinate frame and the internal parameters determine the projection from the
camera coordinate frame onto image coordinates. Typically, both the external
and internal camera parameters are estimated in the calibration process which
usually involves non-linear optimization and minimizes a suitable cost func-
tion over the camera parameters. The sum of squared distances between the
measured and modeled control point projections is frequently used as the cost
function since it gives the maximum-likelihood parameter estimates assuming
isotropic and independent normally distributed measurement errors.
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Calibration by non-linear optimization requires a good initial guess for the
camera parameters. Hence, various methods have been proposed for the direct
estimation of the parameters. Most of these methods deal with conventional
perspective cameras but recently there has also been effort in developing models
and calibration methods for more general cameras. In fact, the choice of a
suitable camera model is an important issue in camera calibration. For example,
the pinhole camera model, which is based on the ideal perspective projection
model and often used for conventional cameras, is not a suitable model for
omnidirectional cameras which have a very large field of view. Hence, there has
been a recent trend towards generic calibration techniques which would allow
the calibration of various types of cameras.

In this article, we will provide an overview into geometric camera calibra-
tion and its present state-of-the-art. However, since the literature for camera
calibration is vast and ever-evolving it is not possible to cover all the aspects in
detail. Nevertheless, we hope that this article serves as an introduction to the
literature where more details can be found. The article is hence structured as
follows. First, in Section 2, we describe some historical background for camera
calibration. Thereafter we review different camera models with an emphasis on
central cameras. After describing camera models we discuss methods for camera
calibration. The focus is on our previous works [1, 2]. Finally, in Section 5, we
present some calibration examples with real cameras. The article is concluded
in Section 6.

2 Background

Geometric camera calibration is a prerequisite for image-based metric 3D mea-
surements and it has a long history in photogrammetry and computer vision.
One of the first references is by Conrady [3] who derived an analytical expression
for the geometric distortion in a decentered lens system. Conrady’s model for
decentering distortion was used by Brown [4] who proposed a plumb line method
for calibrating radial and decentering distortion. Later on the approach used
by Brown was commonly adopted in photogrammetric camera calibration [5].

In photogrammetry, the emphasis has traditionally been in the rigorous ge-
ometric modeling of the camera and optics. On the other hand, in computer
vision it is considered important that the calibration procedure is automatic and
fast. For example, the well-known calibration method developed by Tsai [6] was
designed to be an automatic and efficient calibration technique for machine vi-
sion metrology. This method uses a simpler camera model than [4] and avoids
the full-scale non-linear search by using simplifying approximations. However,
due to the increased processing power of personal computers the non-linear op-
timization is not as time-consuming now as it was before. Hence, when the
calibration accuracy is important the camera parameters are usually refined by
a full-scale non-linear optimization.

Besides increasing the theoretical understanding, the advances in geometric
computer vision have also affected the practice of image-based 3D reconstruction
during the last two decades [7,8]. For example, while the traditional photogram-
metric approach assumes a pre-calibrated camera, an alternative approach is to
compute a projective reconstruction with an uncalibrated perspective camera.
The projective reconstruction is defined up to a 3D projective transformation
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and it can be upgraded to a metric reconstruction by self-calibration [8]. In
self-calibration the camera parameters are determined without a calibration
object; feature correspondences over multiple images are used instead. How-
ever, the conventional calibration is typically more accurate and stable than
self-calibration. In fact, self-calibration methods are beyond the scope of this
article.

3 Camera models

In this section we describe several camera models which have appeared in the
literature. We concentrate on central cameras, i.e., cameras with a single effec-
tive viewpoint. Single viewpoint means that all the rays of light arriving onto
the image travel through a single point in space.

3.1 Perspective cameras

The pinhole camera model is the most common camera model and it is a fair ap-
proximation for most conventional cameras which obey the perspective model.
Typically these conventional cameras have a small field of view (< 60◦). The
pinhole camera model is widely used and simple; essentially it is just a perspec-
tive projection followed by an affine transformation in the image plane.

The pinhole camera geometry is illustrated in Fig. 1. In a pinhole camera
the projection rays meet at a single point which is the camera center C and its
distance from the image plane is the focal length f . By similar triangles, it may
be seen in Fig. 1 that the point (Xc, Yc, Zc)

> in the camera coordinate frame
is projected to the point (fXc/Zc, fYc/Zc)

> in the image coordinate frame. In
terms of homogeneous coordinates this perspective projection can be represented
by a 3 × 4 projection matrix,
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where ' denotes equality up to scale.
However, instead of the image coordinates (x, y)>, the pixel coordinates

(u, v)> are usually used and they are obtained by the affine transformation

(

u
v

)

=

[

mu −mu cot α
0 mv

sin α

] (

x
y

)

+

(

u0

v0

)

, (1)

where (u0, v0)
> is the principal point, α is the angle between u and v axis, and

mu and mv give the number of pixels per unit distance in u and v directions,
respectively. The angle α is π

2
in the conventional case of orthogonal pixel

coordinate axes.
In practice, the 3D point is expressed in some world coordinate system that is

different from the camera coordinate system. The motion between these coordi-
nate systems is given by a rotation R and translation t. Hence, in homogeneous
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Figure 1: Pinhole camera model. Here C is the camera center and the origin
of the camera coordinate frame. The principal point p is the origin of the
normalized image coordinate system (x, y). The pixel image coordinate system
is (u, v).

coordinates, the mapping of the 3D point X to its image m is given by
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where we have introduced the parameters γ = mv

mu sin α
and s = − cot α in order

to simplify the notation. Since a change in the focal length and a change in
the pixel units are indistinguishable above we may set mu = 1 and write the
projection equation in the form

m ' K
[

R t
]

X, (3)

where the upper triangular matrix

K =





f sf u0

0 γf v0

0 0 1



 (4)

is the camera calibration matrix and contains the five internal parameters of a
pinhole camera.

It follows from Eq. (3) that a general pinhole camera may be represented by
a homogeneous 3 × 4 matrix

P = K
[

R t
]

(5)
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which is called the camera projection matrix. If the left hand submatrix KR

is non-singular, as it is for perspective cameras, the camera P is called a finite

projective camera.
A camera represented by an arbitrary homogeneous 3 × 4 matrix of rank 3

is called a general projective camera. This class covers the affine cameras which
have a projection matrix whose last row is (0, 0, 0, 1) up to scale. A common
example of an affine camera is the orthographic camera where the scene points
are orthogonally projected onto the image plane.

3.1.1 Lens distortion

The pinhole camera is an idealized mathematical model for real cameras which
may often deviate from the ideal perspective imaging model. Hence, the basic
pinhole model is often accompanied with lens distortion models for more ac-
curate calibration of real lens systems. The most important type of geometric
distortion is the radial distortion which causes an inward or outward displace-
ment of a given image point from its ideal location. Decentering of lens elements
causes additional distortion which also has tangential components.

A commonly used model for lens distortion accounts for radial and decen-
tering distortion [4,5]. According to this model the corrected image coordinates
x′, y′ are obtained by

x′ =x + x̄ (κ1r
2 + κ2r

4 + κ3r
6 + . . .)

+
(

ρ1(r
2 + 2x̄2) + 2ρ2x̄ȳ

) (

1 + ρ3r
2 + . . .

)

y′ = y + ȳ (κ1r
2 + κ2r

4 + κ3r
6 + . . .)

+
(

2ρ1x̄ȳ + ρ2(r
2 + 2ȳ2)

) (

1 + ρ3r
2 + . . .

)

,

(6)

where x and y are the measured coordinates, and

x̄ = x − xp

ȳ = y − yp

r =
√

(x − xp)2 + (y − yp)2.

Here the center of distortion (xp, yp) is a free parameter in addition to the radial
distortion coefficients κi and decentering distortion coefficients ρi. In the tradi-
tional photogrammetric approach the values for the distortion parameters are
computed by least-squares adjustment by requiring that images of straight lines
are straight after the correction [4]. However, the problem with this approach
is that not only the distortion coefficients but also the other camera parameters
are initially unknown. For example, the formulation above requires that the
scales in both coordinate directions are equal which is not the case with pixel
coordinates unless the pixels are square.

In [1] the distortion model of Eq. (6) was adapted and combined with the
pinhole model in order to make a complete and accurate model for real cameras.
This camera model has the form

m = P(X) = PX + C(PX), (7)

where P denotes the non-linear camera projection and P is the camera projec-
tion matrix of a pinhole camera. The non-linear part C is the distortion model
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Figure 2: Central catadioptric camera with a hyperbolic, elliptical and parabolic
mirror. The Z-axis is the optical axis of the camera and the axis of revolution
for the mirror surface. The scene point P is imaged at p. In each case the
viewpoint of the catadioptric system is the focal point of the mirror denoted
by F . In the case of hyperbolic and elliptical mirrors the effective pinhole of
the perspective camera must be placed at the other focal point which is here
denoted by F ′.

derived from Eq. (6). In [1], two parameters were used for both the radial and
decentering distortion, i.e. the parameters κ1, κ2 and ρ1, ρ2, and it was assumed
that the center of distortion coincides with the principal point of the pinhole
camera.

3.2 Central omnidirectional cameras

Although the pinhole model accompanied with lens distortion models is a fair
approximation for most conventional cameras, it is not a suitable model for
omnidirectional cameras whose field of view is over 180◦. This is due to the fact
that, when the angle between the incoming light ray and the optical axis of the
camera approaches 90◦, the perspective projection maps the ray infinitely far in
the image and it is not possible to remove this singularity with the distortion
model described above. Hence, more flexible models are needed and below we
discuss different models for central omnidirectional cameras.

3.2.1 Catadioptric cameras

In a catadioptric omnidirectional camera the wide field of view is achieved by
placing a mirror in front of the camera lens. In a central catadioptric camera the
shape and configuration of the mirror are such that the complete catadioptric
system has a single effective viewpoint. It has been shown that the mirror
surfaces which produce a single viewpoint are surfaces of revolution whose two-
dimensional profile is a conic section [9]. Practically useful mirror surfaces
used in real central catadioptric cameras are planar, hyperbolic, elliptical and
parabolic. However, a planar mirror does not change the field of view of the
camera [9].

The central catadioptric configurations with hyperbolic, elliptical and para-
bolic mirrors are illustrated in Fig. 2. In order to satisfy the single viewpoint
constraint the parabolic mirror is combined with an orthographic camera while
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the other mirrors are combined with a perspective camera. In each case the
effective viewpoint of the catadioptric system is the focal point of the mirror
denoted by F in Fig. 2.

Single-viewpoint catadioptric image formation is well studied [9, 10] and it
has been shown that a central catadioptric projection, including the cases shown
in Fig. 2, is equivalent to a two-step mapping via the unit sphere [10, 11]. As
described in [11, 12], the unifying model for central catadioptric cameras may
be represented by a composed function H ◦ F so that

m = (H ◦ F)(Φ), (8)

where Φ=(θ, ϕ)> defines the direction of the incoming light ray which is mapped
to the image point m = (u, v, 1)>. Here F first projects the object point onto
a virtual image plane and then the planar projective transformation H maps
the virtual image point to the observed image point m. The two-step map-
ping F is illustrated in Fig. 3(a), where the object point X is first projected

to q =
(

cos ϕ sin θ, sin ϕ sin θ, cos θ
)>

on the unit sphere, whose center O is
the effective viewpoint of the camera. Thereafter the point q is perspectively
projected to x from another point Q so that the line determined by O and Q is
perpendicular to the image plane. The distance l = |OQ| is a parameter of the
catadioptric camera.

Mathematically the function F has the form

x = F(Φ) = r(θ)

(

cos ϕ
sin ϕ

)

, (9)

where the function r is the radial projection which does not depend on ϕ due
to radial symmetry. The precise form of r as a function of θ is determined by
the parameter l, i.e.,

r =
(l + 1) sin θ

l + cos θ
. (10)

This follows from the fact that the corresponding sides of similar triangles must
have the same ratio, thus r

sin θ
= l+1

l+cos θ
, as Fig. 3(a) illustrates.

In a central catadioptric system with a hyperbolic or elliptical mirror the
camera axis does not have to be aligned with the mirror symmetry axis. The
camera can be rotated with respect to the mirror as long as the camera center
is at the focal point of the mirror. Hence, in the general case, the mapping
H from the virtual image plane to the real image plane is a planar projective
transformation [12]. However, often the axes of the camera and mirror are
close to collinear so that the mapping H can be approximated with an affine
transformation A [11]. That is,

m = A(x) = K

(

x

1

)

, (11)

where the upper triangular matrix K is defined in Eq. (4) and contains five
parameters. (Here the affine transformation A has only five degrees of freedom
since we may always fix the camera coordinate frame so that the x-axis is parallel
to the u-axis.)
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Figure 3: (a) A generic model for a central catadioptric camera [11]. The Z-
axis is the optical axis and the plane Z = 1 is the virtual image plane. The
object point X is first projected to q on the unit sphere and thereafter q is
perspectively projected to x from Q. (b) The projections of Eqs. (12)-(16).

3.2.2 Fish-eye lenses

Fish-eye cameras achieve a large field of view by using only lenses while the
catadioptric cameras use both mirrors and lenses. Fish-eye lenses are designed
to cover the whole hemispherical field in front of the camera and the angle of
view is very large, possibly over 180◦. Since it is impossible to project the
hemispherical field of view on a finite image plane by a perspective projection
the fish-eye lenses are designed to obey some other projection model [13].

The perspective projection of a pinhole camera can be represented by the
formula

r = tan θ (i. perspective projection), (12)

where θ is the angle between the principal axis and the incoming ray and r is the
distance between the image point and the principal point measured on a virtual
image plane which is placed at a unit distance from the pinhole. Fish-eye lenses
instead are usually designed to obey one of the following projections:

r = 2 tan(θ/2) (ii. stereographic projection), (13)

r = θ (iii. equidistance projection), (14)

r = 2 sin(θ/2) (iv. equisolid angle projection), (15)

r = sin(θ) (v. orthogonal projection), (16)

where the equidistance projection is perhaps the most common model. The
behavior of the different projection models is illustrated in Fig. 3(b).

Although the central catadioptric cameras and fish-eye cameras have a dif-
ferent physical construction they are not too different from the viewpoint of
mathematical modeling. In fact, the radial projection curves defined by Eq. (10)
are quite similar to those shown in Fig. 3(b). In particular, when l=0 Eq. (10)
defines the perspective projection, l=1 gives the stereographic projection (since
tan θ

2
= sin θ

1+cos θ
), and on the limit l → ∞ we obtain the orthogonal projection.

Hence, the problem of modeling radially symmetric central cameras is essentially
reduced to modeling radial projection functions such as those in Fig. 3(b).

8



3.2.3 Generic model for central cameras

Here we describe a generic camera model which was proposed in [2] and is
suitable for central omnidirectional cameras as well as for conventional cameras.
As discussed above, the radially symmetric central cameras may be represented
by Eq. (10) where the function F is given by Eq. (9). The radial projection
function r in F is an essential part of the model. If r is fixed to have the form
of Eq. (12) then the model is reduced to the pinhole model. However, modeling
of omnidirectional cameras requires a more flexible model and here we consider
the model

r = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + . . . , (17)

which allows good approximation of all the projections in Fig. 3(b). In [2] it was
shown that the first five terms, up to the ninth power of θ, give enough degrees
of freedom for accurate approximation of different projection curves. Hence, the
generic camera model used here contains five parameters in the radial projection
function r.

However, real lenses may deviate from precise radial symmetry and, there-
fore, the radially symmetric model above was supplemented with an asymmetric
part in [2]. Hence, instead of Eq. (10) the camera model proposed in [2] has the
form

m = (A ◦ D ◦ F)(Φ), (18)

where D is the asymmetric distortion function so that D ◦F gives the distorted
image point xd which is then transformed to pixel coordinates by the affine
transformation A. In detail,

xd = (D ◦ F)(Φ) = r(θ)ur(ϕ) + ∆r(θ, ϕ)ur(ϕ) + ∆t(θ, ϕ)uϕ(ϕ), (19)

where ur(ϕ) and uϕ(ϕ) are the unit vectors in the radial and tangential direc-
tions and

∆r(θ, ϕ)=(g1θ + g2θ
3 + g3θ

5)(i1 cos ϕ + i2 sin ϕ + i3 cos 2ϕ + i4 sin 2ϕ), (20)

∆t(θ, ϕ)=(h1θ + h2θ
3 + h3θ

5)(j1 cos ϕ + j2 sinϕ + j3 cos 2ϕ + j4 sin 2ϕ). (21)

Here both the radial and tangential distortion terms contain seven parameters.
The asymmetric part in Eq. (19) models the imperfections in the optical

system in a somewhat similar manner as the distortion model in Section 3.1.1
does. However, instead of rigorous modeling of optical distortions, here the
aim is to provide a flexible mathematical distortion model that is just fitted to
agree with the observations. This approach is often practical since there may be
several possible sources of imperfections in the optical system and it is difficult
to model all of them in detail.

The camera model defined above is denoted by M24 in the following since
the number of parameters is 24: F and A have both 5 parameters and D has
14 parameters. However, often it is assumed that the pixel coordinate system is
orthogonal, i.e. s=0 in Eq. (4), so that the number of parameters in A is only
four. This model is denoted by M23. In addition, sometimes it may be useful to
leave out the asymmetric part in order to avoid over-fitting. The corresponding
radially symmetric models are here denoted by M9 and M6. The model M6

contains only two terms in Eq. (17) while M9 contains five.
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3.2.4 Other distortion models

In addition to the camera models described in the previous sections there are
also several other models that have appeared in the literature. For example, the
so called division model for radial distortion is defined by

r =
rd

1 − c r2
d

, (22)

where rd is the measured distance between the image point and the distortion
center and r is the ideal undistorted distance [14, 15]. A positive value of the
distortion coefficient c corresponds to the typical case of barrel distortion [14].
However, the division model is not suitable for cameras whose field of view
exceeds 180 degrees. Hence, other models must be used in this case and, for
instance, the two-parametric projection model

r =
a −

√
a2 − 4bθ2

2bθ
(23)

has been used for fish-eye lenses [16]. Furthermore, a parameter-free method
for determining the radial distortion was proposed in [17].

3.3 Non-central cameras

Most real cameras are strictly speaking non-central. For example, in the case
of parabolic mirror in Fig. 2 it is difficult to align the mirror axis and the axis
of the camera precisely. Likewise, in the hyperbolic and elliptic configurations,
the precise positioning of the optical center of the perspective camera in the
focal point of the mirror is practically infeasible. In addition, if the shape of the
mirror is not a conic section or the real cameras are not truly othographic or
perspective the configuration is non-central. However, in practice the camera is
usually negligibly small compared to the viewed region so that it is effectively
point-like. Hence, the central camera models are widely used and tenable in
most situations so that also here, in this article, we concentrate on central
cameras.

Still, there are some works where the single viewpoint constraint is relaxed
and a non-central camera model is used. For example, a completely generic cam-
era calibration approach was discussed in [18] and [19], where a non-parametric
camera model was used. In this model each pixel of the camera is associated
with a ray in 3D and the task of calibration is to determine the coordinates of
these rays in some local coordinate system. In addition, there has been work
about designing mirrors for non-central catadioptric systems that are compliant
with pre-defined requirements [20].

Finally, as a generalization of central cameras we would like to mention the
axial cameras where all the projection rays go through a single line in space [19].
For example, a catadioptric camera consisting of a mirror and a central camera
is an axial camera if the mirror is any surface of revolution and the camera
center lies on the mirror axis of revolution. A central camera is a special case
of an axial camera. The equiangular [21, 22] and equiareal [23] catadioptric
cameras are another classes of axial cameras. In equiareal cameras the projection
is area preserving whereas the equiangular mirrors are designed so that the
radial distance measured from the center of symmetry in the image is linearly
proportional to the angle between the incoming ray and the optical axis.
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4 Calibration methods

Camera calibration is the process of determining the parameters of the camera
model. Here we consider conventional calibration techniques that use images of a
calibration object which contains control points in known positions. The choice
of a suitable calibration algorithm depends on the camera model and below we
describe methods for calibrating both perspective and omnidirectional central
cameras.

Although the details of the calibration procedure may differ depending on
the camera, the final step of the procedure is usually the refinement of camera
parameters by non-linear optimization regardless of the camera model. The
cost function normally used in the minimization is the sum of squared distances
between the measured and modelled control point projections, i.e.,

N
∑

j=1

M
∑

i=1

δi
jd(mi

j , m̂
i
j)

2 (24)

where mi
j contains the measured image coordinates of the control point i in the

view j, the binary variable δi
j indicates whether the control point i is observed

in the view j and
m̂i

j = Pj(X
i) (25)

is the projection of the control point Xi in the view j. Here Pj denotes the cam-
era projection in the view j and it is determined by the external and internal
camera parameters. The justification for minimizing Eq. (24) is that it gives the
maximum likelihood solution for the camera parameters when the image mea-
surement errors obey a zero-mean isotropic Gaussian distribution. However, the
successful minimization of Eq. (24) with standard local optimization methods
requires a good initial guess for the parameters. Methods for computing such
an initial guess are discussed below in Sections 4.1 and 4.2.

4.1 Perspective cameras

In the case of a perspective camera the camera projection P is represented by
a 3 × 4 matrix P as described in Section 3.1. In general, the projection matrix
P can be determined from a single view of a non-coplanar calibration object
using the Direct Linear Transform (DLT) method which is described below in
Section 4.1.1. Then, given P, the parameters K and R in Eq. (5) are obtained
by decomposing the left 3 × 3 submatrix of P using the QR-decomposition
whereafter also t can be computed [8].

On the other hand, if the calibration object is planar and the internal param-
eters in K are all unknown, several views are needed. In this case, the constant
camera calibration matrix K can be determined first using the approach de-
scribed in Section 4.1.2. Thereafter the view dependent parameters Rj and
tj can be computed and used for initializing the non-linear optimization. If
the perspective camera model is accompanied with a lens distortion model the
distortion parameters in Eq. (7) may be initialized by setting them to zero [24].
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4.1.1 Non-coplanar calibration object

Assuming that the known space points Xi are projected at the image points
mi the unknown projection matrix P can be estimated using the DLT method
[8, 25,26]. The projection equation gives

mi ' PXi, (26)

which can be written in the equivalent form

mi × PXi = 0, (27)

where the unknown scale in Eq. (26) is eliminated by the cross product. The
equations above are linear in the elements of P so they can be written in the
form

Aiv = 0, (28)

where

v=
(

P11 P12 P13 P14 P21 P22 P23 P24 P31 P32 P33 P34

)>
(29)

and

Ai =







0> −mi
3X

i> mi
2X

i>

mi
3X

i> 0> −mi
1X

i>

−mi
2X

i> mi
1X

i> 0>






. (30)

Thus, each point correspondence provides three equations but only two of them
are linearly independent. Hence, given M ≥ 6 point correspondences, we get
an overdetermined set of equations Av = 0, where the matrix A is obtained by
stacking the matrices Ai, i = 1, . . . ,M . In practice, due to the measurement
errors there is no exact solution to these equations but the solution v which
minimizes ||Av|| can be computed using the singular value decomposition of
A [8]. However, if the points Xi are coplanar ambiguous solutions exist for v

and hence the DLT method is not applicable in such case.
The DLT method for solving P is a linear method which minimizes the

algebraic error ||Av|| instead of the geometric error in Eq. (24). This implies
that, in the presence of noise, the estimation result depends on the coordinate
frames where the points are expressed. In practice, it has been observed that
a good idea is to normalize the coordinates in both mi and Xi so that they
have zero mean and unit variance. This kind of normalization may significantly
improve the estimation result in the presence of noise [8].

4.1.2 Planar calibration object

In the case of a planar calibration object the camera calibration matrix K can
be solved by using several views. This approach was described in [27] and [24]
and it is briefly summarized in the following.

The mapping between a scene plane and its perspective image is a planar
homography. Since one may assume that the calibration plane is the plane
Z = 0, the homography is defined by

m ' K
[

R t
]









X
Y
0
1









= H





X
Y
1



 , (31)
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where the 3 × 3 homography matrix

H = K
[

r1 r2 t
]

, (32)

where the columns of the rotation matrix R are denoted by ri. The outline of
the calibration method is to first determine the homographies for each view and
then use Eq. (32) to derive constraints for the determination of K. The con-
straints for K are described in more detail below and methods for determining
a homography from point correspondences are described, for example, in [8].

Denoting the columns of H by hi and using the fact that r1 and r2 are
orthonormal one obtains from Eq. (32) that

h1>K−>K−1h2 = 0, (33)

h1>K−>K−1h1 = h2>K−>K−1h2. (34)

Thus, each homography provides two constraints which may be written as linear
equations on the elements of the homogeneous symmetric matrix ω = K−>K−1.
Hence, the system of equations, derived from Eqs. (33) and (34) above, is of the
form Av = 0, where the vector of unknowns v = (ω11, ω12, ω13, ω22, ω23, ω33)

>

consists of the elements of ω. Matrix A has 2N rows, where N is the number
of views. Given three or more views, the solution vector v is the right singular
vector of A corresponding to the smallest singular value. When ω is solved
(up to scale) one may compute the upper triangular matrix K by Cholesky-
factorization. Thereafter, given H and K, the external camera parameters can
be retrieved from Eq. (32). Finally, the obtained estimates should be refined by
minimizing the error of Eq. (24) in all views.

4.2 Omnidirectional cameras

In this section we describe a method for calibrating the parameters of the generic
camera model of Section 3.2.3 using a planar calibration pattern [2]. Planar
calibration patterns are very common because they are easy to create. In fact,
often also the non-coplanar calibration objects contain planar patterns since
they usually consist of two or three different planes.

The calibration procedure consists of four steps which are described below.
We assume that there are M control points observed in N views so that, for each
view j, there is a rotation matrix Rj and a translation vector tj , which describe
the orientation and position of the camera with respect to the calibration object.
In addition, we assume that the object coordinate frame is chosen so that the
plane Z =0 contains the calibration pattern and the coordinates of the control
point i are denoted by Xi = (Xi, Y i, 0)>. The corresponding homogeneous
coordinates in the calibration plane are denoted by xi

p = (Xi, Y i, 1)> and the

observed image coordinates in the view j are mi
j = (ui

j , v
i
j , 1)

>.

Step 1: Initialization of internal parameters

In the first three steps of the calibration procedure we use the camera
model M6 which contains only six non-zero internal parameters, i.e., the
parameters (k1, k2, f, γ, u0, v0). These parameters are initialized using a
priori knowledge about the camera. For example, the principal point
(u0, v0) is usually located close to the image center, γ has a value close to
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1 and f is the focal length in pixels. The initial values for k1 and k2 can
be obtained by fitting the model r = k1θ + k2θ

3 to the desired projection
curve in Fig. 3(b).

Step 2: Back-projection and computation of homographies

Given the internal parameters, we may back-project the observed points
mi

j onto the unit sphere centered at the camera origin. For each mi
j the

back-projection gives the direction Φi
j = (θi

j , ϕ
i
j)

> and the points on the

unit sphere are defined by qi
j = (sin ϕi

j sin θi
j , cosϕi

j sin θi
j , cos θi

j)
>. Since

the mapping between the points on the calibration plane and on the unit
sphere is a central projection, there is a planar homography Hj so that
qi

j ' Hjx
i
p. For each view j the homography Hj is estimated from the

correspondences (qi
j ,x

i
p). In detail, the initial estimate for Hj is computed

by the linear algorithm [8] and it is then refined by minimizing
∑

i sin2 αi
j ,

where αi
j is the angle between the unit vectors qi

j and Hjx
i
p/||Hjx

i
p||.

Step 3: Initialization of external parameters

The initial values for the external camera parameters are extracted from
the homographies Hj . It holds that

qi
j '

[

Rj tj

]









Xi

Y i

0
1









=
[

r1
j r2

j tj

]





Xi

Y i

1





which implies Hj ' [r1
j r2

j tj ]. Hence,

r1
j = λjh

1
j , r2

j = λjh
2
j , r3

j = r1
j × r2

j , tj = λjh
3
j ,

where λj = ±||h1
j ||−1. The sign of λj can be determined by requiring that

the camera is always on the front side of the calibration plane. However,
the obtained rotation matrices may not be orthogonal due to estimation
errors. Hence, the singular value decomposition is used to compute the
closest orthogonal matrices in the sense of Frobenius norm which are then
used for initializing each Rj .

Step 4: Minimization of projection error

If a camera model with more than six parameters is used the additional
camera parameters are initialized to zero at this stage. As we have the
estimates for the internal and external camera parameters, we may com-
pute the imaging function Pj for each camera, where a control point is
projected to m̂i

j = Pj(X
i). Finally, all the camera parameters are re-

fined by minimizing Eq. (24) using non-linear optimization, such as the
Levenberg-Marquardt algorithm.

4.3 Precise calibration with circular control points

In order to achieve an accurate calibration, we have used a calibration plane with
circular control points since the centroids of the projected circles can be detected
with a sub-pixel level of accuracy [28]. However, in this case the problem is that
the centroid of the projected circle is not the image of the center of the original
circle. Therefore, because mi

j in Eq. (24) is the measured centroid, we should not
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project the centers as points m̂i
j since this may introduce bias in the estimates.

Of course, this is not an issue if the control points are really pointlike, such as
the corners of a checkerboard pattern.

In the case of a perspective camera the centroids of the projected circles
can be solved analytically given the camera parameters and the circles on the
calibration plane [1]. However, in the case of the generic camera model of Section
3.2.3 the projection is more complicated and the centroids of the projected circles
must be solved numerically [2].

5 Calibration examples

In this section, we illustrate camera calibration with real examples involving
different kinds of cameras.

5.1 Conventional cameras with moderate lens distortion

The first calibrated camera was a Canon S1 IS digital camera with a zoom lens
whose focal length range is 5.8-58.0 mm which corresponds to a range of 38-380
mm in the 35 mm film format. The calibration was performed with the zoom
fixed to 11.2 mm. Hence, the diagonal field of view was about 30◦ which is a
relatively narrow angle. The other camera was a Sony DFW-X710 digital video
camera equipped with a Cosmicar H416 wide-angle lens. The focal length of
this wide-angle lens is 4.2 mm and it produces a diagonal field of view of about
80◦.

Both cameras were calibrated by using a planar calibration pattern which
contains white circles on black background. The pattern was displayed on a
digital plasma display (Samsung PPM50M6HS) whose size is 1204 × 724mm2.
A digital flat screen display provides a reasonably planar object and due to
its self-illuminating property it is easy to avoid specular reflections which might
otherwise hamper the accurate localization of the control points. Some examples
of the calibration images are shown in Fig. 4. The image in Fig. 4(a) was taken
with the narrow-angle lens and the image in Fig. 4(b) with the wide-angle
lens. The resolution of the images is 2048 × 1536 pixels and 1024 × 768 pixels,
respectively. The lens distortion is clearly visible in the wide-angle image.

The number of calibration images was six for both cameras and each image
contained 220 control points. The images were chosen so that the whole image
area was covered by the control points. In addition to the set of calibration
images we took another set of images which likewise contained six images where
the control points were distributed onto the whole image area. These images
were used as a test set in order to validate the results of calibration. In all cases
the control points were localized from the images by computing their gray-scale
centroids [28].

The cameras were calibrated using four different camera models. The first
model, denoted by Mp, was the skew-zero pinhole model accompanied with four
distortion parameters. This model was used in [1] and it is described in Section
3.1.1. The other three models were the models M6, M9 and M23 defined in
Section 3.2.3. All the calibrations were performed by minimizing the sum of
squared projection errors as described in Section 4. The computations were
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carried out by using the publicly available implementations of the calibration
procedures proposed in [1] and [2].1

The calibration results are shown in Table 1 where the first four rows give
the figures for the narrow-angle and wide-angle lenses introduced above. The
first and third row in Table 1 contain the RMS calibration errors, i.e., the
root-mean-squared distances between the measured and modeled control point
projections in the calibration images. The second and fourth row show the
RMS projection errors in the test images. In the test case the values of the
internal camera parameters were those estimated from the calibration images
and only the external camera parameters were optimized by minimizing the sum
of squared projection errors.

The results illustrate that the most flexible model M23 performs generally
best. However, the difference between the models M6, M9 and M23 is not
large for the narrow-angle and wide-angle lens. The model Mp performs well
with the narrow-angle lens but it seems that the other models are better in
modeling the severe radial distortion of the wide-angle lens. The relatively low
values of the test set error indicate that the risk of overfitting is small. This risk
could be further decreased by using more calibration images. The RMS error
is somewhat larger for the narrow-angle lens than for the wide-angle lens but
this may be due to the fact that the image resolution is higher in the narrow-
angle case. Hence, the pixel units are not directly comparable for the different
cameras.

5.2 Omnidirectional cameras

We calibrated also a fish-eye lens camera and two different catadioptric cameras.
The fish-eye lens which was used in the experiments is the ORIFL190-3 lens
manufactured by Omnitech Robotics. This lens has a 190◦ field of view and
it was attached to a PointGrey Dragonfly color video camera, which has a
resolution of 1024 × 768 pixels. The catadioptric cameras were constructed by
placing two different mirrors in front of the Canon S1 IS camera which has a
resolution of 2048 × 1536 pixels. The first mirror was a hyperbolic mirror from
Eizoh and the other mirror was an equiangular mirror from Kaidan. The field of
view provided by the hyperbolic mirror is such that when the mirror is placed
above the camera so that the optical axis is vertical the camera sees about
30◦ above and 50◦ below the horizon (the region directly below the mirror is
obscured by the camera). The equiangular mirror by Kaidan provides a slightly
larger view of field since it sees about 50◦ above and below the horizon. In the
azimuthal direction the viewing angle is 360◦ for both mirrors.

Since the field of view of all the three omnidirectional cameras exceeds a
hemisphere the calibration was not performed with the model Mp which is
based on the perspective projection model. Hence, we only report the results
obtained with the central camera models M6, M9, and M23. The calibration
experiments were done in a similar way as for the conventional cameras above
and the same calibration object was used. However, here the number of images
was 12 both in the calibration set and the test set. The number of images was
increased in order to have a better coverage for the wider field of view.

The results are illustrated in Table 1 where it can be seen that the model

1http://www.ee.oulu.fi/mvg/page/downloads
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Table 1: The RMS projection errors in pixels.

Mp M6 M9 M23

narrow-angle lens 0.293 0.339 0.325 0.280

test set error 0.249 0.309 0.259 0.236

wide-angle lens 0.908 0.078 0.077 0.067

test set error 0.823 0.089 0.088 0.088

fish-eye lens - 0.359 0.233 0.206

test set error - 0.437 0.168 0.187

hyperbolic mirror - 4.178 1.225 0.432

test set error - 3.708 1.094 0.392

equiangular mirror - 2.716 0.992 0.788

test set error - 3.129 1.065 0.984

M23 again shows best performance. The radially symmetric model M9 per-
forms almost equally well with the fish-eye camera and the equiangular camera.
However, for the hyperbolic camera the additional degrees of freedom in M23

clearly improve the calibration accuracy. This might be an indication that the
optical axis of the camera is not precisely aligned with the mirror axis. Neverthe-
less, the asymmetric central camera model M23 provides a good approximation
also for this catadioptric camera. Likewise, here the central model seems to be
tenable also for the equiangular catadioptric camera which is strictly speaking
non-central. Note that the resolution of the fish-eye camera was different than
that of the catadioptric cameras.

6 Conclusion

Geometric camera calibration is a prerequisite for image-based accurate 3D
measurements and it is therefore a fundamental task in computer vision and
photogrammetry. In this article we presented a review of calibration techniques
and camera models which commonly occur in applications. We concentrated on
the traditional calibration approach where the camera parameters are estimated
by using a calibration object whose geometry is known. The emphasis was on
central camera models which are the most common in applications and provide
a reasonable approximation for a wide range of cameras. The process of camera
calibration was additionally demonstrated with practical examples where several
different kinds of real cameras were calibrated.

Camera calibration is a wide topic and there is a lot of research which was
not possible to be covered here. For example, recently there has been research
efforts towards completely generic camera calibration techniques which could be
used for all kinds of cameras, also for the non-central ones. In addition, camera
self-calibration is an active research area which was not discussed in the scope
of this article. However, camera calibration using a calibration object and a
parametric camera model, as discussed here, is the most viable approach when
a high level of accuracy is required.
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(a) (b)

(c) (d)

Figure 4: Images of the calibration pattern taken with different types of cameras.
a) narrow-angle lens, b) wide-angle lens, c) fish-eye lens, d) hyperbolic mirror
combined with a narrow-angle lens
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