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Abstract

We propose an extension to the non-rigid factorisation

method to solve the affine structure and motion of a de-

formable object, where the shape basis is selected auto-

matically. In contrast to earlier approaches, we assume a

general uncalibrated, affine camera model whereas most of

the previous approaches assume a special case such as an

orthographic, weak-perspective or paraperspective camera

model. In general, there is a global affine ambiguity for

the shape bases. It turns out that a natural way of select-

ing the shape bases is to pick up the bases that are statis-

tically as independent as possible. The independent bases

can be found by independent subspace analysis (ISA) which

leads to the minimisation of mutual information between

the basis shapes. After selecting the shape basis by ISA,

only the in-the-subspace affine ambiguities remain from the

general affine ambiguity. To solve the remaining unknowns

of the general affine transformation, we propose an itera-

tive method that recovers the block structure of the factored

motion matrix. The experiments are provided with synthetic

structure and real face expression data in 2D and 3D, which

show promising results.

1. Introduction

The structure-from-motion problem of non-rigid objects

has recently received lot of attention in the computer vision

community. The rigid affine SFM problem can be solved

by rigid factorisation [16] using a rank constraint of the

measurement matrix and the singular value decomposition.

The factorisation approach can be generalised for non-rigid

scenes [3] by modelling the structure deformations as a lin-

ear combinations of rigid basis shapes. However, in the

non-rigid case, there are additional constraints for the mea-

surement matrix due to its block structure. Many solutions

to recover the block structure have been proposed of which

the earliest are [18, 2]. A usual tactic is to compute the ini-

tial estimate by some means after which to impose the block

form by bundle adjustment [8]. Under certain assumptions,

even closed-form solution can be found [19]. The use of the

rotation constraints however requires the use of some more

restricting camera model such as weak-perspective projec-

tion [19]. Many authors introduce priors to well-pose the

non-rigid structure-from-motion problem [17, 1, 14, 7, 5]

and handle missing data by a statistical framework. As far

as our method is concerned, the missing data can be simi-

larly handled as in [1, 14], or by the EM algorithm [7].

To our knowledge, there is however no completely sat-

isfactory general solution available that would suit for an

uncalibrated affine camera model while minimising the re-

projection error in the non-rigid factorisation problem. This

holds also for the determination of the number of the shape

bases and their affine ambiguity, although Xiao’s basis con-

straints is one way to fix it in the weak perspective case. To

determine the number of the shape bases, Torresani suggests

in [18] an iterative method to increase the number of shape

bases until sufficiently low reprojection error is achieved.

This approach is developed further in [1] as a coarse-to-fine

ordering of the deformation modes is proposed. Neverthe-

less, a method that satisfyingly solves these problems under

the general uncalibrated affine camera model, to our knowl-

edge, has not been proposed.

The key point of this paper is the observation that

the non-rigid factorisation problem is essentially blind

source separation problem. Independent component analy-

sis (ICA) provides a solution of the blind source separation

problem by defining the goal as finding such linear combi-

nations of data so that the individual components are statis-

tically as independent as possible [11]. The approach can

be seen as mutual information minimisation or non-linear

factor analysis, which characterise the underlying structure

factors of the data. ICA has turned out to be a powerful

statistical method and has established its position in the sig-



nal processing community. The multidimensional extension

of ICA is known as independent subspace analysis (ISA)

[10], where, in contrast to ICA, independence is assumed

between subspaces instead of one-dimensional signals.

As Theis [15] points out, no general ISA solution is

available yet and for now ISA problem has to be solved

in every case separately. The pioneering work [10] solves

the ISA problem in the context of phase- and shift invariant

features in image data. The same authors have recently de-

veloped a fixed-point algorithm for ISA [12], which is how-

ever prone to convergence to local minima. Specific ISA

solutions are additionally available for face recognition and

separation of mixed audio sources [4, 6].

The non-rigid factorisation problem can be seen as an

ISA problem since the shape bases are typically multidi-

mensional, 3D shapes. Given an ISA solution, an affinity

in each component (subspace) as well as permutations of

the components of the same dimension give another ISA

solution [15]. In our context this means that after we have

selected the shape basis by ISA, only the in-the-subspace

affine ambiguities and between-the-subspace permutation

ambiquity remain from the general affine ambiguity. In

practise, the ISA problem can be solved with the help of

ICA by first finding independent directions in the signal

space and then finding the dependent subsets of signals that

form the ICA components. We follow this approach by first

solving the ICA components by FastICA [9] algorithm and

then search for the dependent subspaces by finding the per-

mutations that reveal the block structure of the measurement

matrix. We additionally propose how the in-the-subspace

affine ambiguities can be solved that remain from the gen-

eral affine ambiguity after applying ISA.

The paper is organised as follows. In Section 2, we re-

view the standard non-rigid model. Independent component

analysis is presented and applied to the factorisation prob-

lem in Section 3. In Section 4, we show how the non-rigid

factorisation can be solved as an ISA problem. Experiments

are presented in Section 5 and conclusions are in Section 6.

2. Standard Non-rigid Model

The standard non-rigid factorisation assumes that the

non-rigid shape can be represented as a linear combination

of the shape bases. The modelled 2D projection m̂
i
j for a

3D point xj , corresponding to the measurement mi
j , is then

m̂
i
j = M

i
xj + t

i = M
i

(
∑

k

αi
kbkj

)

+ t
i, (1)

where M
i is 2 × 3 projection matrix to the image i, t

i is

the corresponding translation vector, and the coefficients

αi
k and the shape basis points bkj form the linear com-

bination, which is supposed to represent the non-rigid de-

formation. Assuming Gaussian noise, the maximum like-

lihood solution with respect to the unknown parameters

M
i, ti, αi

k,bkj , i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K,

minimises the cost function

∑

i,j

‖m̂i
j −m

i
j‖2 =

∑

i,j

‖Mi
∑

k

αi
kbkj + t

i −m
i
j‖2 (2)

or equivalently

min ‖W − Ŵ‖2

fro, (3)

where the translation corrected measurements m
i
j−t̂

i, t̂i =
1

J

∑

j m
i
j , are collected into the matrix W, implying

W ≃








α1
1M

1 α1
2M

1 · · · α1
KM

1

α2
1M

2 α2
2M

2 · · · α2
KM

2

...
...

. . .
...

αI
1M

I αI
2M

I · · · αI
KM

I








︸ ︷︷ ︸

,M








B1

B2

...

BK








︸ ︷︷ ︸

,B

, (4)

where Bk = (bk1 bk2 · · · bkJ). From (4) it follows that

the noise free measurement matrix has the rank constraint

R , rank Ŵ ≤ 3K. The matrix that minimises (3) with

the rank constraint can be obtained from the singular value

decomposition of W = USV
T by truncating the smallest

singular values, keeping the R largest, and removing the

corresponding singular vectors, giving

Ŵ =

(
1√
J

ŨS̃

)

︸ ︷︷ ︸

,M̃

(√
JṼ

T

)

︸ ︷︷ ︸

,B̃

= M̃A
︸︷︷︸

,M̂

A
−1

B̃
︸ ︷︷ ︸

,B̂

= M̂B̂, (5)

where A is an unknown affine transformation. The singu-

lar value decomposition does not generally force the block

structure for M̃ which M has in (4). To find the estimates

for the uncalibrated, affine non-rigid structure B̂ and motion

matrix M̂, we need to search for the best affine transforma-

tion A that recovers the block structure of the matrix as well

as possible; the recovery of A will be studied in Section 3.

3. Shape Bases via ICA

3.1. Why ICA?

The independent component analysis is suitable for

problems of blind source separation where one seeks to

recover independent source signals and the mixing coeffi-

cients after examining only mixed signals. For instance,

with two source signals s1(n), s2(n), n = 1, 2, . . . ., and

observed signals

x1(n) = a11s1(n) + a12s2(n), (6)

x2(n) = a21s1(n) + a22s2(n). (7)



In ICA, it is sufficient to assume that the source signals are

statistically independent, to recover the mixing coefficients

and the source signals from the observed signals.

Solving the affine transformation in (5) can be seen as the

blind signal separation problem above. The shape basis is a

linear combination of the shape bases, where an individual

signal is interpreted to be a row vector of B̂. In other words,

B̃ = AB̂, (8)

i.e., A has the role of the the mixing matrix in the ICA

model. In non-rigid SFM problem, statistical independence

of the shape basis vectors is not an unrealistic assumption

while it does not even need to hold exactly. For instance,

facial expressions, can be assumed to contain statistically

independent factors, the base expressions. If the compo-

nents are not strictly statistically independent, we will just

obtain the projection pursuit directions instead.

3.2. Mutual Information Minimisation

As the criterion for statistical independence, ICA can be

defined as the minimisation of the mutual information of N
scalar random variables X1,X2, . . . ,XN , or

I{X1,X2, . . . ,XN} =

N∑

i=1

H{Xi} − H{X}, (9)

where H denotes the differential entropy defined as

H{X} = −
∫

p(x) log p(x)dx, (10)

where x denotes the realisation of the random vector X.

The differential entropy has a connection to coding theory

and, loosely speaking, (9) describes how much the compres-

sion code length of the vector X increases if all its elements

are coded separately instead of being coded together. Mu-

tual information is zero if and only if the random variables

are statistically independent. Minimisation of the mutual in-

formation can thus be taken as a natural definition for ICA.

Usual preprocessing, data centring and whitening makes

the implementation of the ICA easier. Assuming that the

signals are centred, uncorrelated, and with unity variance, it

can be shown that mutual information takes the form

I{X1,X2, . . . ,XN} = C −
∑

i

N{Xi}, (11)

where C is a constant and N denotes the negentropy defined

as

N{X} = H{XG} − H{X}, (12)

where XG is the Gaussian random vector with the same co-

variance as X, thus the minimisation of the mutual informa-

tion is equivalent to the problem of finding the maximally

non-Gaussian directions from the centred and whitened

data.

3.3. Centring and Whitening

Proposition 3.1 Factorisation by SVD produces a shape

basis that is centred and whitened, that is, the columns of

the intermediate basis B̃ have zero mean and they are un-

correlated, with the identity matrix as the covariance ma-

trix.

Proof. We first prove that the columns of B have zero mean.

Using the fact that the measurement matrix has been mean

corrected, it follows that

0 =
1

J
W1 =

1

J
ŨS̃Ṽ

T
1 = M̃

(
1

J
B̃1

)

= M̃c̄, (13)

where c̄ denotes the mean of B̃ over the column dimension.

Hence, c̄ ∈ Ker{M̃}. However, the rank of M̃ is R, thus

Ker{M̃} = 0 implies c̄ = 0.

We then show that the columns of B̃ are uncorrelated.

Let cj , j = 1, . . . , J , denote the column vectors and rr,

r = 1, . . . , R, the row vectors of B̃. The sample covariance

matrix of the columns is

Ĉ =
1

J

∑

j

(cj − c̄)(cj − c̄)T =
1

J

∑

j

cjc
T

j . (14)

On the other hand, the rows of B̃ are orthogonal so that

r
T

r rq =

{
J if r = q,

0 otherwise,
(15)

so we may write

1

J

∑

j

cjc
T

j =
1

J








r
T
1 r1 r

T
1 r2 · · · r

T
1 rR

r
T
2 r1 r

T
2 r2 · · · r

T
2 rR

...
...

. . .
...

r
T
Rr1 r

T
Rr2 · · · r

T
RrR








= I,

(16)

and the claim follows.
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3.4. Recovery of the ICA Shape Bases

Since the intermediate basis is centred and white, we im-

mediately have the following result.

Proposition 3.2 The affine transform Ã that recovers the

normalised independent components B̃ICA from B̃, such

that B̃ = ÃB̃ICA, is an orthogonal transform.

Proof. By taking the expectation over both sides in (16), and

denoting the columns of B̃ICA by sj , it follows that

I = E







1

J

J∑

j=1

cjc
T

j






= E







1

J

J∑

j=1

Ãsjs
T

j Ã
T







= Ã




1

J

J∑

j=1

E
{
sjs

T

j

}



 Ã
T = ÃÃ

T.

(17)
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In practise, Ã is computed from B̃ using the FastICA

algorithm [9], which is a numerical implementation to min-

imise (11).

4. Signal Sorting and Subspace Affinity

Even with ICA, there are two ambiguities that cannot be

recovered: (1) the relative variances or energies of the in-

dependent components, and (2) their order. If one acknowl-

edges that the projection pursuit directions form the shape

bases, we would only have a permutation and relative basis

vector scaling ambiguities left in the affine transform. More

generally, however, the ISA model allows any dependence

structure between basis vectors in an independent subspace,

so we have a permutation and in-the-subspace affine am-

biguities that need to be determined. We will do this by

searching for the nearest matrix with the block structure

shown in (4).

The mixing matrix A will thus have the form

A = ÃPD, (18)

where P is a permutation matrix and D is a block diagonal

matrix containing the in-the-subspace affinities Dk, k =
1, 2, . . . ,K of the independent subspaces in B̂, thus,

M̂ = M̃ÃPD (19)

and

B̂ = D
−1

P
−1

Ã
−1

B̃. (20)

The remaining problem is to find P and D so that the block

matrix form of (4) is recovered as well as possible.

The best block matrix form is searched in the least

squares sense, i.e., we compute

min
αi

k
,Mi,Dk,P

i=1,2,...,I
k=1,2,...,K

‖M − M̃ÃPD‖2

fro, (21)

subject to ‖Mi‖2

fro
= 1, i = 1, 2, . . . , I , ‖Dk‖2

fro
= 1,

k = 1, 2, . . . ,K. The minimisation could be performed

directly by bundle adjustment but we additionally propose

an alternative, straightforward iteration method based on the

following two conditional solutions.

Proposition 4.1 The estimates for αi
k and M

i, i =
1, 2, . . . , I , k = 1, 2, . . . ,K, that minimise (21), condi-

tioned to an estimate for the in-the-subspace affinities D,

and the permutation matrix P, can be computed by SVD.

Proof. Let N = M̃ÃPD, and let N
i
k denote the 2 × 3

blocks of N, so the objective function takes the form

E = ‖M − M̃ÃPD
︸ ︷︷ ︸

,N

‖2

fro =
∑

i,k

‖αi
kM

i − N
i
k‖2

fro

=
∑

i,k

‖αi
kvec(M

i
) − vec(Ni

k)‖2

=
∑

i

∥
∥

(
αi

1vec(Mi) αi
2vec(Mi) · · · αi

Kvec(Mi)
)

−
(
vec(Ni

1) vec(Ni
2) · · · vec(Ni

K)
)

︸ ︷︷ ︸

,Ni

∥
∥

2

fro

(22)

The estimates for the unknowns in each image i are thus

obtained by computing SVD for the matrix N
i and truncat-

ing all the singular values and the corresponding singular

vectors except the largest so that N
i ≈ si

u
i
v

iT. Denoting

αi = (αi
1, α

i
2, . . . , α

i
K), we may write

M̂
i = mat(ui), α̂i = si

v
i, i = 1, 2, . . . , I. (23)
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Proposition 4.2 There is a one parameter family of solu-

tions for the in-the-subspace affinities D that minimise the

error (21) given estimates for αi
k, M

i, i = 1, 2, . . . , I ,

k = 1, 2, . . . ,K, and the permutation matrix P.

Proof. Let L = M̃ÃP so that we minimise

E = ‖M − LD‖2

fro =
∑

i,k

‖αi
kM

i − L
i
kDk‖2

fro

=
∑

i,k

∥
∥
∥
∥
∥
αi

kvec(Mi)
︸ ︷︷ ︸

,ai

k

−





L
i
k 0 0

0 L
i
k 0

0 0 L
i
k





︸ ︷︷ ︸

,Li

k

vec(Dk)
︸ ︷︷ ︸

dk

∥
∥
∥
∥
∥

2

=
∑

k

(
∑

i

a
i
k

T
a

i
k

)

︸ ︷︷ ︸

,a2

k

− 2

(
∑

i

a
i
k

T
L

i
k

)

︸ ︷︷ ︸

,cT

k

dk+

+ dk
T

(
∑

i

L
i
k

T
L

i
k

)

︸ ︷︷ ︸

,Lk

dk

(24)

Taking into account the constraint on the Frobenius norm of

the matrices Dk, k = 1, 2, . . . ,K, the Lagrangian takes the

form

L =
∑

k

a2

k−2cT

k dk+dk
T
Lkdk+λk

(
‖dk‖2 − 1

)
. (25)



Algorithm 1 ISA/ICA-based non-rigid factorisation

1. Select a permutation matrix P that has not yet been

selected.

2. Set the in-the-subspace affinities D̂k = I, k =
1, 2, . . . ,K.

3. Compute the estimates for αi
k, M

i, conditioned to an

estimate for the in-the-subspace affinities D̂k, i =
1, 2, . . . , I , k = 1, 2, . . . ,K.

4. Compute the estimates for Dk, k = 2, 3, . . . ,K, given

the previous estimates α̂i
k′ , M̂

i, i = 1, 2, . . . , I , k′ =
1, 2, . . . ,K.

5. Iterate between steps 3-4 until convergence. Store the

estimates and the obtained reprojection error estimate.

6. If there are permutations left, go to step 1. Otherwise,

select the permutation and the estimates that minimise

the reprojection error.

Differentiating L with respect to dk, and setting the result

to zero yields

dk = (Lk + λkI)
−1

ck, k = 1, 2, . . . ,K, (26)

which is a one parameter family of solutions in λk. The so-

lution satisfying the unity norm for dk is unique and can be

found by one-dimensional search, where the corresponding

objective function is strictly increasing in λk.

¤

Our iterative method for minimising (21) is thus con-

structed by searching over all the possible permutations P

and, given a permutation searching for the best block matrix

form and in-the-subspace affinity, iterating the results of the

Proposition 4.1 and 4.2. To avoid a singular solution we

additionally fix, without a loss of generality, the first in-the-

subspace affinity D1 to the identity matrix. The algorithm

is summarised in Algorithm 1.

5. Experiments

We first show a simple proof of the principle by creating

a synthetic object which contains two 3D point sets as shape

bases each of containing 300 3D points. The first basis was

generated as







x1 = x(n), x(n) ∼ Uniform(−0.5, 0.5)
y1 = y(n), y(n) ∼ Uniform(−0.5, 0.5)
z1 = z(n), z(n) ∼ Uniform(−0.5, 0.5)

(27)
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(b) Recovered

Figure 1: Synthetic 3D basis shapes shown as one-dimensional

signals.

Figure 2: Training images: two neutral, two smiling and two sur-

prised expressions.



and the second as






x2 = sin n
600π

y2 = sign
(
sin n

60π

)

z2 = z(n), z(n) ∼ N(0, 1)
. (28)

We modelled 6 projection views by generating six ortho-

graphic cameras pointing towards random directions. The

mixing coefficients α = {αi
k} for the basis shapes were set

as

α0 =
(

1 0.55 0.1 1 0.55 0.1
0.87 0.91 0.16 −0.5 −0.97 −0.31

)
.

and the measurement matrix was built using the model (4).

To solve the inverse problem, we decomposed the mea-

surement matrix on the basis of (5) and computed the inde-
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Figure 3: Manually extracted training shapes.

 

 

bored surprised

happysad

Figure 4: The two estimated ICA basis shapes. The mean expres-

sion over the training shapes is shown in the middle and the ICA

component added with an increasing (decreasing) weight to the

right (left).

pendent components by FastICA for the rows of the shape

basis matrix B̂, shown in Fig. 1(b). It can be seen that the

original signals were succesfully recovered. We see also

the well known fact that ICA cannot recover the order or

the sign of the signals.

Another experiment was carried out with real face ex-

pression data. We picked up six training images (Fig. 2)

from the Japanese Female Facial Expression (JAFFE)

database [13]. From each image, 54 feature points were

manually exctracted to form training shapes (Fig. 3) for our

algorithm. In this example, we assumed a 2×2 affine model

for the transformation from the shape basis to the image,

as the 3D information was very weak in the training data.

From the measurement matrix, the independent shape com-

ponents were then extracted by the ISA method given in Al-

gorithm 1, assuming the model with two shape bases. The

recovered shape bases are illustrated in Fig. 4. The first ba-

sis shape describes sad-happy mood of the female, whereas

the second mode represents bored-surprised emotion. Note

that the method is able to generalise the semantic sad-happy

and bored-surprised modes on the basis of the training data,

even though there is no unhappy example in the training

data.

In the third experiment, we tested our algorithm with the

real 3D data; the facial motion capture data in [17]. The data

contains 3D position measurements of 40 markers attached

to the subject’s face where the subject performed a range of

facial expressions and dialogue while rotating his head hori-

zontally. The sequence consisted of 316 frames in total. The

3D data was projected to images by orthogonal projection

where the camera was kept in a fixed position. From the

projection data, the camera projection matrices as well as

the shape bases were recovered using the Algorithm 1 with

the assumption of two shape bases (K = 2). For compari-

son, we computed the result with the EM-LDS method [17].

The results are shown in Table 1 where it can be seen that

the relative error ‖W−Ŵ‖fro/‖W‖fro is smaller than with

the EM-LDS method. As another proof of the principle, we

illustrate the reprojection of the recovered 3D points on to

images in Figure 5 and show the recovered shape bases in

Figure 6. It is intuitively pleasing to see that the emotions

sad–angry and neutral-mouth-shut–neutral-mouth-open are

recovered as the statistically independent shape bases by

ISA.

Table 1: Face motion capture data (316 frames) with EM-LDS

algorithm [17] and our ISA-algorithm as K = 2.

method relative 2D error

EM-LDS 0.0164

ISA 0.0110



Figure 5: 2D reprojections of the face motion capture data [17],

with K = 2, in 15 frames picked uniformly from the sequence.

Our algorithm was given 2D tracks as inputs. Ground-truth fea-

tures are shown as green circles; reprojections are blue dots.

6. Conclusions

In this paper, we have approached the uncalibrated non-

rigid structure-from-motion problem as a blind source sep-

aration problem. As common approach for non-rigid affine

SFM is to model shapes as a linear combination of rigid

basis shapes, the challenging problem has been in finding

the basis shapes, consistent with the non-rigid factorisation

model, that provide a descriptive model for the non-rigid

data. Our solution, based on independent subspace analy-

sis, searches for the shape bases that are statistically as in-

dependent as possible. The ISA solution reduces the global

affine ambiguity of the standard non-rigid factorisation into

sad angry

neutral mouth shut neutral mouth open

Figure 6: The three-dimensional shape modes in the face motion

capture data [17] reprojected into a randomly picked frame num-

ber 51. The first mode represents the sad–angry emotion where as

the second a neutral mouth-shut–mouth-open expression.

in-the-subspace affine ambiguities, for which we proposed

an iterative solution to find the solution that preserves the

block structure of the measurement matrix as well as pos-

sible. In contrast to the exisiting algorithms for non-rigid

factorisation, our approach is general, uncalibrated, i.e., the

solution is given up to an unknown 3D affinity. The solution

can be updated to Euclidean by applying metric constrains

as it is conventional in the stratified approach for SFM. Our

results are promising while showing that meaningful statis-

tically independent shape basis can be found e.g. in facial

expression data both which explain the non-rigid data. In

the future, we intend to investigate other ISA algorithms

that might be more effective in the non-rigid factorisation

problem.
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