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Abstract

We propose an extension to the non-rigid factorisation
method to solve the affine structure and motion of a de-
formable object, where the shape basis is selected auto-
matically. In contrast to earlier approaches, we assume a
general uncalibrated, affine camera model whereas most of
the previous approaches assume a special case such as an
orthographic, weak-perspective or paraperspective camera
model. In general, there is a global affine ambiguity for
the shape bases. It turns out that a natural way of select-
ing the shape bases is to pick up the bases that are statis-
tically as independent as possible. The independent bases
can be found by independent subspace analysis (ISA) which
leads to the minimisation of mutual information between
the basis shapes. After selecting the shape basis by ISA,
only the in-the-subspace affine ambiguities remain from the
general affine ambiguity. To solve the remaining unknowns
of the general affine transformation, we propose an itera-
tive method that recovers the block structure of the factored
motion matrix. The experiments are provided with synthetic
structure and real face expression data in 2D and 3D, which
show promising results.

1. Introduction

The structure-from-motion problem of non-rigid objects
has recently received lot of attention in the computer vision
community. The rigid affine SFM problem can be solved
by rigid factorisation [16] using a rank constraint of the
measurement matrix and the singular value decomposition.
The factorisation approach can be generalised for non-rigid
scenes [3] by modelling the structure deformations as a lin-
ear combinations of rigid basis shapes. However, in the
non-rigid case, there are additional constraints for the mea-
surement matrix due to its block structure. Many solutions
to recover the block structure have been proposed of which

the earliest are [18, 2]. A usual tactic is to compute the ini-
tial estimate by some means after which to impose the block
form by bundle adjustment [8]. Under certain assumptions,
even closed-form solution can be found [19]. The use of the
rotation constraints however requires the use of some more
restricting camera model such as weak-perspective projec-
tion [19]. Many authors introduce priors to well-pose the
non-rigid structure-from-motion problem [17, 1, 14, 7, 5]
and handle missing data by a statistical framework. As far
as our method is concerned, the missing data can be simi-
larly handled as in [1, 14], or by the EM algorithm [7].

To our knowledge, there is however no completely sat-
isfactory general solution available that would suit for an
uncalibrated affine camera model while minimising the re-
projection error in the non-rigid factorisation problem. This
holds also for the determination of the number of the shape
bases and their affine ambiguity, although Xiao’s basis con-
straints is one way to fix it in the weak perspective case. To
determine the number of the shape bases, Torresani suggests
in [18] an iterative method to increase the number of shape
bases until sufficiently low reprojection error is achieved.
This approach is developed further in [1] as a coarse-to-fine
ordering of the deformation modes is proposed. Neverthe-
less, a method that satisfyingly solves these problems under
the general uncalibrated affine camera model, to our knowl-
edge, has not been proposed.

The key point of this paper is the observation that
the non-rigid factorisation problem is essentially blind
source separation problem. Independent component analy-
sis (ICA) provides a solution of the blind source separation
problem by defining the goal as finding such linear combi-
nations of data so that the individual components are statis-
tically as independent as possible [11]. The approach can
be seen as mutual information minimisation or non-linear
factor analysis, which characterise the underlying structure
factors of the data. ICA has turned out to be a powerful
statistical method and has established its position in the sig-



nal processing community. The multidimensional extension
of ICA is known as independent subspace analysis (ISA)
[10], where, in contrast to ICA, independence is assumed
between subspaces instead of one-dimensional signals.

As Theis [15] points out, no general ISA solution is
available yet and for now ISA problem has to be solved
in every case separately. The pioneering work [10] solves
the ISA problem in the context of phase- and shift invariant
features in image data. The same authors have recently de-
veloped a fixed-point algorithm for ISA [12], which is how-
ever prone to convergence to local minima. Specific ISA
solutions are additionally available for face recognition and
separation of mixed audio sources [4, 6].

The non-rigid factorisation problem can be seen as an
ISA problem since the shape bases are typically multidi-
mensional, 3D shapes. Given an ISA solution, an affinity
in each component (subspace) as well as permutations of
the components of the same dimension give another ISA
solution [15]. In our context this means that after we have
selected the shape basis by ISA, only the in-the-subspace
affine ambiguities and between-the-subspace permutation
ambiquity remain from the general affine ambiguity. In
practise, the ISA problem can be solved with the help of
ICA by first finding independent directions in the signal
space and then finding the dependent subsets of signals that
form the ICA components. We follow this approach by first
solving the ICA components by FastICA [9] algorithm and
then search for the dependent subspaces by finding the per-
mutations that reveal the block structure of the measurement
matrix. We additionally propose how the in-the-subspace
affine ambiguities can be solved that remain from the gen-
eral affine ambiguity after applying ISA.

The paper is organised as follows. In Section 2, we re-
view the standard non-rigid model. Independent component
analysis is presented and applied to the factorisation prob-
lem in Section 3. In Section 4, we show how the non-rigid
factorisation can be solved as an ISA problem. Experiments
are presented in Section 5 and conclusions are in Section 6.

2. Standard Non-rigid Model

The standard non-rigid factorisation assumes that the
non-rigid shape can be represented as a linear combination
of the shape bases. The modelled 2D projection rh; for a
3D point x;, corresponding to the measurement m; is then

n! = M'x; +t' =M (Z a;b;w) +t, (D
k

where M’ is 2 x 3 projection matrix to the image 4, t' is
the corresponding translation vector, and the coefficients
! and the shape basis points by; form the linear com-
bination, which is supposed to represent the non-rigid de-

formation. Assuming Gaussian noise, the maximum like-
lihood solution with respect to the unknown parameters
M, t" o), by, i=1,...,1,j=1,....,J,k=1,... | K,
minimises the cost function
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or equivalently
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where the translation corrected measurements mé- —ti ¢ =
437, mj, are collected into the matrix W, implying
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where By = (b bga -+ bgy). From (4) it follows that
the noise free measurement matrix has the rank constraint
R 2 rank W < 3K. The matrix that minimises (3) with
the rank constraint can be obtained from the singular value
decomposition of W = USVT by truncating the smallest
singular values, keeping the R largest, and removing the
corresponding singular vectors, giving
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where A is an unknown affine transformation. The singu-
lar value decomposition does not generally force the block
structure for M which M has in (4). To find the estimates
for the uncalibrated, affine non-rigid structure B and motion
matrix M, we need to search for the best affine transforma-
tion A that recovers the block structure of the matrix as well
as possible; the recovery of A will be studied in Section 3.

3. Shape Bases via ICA
3.1. Why ICA?

The independent component analysis is suitable for
problems of blind source separation where one seeks to
recover independent source signals and the mixing coeffi-
cients after examining only mixed signals. For instance,
with two source signals s1(n), s2(n), n = 1,2,...., and
observed signals

z1(n) = ar1s1(n) + a12s2(n), (6)
2o(n) = ag181(n) + asesa(n). (7)



In ICA, it is sufficient to assume that the source signals are
statistically independent, to recover the mixing coefficients
and the source signals from the observed signals.

Solving the affine transformation in (5) can be seen as the
blind signal separation problem above. The shape basis is a
linear combination of the shape bases, where an individual
signal is interpreted to be a row vector of B. In other words,

B = AB, (®)

i.e., A has the role of the the mixing matrix in the ICA
model. In non-rigid SEM problem, statistical independence
of the shape basis vectors is not an unrealistic assumption
while it does not even need to hold exactly. For instance,
facial expressions, can be assumed to contain statistically
independent factors, the base expressions. If the compo-
nents are not strictly statistically independent, we will just
obtain the projection pursuit directions instead.

3.2. Mutual Information Minimisation

As the criterion for statistical independence, ICA can be
defined as the minimisation of the mutual information of N
scalar random variables X1, Xs,..., Xy, or

N
Xy, Xa,...,Xn} =Y H{X;} - H{X}, (9
i=1

where H denotes the differential entropy defined as

H{X}=— / p(x) log p(x)dx, (10)

where x denotes the realisation of the random vector X.
The differential entropy has a connection to coding theory
and, loosely speaking, (9) describes how much the compres-
sion code length of the vector X increases if all its elements
are coded separately instead of being coded together. Mu-
tual information is zero if and only if the random variables
are statistically independent. Minimisation of the mutual in-
formation can thus be taken as a natural definition for ICA.

Usual preprocessing, data centring and whitening makes
the implementation of the ICA easier. Assuming that the
signals are centred, uncorrelated, and with unity variance, it
can be shown that mutual information takes the form

H{X1, Xy, Xy} =C =Y N{X;}, (1)

where C'is a constant and N denotes the negentropy defined
as
N{X} = H{X¢} — H{X}, (12)

where X is the Gaussian random vector with the same co-
variance as X, thus the minimisation of the mutual informa-
tion is equivalent to the problem of finding the maximally
non-Gaussian directions from the centred and whitened
data.

3.3. Centring and Whitening

Proposition 3.1 Factorisation by SVD produces a shape
basis that is centred and whitened, that is, the columns of
the intermediate basis B have zero mean and they are un-
correlated, with the identity matrix as the covariance ma-
trix.

Proof. We first prove that the columns of B have zero mean.
Using the fact that the measurement matrix has been mean
corrected, it follows that
1 1~~~ ~ 1~ -
0=-W1=-USV'1i=M|(=-B1)=Me¢, (3
7 J (J ) ¢ (13
where ¢ denotes thg mean of B over the columg dimension.
Hence, ¢ € Ker{M}. However, the rank of M is R, thus
Ker{M} = 0 implies ¢ = 0. )
We then show that the columns of B are uncorrelated.
Letc;, j = 1,...,J, denote the column vectors and r,,

r=1,..., R, the row vectors of B. The sample covariance
matrix of the columns is

N 1 1
C=- Zj:(cj —¢)(c;—o)" = = zj:cjc}. (14)

On the other hand, the rows of B are orthogonal so that
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and the claim follows.
O

3.4. Recovery of the ICA Shape Bases

Since the intermediate basis is centred and white, we im-
mediately have the following result.

Proposition 3.2 The affine transform :& that recovers the
normalised independent components Bica from B, such
that B = AByjca, is an orthogonal transform.

Proof. By taking the expectation over both sides in (16), and
denoting the columns of Bica by s;, it follows that

=5 lchc? i
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J
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In practise, A is computed from B using the FastICA

algorithm [9], which is a numerical implementation to min-
imise (11).

4. Signal Sorting and Subspace Affinity

Even with ICA, there are two ambiguities that cannot be
recovered: (1) the relative variances or energies of the in-
dependent components, and (2) their order. If one acknowl-
edges that the projection pursuit directions form the shape
bases, we would only have a permutation and relative basis
vector scaling ambiguities left in the affine transform. More
generally, however, the ISA model allows any dependence
structure between basis vectors in an independent subspace,
so we have a permutation and in-the-subspace affine am-
biguities that need to be determined. We will do this by
searching for the nearest matrix with the block structure
shown in (4).

The mixing matrix A will thus have the form

A = APD, (18)

where P is a permutation matrix and D is a block diagonal
matrix containing the in-the-subspace affinities Dy, k =
1,2, ..., K of the independent subspaces in B, thus,

M = MAPD (19)

and
B=D 'P'A!B. (20)

The remaining problem is to find P and D so that the block
matrix form of (4) is recovered as well as possible.

The best block matrix form is searched in the least
squares sense, i.e., we compute

~min _|M - MAPDI,, Q1)
P

a;,M", Dy,

subject to M2, = 1,7 = 1,2,...,1, |DillZ, = 1,
k = 1,2,..., K. The minimisation could be performed
directly by bundle adjustment but we additionally propose
an alternative, straightforward iteration method based on the
following two conditional solutions.

Proposition 4.1 The estimates for o and M, i =
1,2,....1, k = 1,2,..., K, that minimise (21), condi-
tioned to an estimate for the in-the-subspace affinities D,
and the permutation matrix P, can be computed by SVD.

Proof. Let N = MAPD, and let N denote the 2 x 3

blocks of N, so the objective function takes the form

E = ||M 7\MAPD,”?ro - Zk ||a;cMZ - ;‘cH%ro
AN b

= llajvec(M’) — vec(N})|>
ik
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LN
(22)

The estimates for the unknowns in each image ¢ are thus
obtained by computing SVD for the matrix N* and truncat-
ing all the singular values and the corresponding singular

; i i T .
vectors except the largest so that N* ~ s"u’v’" . Denoting
a' = (of,ab, ..., ak), we may write

M’ = mat(u’), & =s'v', i=1,2,...,I. (23)

O

Proposition 4.2 There is a one parameter family of solu-
tions for the in-the-subspace affinities D that minimise the
error (21) given estimates for of, M', i = 1,2,...,1,
k=1,2,..., K, and the permutation matrix P.

Proof. Let L = MAP so that we minimise

E= HM - LDHf2r0 = Z Ha}’clvp - L};{JD]CH%I‘O

ik
A /L 0 o0 2
:Z ajvec(M’) — [ 0 Li 0 |vec(Dy)
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(24)

Taking into account the constraint on the Frobenius norm of
the matrices D¢, k = 1,2, ..., K, the Lagrangian takes the
form

L=> aj—2cfdp+d; " Lipdp+As ([di]® — 1) . (25)
k



Algorithm 1 ISA/ICA-based non-rigid factorisation

1. Select a permutation matrix P that has not yet been
selected.

2. Set the in-the-subspace affinities ljk =1 k£ =
1,2,..., K.

3. Compute the estimates for o, M, conditioned to an

estimate for the in-the-subspace affinities ljk, i =
1,2,....[,k=1,2,..., K.

4. Compute the estimates for Dy, k = 2,3, ..., K, given
the previous estimates &},, M*, ¢ = 1,2,..., I, k' =
1,2,..., K.

5. Iterate between steps 3-4 until convergence. Store the
estimates and the obtained reprojection error estimate.

6. If there are permutations left, go to step 1. Otherwise,
select the permutation and the estimates that minimise
the reprojection error.

Differentiating L with respect to dy, and setting the result
to zero yields
di = L+ D) er, k=1,2,... K, (26)
which is a one parameter family of solutions in Ag. The so-
lution satisfying the unity norm for dj, is unique and can be
found by one-dimensional search, where the corresponding
objective function is strictly increasing in \.
O
Our iterative method for minimising (21) is thus con-
structed by searching over all the possible permutations P
and, given a permutation searching for the best block matrix
form and in-the-subspace affinity, iterating the results of the
Proposition 4.1 and 4.2. To avoid a singular solution we
additionally fix, without a loss of generality, the first in-the-
subspace affinity D, to the identity matrix. The algorithm
is summarised in Algorithm 1.

5. Experiments

We first show a simple proof of the principle by creating
a synthetic object which contains two 3D point sets as shape
bases each of containing 300 3D points. The first basis was
generated as

x1 =z(n), x(n)~ Uniform(—0.5,0.5)
y1 =y(n), y(n)~ Uniform(—0.5,0.5) (27)
z1 = z(n), z(n)~ Uniform(—0.5,0.5)
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Figure 1: Synthetic 3D basis shapes shown as one-dimensional
signals.

Figure 2: Training images: two neutral, two smiling and two sur-
prised expressions.



and the second as

To = SIn %~

600
Yo = sign (sm %) . (28)
2 = Z(TL), Z(?’L) ~ N(Ov 1)

We modelled 6 projection views by generating six ortho-
graphic cameras pointing towards random directions. The
mixing coefficients o« = {a. } for the basis shapes were set
as

_ (105501 1 055 0.1
Qo = (0.87 0.91 0.16 —0.5 —0.97 —0.31) ‘
and the measurement matrix was built using the model (4).

To solve the inverse problem, we decomposed the mea-

surement matrix on the basis of (5) and computed the inde-
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Figure 3: Manually extracted training shapes.
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Figure 4: The two estimated ICA basis shapes. The mean expres-
sion over the training shapes is shown in the middle and the ICA
component added with an increasing (decreasing) weight to the
right (left).

pendent components by FastICA for the rows of the shape
basis matrix B, shown in Fig. 1(b). It can be seen that the
original signals were succesfully recovered. We see also
the well known fact that ICA cannot recover the order or
the sign of the signals.

Another experiment was carried out with real face ex-
pression data. We picked up six training images (Fig. 2)
from the Japanese Female Facial Expression (JAFFE)
database [13]. From each image, 54 feature points were
manually exctracted to form training shapes (Fig. 3) for our
algorithm. In this example, we assumed a 2 x 2 affine model
for the transformation from the shape basis to the image,
as the 3D information was very weak in the training data.
From the measurement matrix, the independent shape com-
ponents were then extracted by the ISA method given in Al-
gorithm 1, assuming the model with two shape bases. The
recovered shape bases are illustrated in Fig. 4. The first ba-
sis shape describes sad-happy mood of the female, whereas
the second mode represents bored-surprised emotion. Note
that the method is able to generalise the semantic sad-happy
and bored-surprised modes on the basis of the training data,
even though there is no unhappy example in the training
data.

In the third experiment, we tested our algorithm with the
real 3D data; the facial motion capture data in [17]. The data
contains 3D position measurements of 40 markers attached
to the subject’s face where the subject performed a range of
facial expressions and dialogue while rotating his head hori-
zontally. The sequence consisted of 316 frames in total. The
3D data was projected to images by orthogonal projection
where the camera was kept in a fixed position. From the
projection data, the camera projection matrices as well as
the shape bases were recovered using the Algorithm 1 with
the assumption of two shape bases (K = 2). For compari-
son, we computed the result with the EM-LDS method [17].
The results are shown in Table 1 where it can be seen that
the relative error |[W — W || /|| W || is smaller than with
the EM-LDS method. As another proof of the principle, we
illustrate the reprojection of the recovered 3D points on to
images in Figure 5 and show the recovered shape bases in
Figure 6. It is intuitively pleasing to see that the emotions
sad—angry and neutral-mouth-shut—neutral-mouth-open are
recovered as the statistically independent shape bases by
ISA.

Table 1: Face motion capture data (316 frames) with EM-LDS
algorithm [17] and our ISA-algorithm as K = 2.

method relative 2D error
EM-LDS 0.0164
ISA 0.0110




Figure 5: 2D reprojections of the face motion capture data [17],
with K = 2, in 15 frames picked uniformly from the sequence.
Our algorithm was given 2D tracks as inputs. Ground-truth fea-
tures are shown as green circles; reprojections are blue dots.

6. Conclusions

In this paper, we have approached the uncalibrated non-
rigid structure-from-motion problem as a blind source sep-
aration problem. As common approach for non-rigid affine
SFM is to model shapes as a linear combination of rigid
basis shapes, the challenging problem has been in finding
the basis shapes, consistent with the non-rigid factorisation
model, that provide a descriptive model for the non-rigid
data. Our solution, based on independent subspace analy-
sis, searches for the shape bases that are statistically as in-
dependent as possible. The ISA solution reduces the global
affine ambiguity of the standard non-rigid factorisation into

e = :4"1‘:‘, Bty e
o : sl EEUN R\
B = = = A v
sad angr:

neutral mouth shut neutral mouth open
<~ —_—

Figure 6: The three-dimensional shape modes in the face motion
capture data [17] reprojected into a randomly picked frame num-
ber 51. The first mode represents the sad—angry emotion where as
the second a neutral mouth-shut-mouth-open expression.

in-the-subspace affine ambiguities, for which we proposed
an iterative solution to find the solution that preserves the
block structure of the measurement matrix as well as pos-
sible. In contrast to the exisiting algorithms for non-rigid
factorisation, our approach is general, uncalibrated, i.e., the
solution is given up to an unknown 3D affinity. The solution
can be updated to Euclidean by applying metric constrains
as it is conventional in the stratified approach for SFM. Our
results are promising while showing that meaningful statis-
tically independent shape basis can be found e.g. in facial
expression data both which explain the non-rigid data. In
the future, we intend to investigate other ISA algorithms
that might be more effective in the non-rigid factorisation
problem.
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