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Abstract This article presents a system for the automatic measurement and modelling of sewer

pipes. The system recovers the interior shape of a sewer pipe from a video sequence which is

acquired by a fish-eye lens camera moving inside the pipe. The approach is based on tracking

interest points across successive video frames and posing the general structure-from-motion

problem. It is shown that the tracked points can be reliably reconstructed despite the forward

motion of the camera. This is achieved by utilizing a fish-eye lens with a wide field of view. The

standard techniques for robust estimation of the two- and three-view geometry are modified so

that they can be used for calibrated fish-eye lens cameras with a field of view less than 180

degrees. The tubular arrangement of the reconstructed points allows pipe shape estimation by

surface fitting. Hence, a method for modelling such surfaces with a locally cylindrical model

is proposed. The system is demonstrated with a real sewer video and an error analysis for the

recovered structure is presented.
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1 Introduction

The condition assessment of sewer pipes is usually carried out by visual inspection of sewer

video sequences. However, the manual inspection has a number of drawbacks such as sub-

jectivity, varying standards and high costs. Therefore several approaches for automation of

sewer surveys have been suggested. For example, automatic detection of pipe joints and sur-

face cracks from digital sewer images has been investigated [33,4,28]. An idea of recovering

the three-dimensional shape of a surveyed pipe from survey videos was presented in [5], where

a method for determining the pose of the camera relative to the central axis of the pipe was

additionally proposed. Different kinds of sewer robots have also been developed and some of

them contain additional sensors besides the video camera [13,20]. While multisensoric robots

provide additional information, they also lead to a more complex and expensive construction.

In this paper, we describe a method for recovering the shape of a sewer pipe solely from

a video sequence which is acquired by a fish-eye lens camera.1 Our approach is to track in-

terest points across successive images and address the structure-from-motion (SFM) problem

in the case of fish-eye image sequences. Despite the fact that SFM for perspective cameras is

extensively studied there are not yet many real omnidirectional SFM results published for long

image sequences [12]. One of the first such systems is presented in [21] where a catadioptric

camera is used.

Another contribution of this paper is to describe a practical method for modelling tubular

3D structures. In order to model the bending of pipes we use a model which is concatenated

from short cylindrical pieces and thereafter smoothed along the pipe. The fitting of cylindrical

surfaces has been discussed for example in [24] and [31] but the difference to these approaches

is that our approach minimizes a geometric cost function, is robust to outliers, and does not

require the cylinder to be circular.

It should be noticed that the techniques proposed in this paper are not limited to the sewer

monitoring application but they can be also used to recover scene structure from other video se-

1 Part of this work has been published in [17].
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quences taken by a calibrated fish-eye lens camera. Likewise, the modelling of tubular surfaces

may be needed in other applications as well. In particular, we believe that the work presented

here might be useful in certain medical applications. For example, there have already been

some attempts to use computer vision techniques for structure recovery from endoscopic im-

ages [27], [3].

The structure of the paper is as follows. In Section 2, we give an overview of our system and,

in Section 3, we describe the differences to conventional structure-from-motion approaches in

more detail. The methods for error analysis are described in Section 4. The modelling of pipes

is discussed in Section 5 and results of the experiments with a real sewer video are reported in

Section 6.

2 Overview of the method

A typical sewer inspection system consists of a video camera and a remote controlled tractor.
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Fig. 1: A typical sewer inspection system

Such a system is illustrated in Fig. 1. The

sewer robot we used had a fish-eye lens cam-

era whose wide field of view makes it pos-

sible to obtain a high resolution scan of the

whole pipe by a single pass. The wide field

of view is essential in our application since it

allows reliable structure recovery even when

the camera is moving forward. In fact, it is

well known that for perspective cameras for-

ward motion can give poor reconstructions

since corresponding rays between succes-

sive views are almost parallel for most of the field of view [15].

Our approach to structure recovery mainly follows the framework presented in [9]. How-

ever, since the usual pinhole camera model is not a valid approximation to a fish-eye lens
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several modifications are proposed. In the following, we briefly describe the different steps in

our method.

2.1 Camera calibration

Although the modern approach to structure recovery is often uncalibrated [9], we adopt the tra-

ditional photogrammetric principle of camera calibration prior to measurements. One reason

for this is the peculiarity of the fish-eye lens and the other is the requirement for high accu-

racy. In our case the calibration is done by viewing a planar calibration object [18]. Since the

corresponding camera model is very flexible it is suitable for fish-eye lenses with severe distor-

tion. The calibration gives the transformation T that warps the original image to a perspective

one, i.e., transforms the fish-eye image coordinates m to x̃ = T(m), which are the normalized

image coordinates of a pinhole camera.

2.2 Feature extraction, matching and tracking

The tracked features are interest points detected by the Harris corner detector [14], which

is widely used in these kinds of applications. The experiments with sewer video sequences

showed that there are plenty of such features in eroded concrete pipes. The detected interest

points are initially matched between each successive image pair through normalized cross-

correlation of the intensity neighbourhoods. Here the correlation threshold used for matching

was 0.75 for windows of size 7 × 7.

The putative point correspondences contain almost unavoidably some false matches. In

the tracking step, the aim is to use the geometric constraints between successive view pairs

and view triplets to guide the matching and to discard the false matches. This requires some

modifications to the usual way of estimating the multiple view geometry [9]. The modifications

are needed to ensure a justified distribution of estimation error when the image correspondences

are measured from the original fish-eye images and the two and three view relations, defined
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by the essential matrix and the trifocal tensor, hold between the warped images. A description

of the proposed modifications is given in Section 3.

2.3 Reconstruction

The next step is to recover the structure by computing the three-dimensional coordinates of the

tracked points. If enough interest points can be tracked and reconstructed, the arrangement of

the corresponding three-dimensional points should be tubular allowing to estimate the shape of

the pipe.

Here we use a hierarchical method that is similar to [10] and distributes the reconstruction

error over the whole sequence. The idea is to compute the camera motion and the 3D points

for each image triplet and then hierarchically registrate the triplets into longer sub-sequences

which are bundle adjusted at each level. In contrast to [10], our approach is calibrated. This

makes the algorithm simpler since then the registration of 3D points from two overlapping

sub-sequences requires finding a 3D similarity transformation instead of a general projective

transformation and hence the transform may be computed by a non-iterative algorithm [30].

2.4 Modelling

The final step is to make a 3D model of the pipe by fitting a surface to the reconstructed points.

Here we use a piecewise cylindrical model since a straight cylinder would be too rigid model

to capture the bending of pipes. In the fitting process the points are first divided into several

sections along the pipe and a cylinder with elliptical cross-section is fitted to each section.

Finally the parameters of cylindrical pieces are interpolated along the pipe so that the surface

is smooth also in the main axis direction. The details of our approach are described in Section

5.
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3 Geometry of fish-eye views and tracking

Let mi
j be the measured coordinates of point correspondence i in view j. Given these measured

correspondences and assuming that the image measurement errors obey a zero-mean isotropic

Gaussian distribution, the Maximum Likelihood estimate for the camera motion is obtained by

minimizing
∑

i

∑

j

δijd(mi
j , m̂

i
j)

2, (1)

where d(·, ·) is the distance between two image points, δij is either 1 or 0 indicating whether

the point i is observed in view j, and m̂i
j are the estimated correspondences

m̂i
j = P(X̂i,θj). (2)

Here P is the imaging function of the fish-eye camera, θj are the motion parameters in view j

and X̂i represent the estimated 3D coordinates of point i. Since the camera is calibrated, the val-

ues of the internal camera parameters are known and the cost (1) should be minimized over the

external camera parameters θj and the 3D coordinates X̂i. However, the direct minimization of

(1) requires a good initialisation and does not tolerate false matches. Hence, we implemented

the RANSAC algorithm for the robust estimation of camera motion between view pairs and

triplets. The implementation follows the general recommendations in [15] but the adaptation to

the fish-eye case is our own and is described in the following sections. We would like to point

out that another possible implementation for robust motion estimation in the calibrated case is

presented in [26].

3.1 Two views

Consider the case of two views, j = {1, 2}, and assume that there is a set of putative point

correspondences, mi
1 ↔ mi

2. The transformed coordinates are x̃i
j = T(mi

j) and the two view

constraint between the transformed images is expressed by the essential matrix [15].

In RANSAC, we randomly select samples of seven point correspondences and each sample

gives one or three candidates for the essential matrix [15]. Then, given an essential matrix
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candidate E and the transformed correspondences, x̃i
1 ↔ x̃i

2, there is a non-iterative algorithm

[15] for computing such points x̂i
1 and x̂i

2 that minimize the geometric distance

∑

i

d(x̃i
1, x̂

i
1)

2 + d(x̃i
2, x̂

i
2)

2 (3)

in the transformed image plane subject to the constraint

x̂i>
2 E x̂i

1 = 0.

By transforming the points x̂i
j to the original image, one obtains the points

m̂i
j = T

−1(x̂i
j), (4)

which may be used as approximations to the optimal exact correspondences in (1). We use (4)

to compute the distances

d(mi
1, m̂

i
1)

2 + d(mi
2, m̂

i
2)

2 (5)

and classify the correspondences into inliers and outliers. In practice, it is important that this

distance is measured in the original image instead of the transformed image plane since the

transformation T is highly non-linear. Otherwise the distances near the border of field of view

would get too large weight. As usual, the E which has most inliers is chosen and it gives our

first estimate for the camera motion. For comparison, a 5-point method is used to solve E in

[26] but it is also reported there that the stability of the 5-point method for forward motion is

worse than that of the 7-point method.

Since the essential matrix may be parameterized by the rotation and translation parameters

[15], the equation (4) implicitly defines the points m̂i
j as a function of the external camera

parameters and the measured correspondences. Hence, by substituting the points (4) into (1)

one obtains a cost function which is minimized over the 5 parameters of the essential matrix

only. So, given an initial estimate for E we use the approximation (4) and refine our motion

estimate by minimizing (1) using the inlier correspondences.
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3.2 Uncertainty of the two-view geometry

The cost function in (1) has such a form that, as a by-product of the minimization, one can

compute an estimate for the covariance of the parameters of the essential matrix [6]. The esti-

mated covariance may be used to compute the epipolar envelopes which constrain the search

region for new correspondences.

In detail, given a point m in the first image and the corresponding epipolar line l in the

transformed image plane of the second image, one may use the covariance of the essential

matrix in order to compute the first-order approximation for the covariance of the epipolar line

[15]. Then, assuming that l is a random line obeying a Gaussian distribution with the mean at

the estimated value and covariance Λl, the epipolar envelope is the conic

C = l l> − k2
Λl, (6)

which represents an equal-likelihood contour bounding some fraction of all instances of l [15].

If F2(k
2) represents the cumulative χ2

2 distribution and k2 is chosen such that F2(k
2) = α,

then a fraction α of all lines lie within the region bounded by C.

We illustrate the estimated two view geometry in Fig. 2 where two successive images of

a sewer video sequence are shown. We have chosen two points from the first image and plot-

ted the corresponding epipolar curves and envelopes to the second image by transforming the

epipolar lines and the hyperbolas (6) to the original fish-eye image. The yellow crosses in the

second image are the narrowest points of the envelopes [2]. The narrow envelope of the vertical

curve is the 95 % confidence interval used in our experiments to constrain the search region.

3.3 Three views

The two view constraint significantly reduces the occurrence of false matches but the three view

constraint is even more effective. In the three-view case, we first robustly estimate the camera

motion for view pairs (1,2) and (1,3). Then the only quantity that is left undetermined is the

relative scale of the two translations. We use the RANSAC procedure to determine this ratio
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Fig. 2: Estimated epipolar geometry for two fish-eye images. Two points in the first image are chosen (yellow

crosses) and their epipolar curves (magenta curves) are plotted to the second image. The yellow curves are the

epipolar envelopes. The envelope of the horizontal curve is broad because a very large value of k2 = 1000 was

chosen in (6) in order to better illustrate the error bounds. The narrow confidence interval of the vertical curve

is the 95 % envelope that corresponds to a value k2 = 5.99.

from the three-view correspondences. At minimum only one additional sample correspondence

needs to be drawn [16]. The distance measure used for the classification of inliers is

d(mi
1, m̂

i
1)

2 + d(mi
2, m̂

i
2)

2 + d(mi
3, m̂

i
3)

2, (7)

where m̂i
1 and m̂i

2 are computed exactly as in (5) and m̂i
3 is the point that is obtained by

transferring the correspondence m̂i
1 ↔ m̂i

2 to the third view with the trifocal point transfer.

The final estimate of the camera motion over each triple of views is refined by minimiz-

ing (1) over both the motion parameters and the 3D coordinates of the inliers. We additionally

iterate between (i) least-squares fit to inliers and (ii) re-classification of inliers, until conver-

gence. The estimated camera motion for each image triplet also provides a basis for the final

reconstruction by bundle adjustment as described in Section 2.3.

The robustly estimated three view geometry is used to guide the matching when establish-

ing the final correspondences. Since the geometric constraint discriminates the false matches,

a weaker similarity threshold can be employed for the correlation windows. By accepting only

such correspondences that are found from at least three successive images, the occurrence of

false matches becomes unlikely. Utilizing the three-view constraint is essential in our appli-

cation since the concrete surface of the pipe has fine repeating texture and the risk for false
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Fig. 3: Left: The tracked points through a sequence of 159 sewer images. Right: Histogram of the track lengths.

matches is high even after enforcing the two-view constraint. The final point tracks for a se-

quence of 159 sewer images are illustrated in Fig. 3. Since the camera constantly moves for-

ward the tracks are short and most of them appear only in one triple of images.

4 Reconstruction and error analysis

4.1 Bundle adjustment

The final estimate for the structure and motion is obtained by global bundle adjustment mini-

mizing (1). The cost function (1) can be written as

||y − f(x)||2, (8)

where y is the measurement vector formed by stacking all the observed image points mi
j into a

single vector whose dimension N is two times the number of non-zero δij :s in (1). The vector

x contains both the structure and camera parameters and the function f : R
M → R

N computes

the 2D points from 3D points and cameras. Often N and M are large which leads to a large-

scale optimization problem. However, the structure of the problem is inherently sparse since

individual point measurements are independent of each other. In our application additional

sparseness arises from the fact that point tracks appear in only few views as illustrated in

Fig. 3. Methods for solving sparse nonlinear least-squares problems are described in [15] and

[29].
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4.2 Error analysis

The uncertainty of estimated parameters is often evaluated by propagating the measurement

covariance backwards to the parameter space using direct first-order analysis [15]. However, it

is not always straightforward to use this technique for complex 3D reconstructions where the

number of parameters is huge. The recent work [22] describes a method to deal with such high

dimensional problems and this is the approach that is used also here.

The gauge constraint that we used in the uncertainty calculations is the symmetric camera-

based gauge introduced in [22]. This gauge constraint handles all the cameras equally and is

suitable for evaluating camera uncertainties in camera localization applications. In the gauge-

free situation the function f in (8) is overparameterized so that each camera contributes six pa-

rameters and each point three parameters. Then the symmetric camera-based gauge constraint

is defined by the following seven independent scalar equations [19]

∑

j

tj = 0 (9)

1 −
∑

j

||tj ||
2 = 0 (10)

∑

j

t∗j × tj = 0 (11)

where tj is the center of the j:th camera and t∗j is the estimate of tj provided by the bundle

adjustment. Here (9) fixes the translation, (10) fixes the scale and (11) fixes the rotation. The

7 equations above can be written in the form c(x)=0 which defines a manifold of dimension

(M−7) in R
M .

Let x∗ be a point in the parameter space which minimizes (8) and satisfies c(x∗)=0. Fur-

ther, let Jf and Jc be the Jacobians of f and c evaluated at x∗ . Assume that the measurement

y obeys a zero-mean Gaussian distribution with the covariance σ2I and mean f(x∗). Then

the first order approximation for the parameter covariance around x∗ under the constraint c is

obtained by

Cx = σ2P(J>

f Jf )+P>, (12)
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where P is the linear projector on Ker(Jc) parallel to Ker(Jf ) (Ker denotes the null space)

[22]. Here the direct computation of the pseudoinverse (J>

f Jf )+ is not possible because it is

excessively large in size. However, the sparsity of Jf can be utilized in the computation as

described in [22] where also the explicit form of P is given. An estimate for the variance σ2 is

obtained by σ2 = ||y − f(x∗)||2/(N − (M−7)).

The covariance matrix Cx provides a basis for the uncertainty analysis of sewer reconstruc-

tions presented in Section 6. For example, the confidence ellipsoids of the camera centers and

3D points may be computed from diagonal 3 × 3 sub-blocks of Cx.

5 Modelling pipes

The reconstruction phase gives a set of 3D points which is used as a starting point for the

modelling part. A characteristic feature of pipes is the cylindrical shape and hence we use

cylinder as the basic building block of our model. Since the pipes may be bent, as shown in

Fig. 6, we do not use a single straight cylinder but divide the 3D points into several short

sections along the pipe and fit a cylinder to each section (see Fig. 4). The division can be easily

done because the trajectory of the camera provides an estimate for the direction of the pipe.

Here we take an interval of a few video frames and compute the planes that are orthogonal to

the camera trajectory at the both ends of the interval. The points between the planes are then

used as input for the cylinder fitting procedure. The cylinder fitting and the concatenation of

cylinders into the final model are described in the following two sections.

5.1 Cylinder fitting

Cylinder fitting is an often encountered topic in 3D modelling and there are various different

approaches to the problem [24], [31], [7], [1]. The closest work to that which is presented here

is [7]. However, none of the previous approaches is directly applicable to our case since we

have the following requirements for the fitting procedure: (a) robustness to outliers, (b) appli-

cability to elliptical cylinders, and (c) minimization of geometrical cost function. Robustness
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to outliers is required since there may be erroneous points outside the pipe, which are caused

by false matches that nevertheless satisfy the geometry constraints (see Fig. 6); or there may

be something inside the pipe which does not belong to the model (see Fig. 4). We use a right

elliptical cylinder model instead of a circular cylinder because the pipe may be compressed so

that the cross-section is not a circle. Finally, minimizing geometric error instead of algebraic

error is a statistically sound approach for surface fitting [15,7,1]. The approach in [7] also

considers the above three requirements while the most important differences are in the chosen

parameterization and in the robust initialization which are described in detail below.

Despite the good properties of geometric distance, many approaches for cylinder fitting use

some approximation to the geometric distance or even algebraic distance [24], [31]. This may

be partly due to the fact that, given a point, it is complicated to compute the corresponding

closest point on an elliptical cylinder. However, the problem is reduced to computing the dis-

tance from a point to an ellipse [7] and there is a non-iterative algorithm for this which results

in at most four solutions [11]. By utilizing this result we may compute the closest point non-

iteratively and implement the geometric cylinder fitting without the time consuming nested

iterations used in [1], where the fitting of general implicit surfaces was discussed. Neverthe-

less, in our application we do not minimize the squared geometric error due to its sensitivity to

outliers but we use the Huber function of the geometric error [15].

In addition to the choice of a suitable cost function the choice of the parameterization must

be done carefully. We have parameterized the right elliptical cylinder using eight parameters:

three parameters for the position r (a point on the axis), three parameters for the orientation, v,

and two parameters for the lengths of the axes of the base ellipse, a and b. Hence, the cylinder

is represented with 8-vector c = (r>,v>, a, b)>. We fix the cylinder coordinate frame so that

the z-axis is the axis of the cylinder and the x and y-axis are the axes of the base ellipse. Then

the orientation of the cylinder is fixed by giving a rotation between the world frame and the
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cylinder frame.2 An important difference to [7] is that our parameterization directly enforces

the correct surface type and no additional constraints are needed.

Cylinder fitting by the nonlinear minimization of a robust cost function requires also a

robust initialization which is not discussed in [7]. Given the data points and an initial estimate

for the direction of the cylinder axis, we obtain the initialization for the base ellipse by the

RANSAC-algorithm, i.e., we take 2D projection of the data perpendicular to the axis and fit

an ellipse to the 2D points by using the method in [8] within the RANSAC-framework. In our

case the initial axis direction is obtained from the camera trajectory.

The proposed approach for robust cylinder fitting is summarized in the following and an

example of a fitted cylinder is shown in Fig. 4.

Procedure for robust cylinder fitting

The 3D data points pi, i = 1, . . . , n, and an initial direction d, ||d|| = 1, for the cylinder

axis are given as input.

(i) Provide a routine A which, for a given 2D data point, computes the nearest point on a

conic C [11]. By simply extending the routine A, provide a routine B which for a given

3D data point computes the nearest point on an elliptical cylinder c.

(ii) Let Rα be a rotation such that Rαd = (0 0 1)>.

(iii) Compute the vectors qi = Rαpi and denote their first two components by q̃i. Compute

the median of the third component and denote it by z0.

(iv) Robustly fit an ellipse to the points q̃i using RANSAC: draw random samples of six

points, fit by [8], and determine the outliers using the geometric distance.3 Extract the

five parameters of the ellipse: center point (x0, y0), rotation ϕ, and the lengths of the

axes, (a0,b0). Compute the rotation parameters v0 which correspond to the composite

rotation RϕRα where Rϕ is a 3D rotation through an angle ϕ about the z-axis.

(v) Compute r0 = R>

α (x0, y0, z0)
> and initialize the cylinder parameters by c0 = (r>0 ,v>

0 , a0, b0)
>.

2 We use the angle-axis representation [15, Appendix 4] for parameterizing the rotations, i.e., a 3-vector v

represents a rotation through an angle ||v|| about the axis determined by v.
3 The distance threshold for outliers is estimated using the least median of squares method [32].
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Fig. 4: Front and side views of the reconstructed points in a short section. The ellipse depicts the cross-section

of the fitted cylinder. The points inside the pipe near the roof correspond to a root that is hanging from the roof.

(vi) Minimize ||ε||2 where the vector ε=(γ1ε
>

1 , . . . , γnε
>

n )> is formed by concatenating the

residuals εi = (pi − p̂i) with weights γi = C(||εi||)
1/2/||εi||. Here p̂i are the closest

points on the cylinder given by routine B and C is the Huber cost function [15]. The

minimization is carried over the cylinder parameters using, for example, the Levenberg-

Marquardt algorithm.

5.2 Tubular Model

After cylinder fitting the next step is to concatenate the cylinders in order to obtain a tubular

model. However, the position of each cylindrical section has to be first fixed in the world frame.

Since the cylinder model, used in Section 5.1, has an infinite length its position in the main axis

direction is undefined, i.e., the parameters r may define any point on the axis. Hence, we update

r to be such a point on the axis that when a plane perpendicular to the axis is positioned on r

there are equal number of data points on both sides of the plane. This places the cylinder to the

median of the data in the main axis direction. Then, the pipe is represented as a sequence of

8-vectors, c1, . . . , cm, each vector corresponding to a one cylindrical section.

Our approach for modelling the pipe is to simply consider it as a set of eight one-dimensional

sequences. Each of these sequences corresponds to a one parameter of the cylinder model as

described above. Thus, the components of the vectors ci can be seen as samples from the under-

lying one-dimensional sequences. In order to obtain a parametric representation for the pipe,

we have to fit a model to the samples. There are several possibilities for the approximation of

one-dimensional functions. Here we have chosen to use the cubic spline interpolation for all

the eight parameters since it produces smooth approximations.
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Fig. 5: The cylinder parameters c = (r>,v>, a, b)> are interpolated along the pipe; (a) the components of

vector r, (b) the components of vector v, (c) the axis lengths a and b.

The spline interpolants for the parameters are illustrated in Fig. 5 where the symbols along

the curves denote the original samples corresponding to the fitted cylinders. The modelled data

is that shown in Fig. 6. In Fig. 5 there are eight parameters: 3 for the position (Fig. 5(a)), 3

for the orientation (Fig. 5(b)) and 2 for the axes of the base ellipse (Fig. 5(c)). The orientation

parameters describe the rotation between the world frame and the cylinder frame. The topmost

curve in Fig. 5(b) corresponds to the x-component of the parameter v and its increase reflects

the bending of the pipe illustrated in Fig. 6(b). Further, Fig. 5(c) shows that the two axes of the

cross-sectional ellipse have clearly different lengths which indicates that an ellipse is indeed

a better model than a circle. Here the major axis of the ellipse is almost horizontal along the

whole pipe. Finally, the obtained tubular model is illustrated in Fig. 7 where the sample density,

corresponding to the plotted cylindrical sections, is twice the one that was used in fitting.

6 Results

We experimented one sewer video sequence scanned in an eroded concrete pipe with a Wa-

tec 221S color camera and a fish-eye lens whose nominal field of view was 180◦. The un-

compressed digital video was captured from an analog NTSC video signal at a resolution of

320×240. The image sequence used in the experiments contained 159 fish-eye views and cov-

ered about two meters of the pipe. The sequence was made by including every fifth frame from

a video clip which was taken while the camera was moving approximately at a constant ve-

locity. The color images were transformed to 8-bit grayscale images before further processing.
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The processing of the test sequence took about nine hours using our current Matlab implemen-

tation. The time calculations for the different steps were as follows: initial matching 3500s,

motion estimation for view pairs and triplets 22000s, bundle adjustment 4700s, and modelling

580s.

6.1 Reconstruction

The obtained reconstruction is illustrated in Fig. 6 and it was computed using the techniques

described in Sections 3 and 4. The final estimates for the structure and motion were obtained

via global bundle adjustment which involved 159 views and 6864 points. The sparse structure

of the large-scale optimization problem was utilized in the nonlinear minimization [29,15].

After the optimization the root-mean-squared (RMS) residual error was 0.18 pixels which is

a reasonably small value. In addition, the maximum residual error was only 1.3 pixels which

indicates that all the tracks agreed with the motion. Hence, the conventional least-squares cost

function is justified here since the outliers were already removed in the tracking step.

Visual inspection of the recovered structure allows many interesting observations. First of

all, the arrangement of the points is clearly tubular as shown in Figs. 4, 6 and 7. In addition,

some small details, such as the root in Fig. 4 and the crack in Fig. 7, are clearly visible. This high

visual quality is achieved despite the low resolution video, forward motion and bad lighting

conditions inside the pipe. Further, there are few reconstructed points in the bottom part of

the pipe since it is difficult to find correspondences from the water region. Fig. 4 also shows

that the cross-section is more a flattened ellipse than a circle. This finding is consistent with

the crack on the roof since such a crack typically indicates that the concrete pipe is vertically

compressed and has a risk of collapse.

6.2 Uncertainty

A method for approximating the covariance of the estimated structure and camera parame-

ters was described in Section 4.2. The covariance matrix Cx in (12) provides a basis for the
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Fig. 6: Top and side views of the reconstructed points for a sequence of 159 images. (a) xz-plane, (b) yz-plane

Fig. 7: The reconstructed points and the tubular model. The roof of the pipe is on the left. The sequence of

interest points found from the crack on the roof is pointed by the arrow.

uncertainty analysis of the reconstruction. Let Ck be the 3 × 3 diagonal block of Cx which

corresponds to the parameters of the k:th camera center. Then the 90 % confidence ellipsoid for

this camera center is given by Ek(t) = {t ∈ R
3|(t − tk)>C−1

k (t − tk) ≤ F−1

3 (0.90)}, where

F3 is the cumulative χ2 distribution with 3 degrees of freedom. The uncertainty ellipsoids for

the reconstructed 3D points are obtained in a similar way.

The 90 % confidence ellipsoids for camera centers are illustrated in Fig. 8. One may observe

that the uncertainty of cameras is larger at the ends of the sequence than in the middle. This

seems natural since all the point tracks break at the ends. The reliability of the illustrated

uncertainty bounds was additionally verified with simulations. The reconstruction in Fig. 6

was used as a ground truth, synthetic noise was added to the exact image measurements and

bundle adjustment was carried out. The performed 20 trials gave results that were consistent

with the analytical error bounds. For example, the estimated camera centers for all the trials

were located inside the ellipsoids shown in Fig. 8.
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Fig. 8: Top and side views of the 90 % confidence ellipsoids for 15 cameras. The uncertainty analysis was

performed using all cameras but only the cameras k = 10, 20, . . . , 150 are shown for clarity.

The quartiles of the semimajor axis of the 90 % confidence ellipsoids are shown in Table 1

Table 1: Quartiles of the semimajor axis of the

confidence ellipsoids for points and cameras.

The diameter of the pipe is 100.

a0 a1/4 a1/2 a3/4 a1

cameras 3.0 3.7 4.4 5.1 10.1

points 2.1 4.4 5.0 6.3 320

for both points and cameras. Here a0 is the small-

est value, a1/4 is the first quartile, a1/2 is the me-

dian, a3/4 is the third quartile, and a1 is the largest

value. The tabulated values are scaled so that the

estimated average diameter of the pipe has a value

100, a value which is about 20 times larger than

the median values in Table 1. It can also be seen

that the localization uncertainty for most of the

points is not much higher than that for the cameras. The maximum length of the confidence

ellipsoid semiaxis is large for points (320) but there are only 14 points for which the ellipsoid

semiaxis length exceeds the value 20. Note that the uncertainties of points are observed in the

camera-based gauge which usually magnifies the uncertainty of the structure parameters [29].

In summary, the uncertainty of reconstructed points is small despite the short point tracks

and the small baseline between successive cameras. The stability of the reconstruction is prob-

ably due to the fish-eye lens and its wide field of view. Similar advantages of omnidirectional

cameras have been observed also by others [25]. In addition, it is interesting to qualitatively

compare the sewer reconstruction to the corridor reconstruction presented in [23]. The corridor

sequence in [23] has also a forward motion but the images are captured with a conventional

camera. There the field of view covers only the frontal sector and many points have a high

uncertainty in the reconstruction unlike in our case.
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6.3 Modelling

In the modelling part the reconstructed points in Fig. 6 were divided into 15 sections and an

elliptical cylinder was fitted to each section as described in Section 5. The fitting is automatic

and robust, robustness is needed since all the points are not located on the surface of the pipe.

For example, there are some erroneous points outside the pipe which agree with the motion

constraints but do not correspond to any real observed point. The median distance of points

from the surface of the corresponding cylinder was 1.2 whereas the average diameter of the pipe

was 100. On average, the distances of points from the surface were smaller than the semimajor

axis of their 90 % confidence ellipsoids.

After acquiring the cylindrical pieces their parameters were interpolated along the pipe as

illustrated in Fig. 5. The obtained tubular model is illustrated in Fig. 7. There is a trade-off

between the length of cylindrical sections and the flexibility of the model. Using short sections

allows a bendy pipe but the cylinder fitting is more stable for longer sections. A suitable density

of sections depends on the number of points and their distribution on the surface as well as on

the type of the pipe. Here the proper number of sections was chosen manually.

7 Conclusion

This article describes a system for the measurement and modelling of sewer pipes from fish-eye

image sequences. The experiments showed that the structure of a sewer pipe can be recovered

solely from a video sequence that is scanned by a single pass through the pipe. The presented

error analysis suggests that a relatively low uncertainty of reconstruction can be achieved de-

spite forward motion of the camera. In addition, a method for modelling tubular 3D structures

with a locally cylindrical model was proposed, and the robustness of the modelling approach

was demonstrated in experiments with real data. The presented techniques are not necessarily

limited to the sewer monitoring application but could be likewise utilized in other applica-

tions. In particular, since our camera model [18] can flexibly model various types of lenses and

cameras with wide field of view provide advantages over the conventional ones, this kind of
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omnidirectional structure-from-motion techniques are expected to be useful in many robotic

vision applications.
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