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Abstract In this paper, an image fusion algorithm is

proposed for a multi-aperture camera. Such camera is

a feasible alternative to traditional Bayer filter camera

in terms of image quality, camera size and camera fea-

tures. The camera consists of several camera units, each

having dedicated optics and color filter. The main chal-

lenge of a multi-aperture camera arises from the fact

that each camera unit has a slightly different viewpoint.

Our image fusion algorithm corrects the parallax error

between the sub-images using a disparity map, which is

estimated from the single-spectral images. We improve

the disparity estimation by combining matching costs

over multiple views using trifocal tensors. Images are

matched using two alternative matching costs, mutual

information and Census transform. We also compare

two different disparity estimation methods, graph cuts
and semi-global matching. The results show that the

overall quality of the fused images is near the reference

images.

Keywords Mutual information · Census transform ·
Trifocal tensor · Graph cuts · Semi-global matching

1 Introduction

A multi-aperture camera refers to an imaging device

that comprises more than one camera unit. The cam-

era produces several sub-images, which are combined

into a single image. The main challenge of the multi-

aperture camera arises from the fact that each camera

unit has a slightly different viewpoint. This results to
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misalignment of images that needs to be corrected be-

fore images can be properly combined. In practice, the

problem is solved by finding the corresponding pixels

from each image.

The multi-aperture camera has several advantages

compared to the traditional Bayer matrix camera. The

thickness of the camera is closely related to the image

quality the camera produces. Cameras equipped with

larger image sensors typically produce better images.

However, the increase in sensor size will also increase

the height of the optics. This is particularly problem-

atic in mobile devices in which low-profile cameras are

needed. Multi-aperture camera solves this problem by

using a combination of smaller sensors, each having ded-

icated optics with reduced optical height. An example

of multi-aperture camera is shown in Figure 1. [3]

The image sensor measurements are subject to pho-

ton and electron leakage, which complicates the recon-

struction of the desired image signal. The problem is

that neighboring pixels may interact with each other.

This phenomenon is known as crosstalk. It occurs when

photons received by one pixel are falsely sensed by other

pixels around it. The crosstalk is expected to become

more severe as the image resolution continues to in-

crease and the pixel sensors are more densely backed

together. This is problematic since pixels are smaller

and closer together. In Bayer filter cameras, the adja-

cent pixels capture the light intensity of different color

bands. For such cameras, the most noticeable conse-

quence of crosstalk is the desaturation of color [6]. The

multi-aperture camera in Figure 1 does not have that

problem. The camera is equipped with red, green and

blue color filters meaning that each sensor is only mea-

suring a single spectral color. Furthermore, the fourth

camera captures the luminance information of the scene,
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Fig. 1 Image sensing arrangement of the four-aperture cam-
era

which can be used to increase the light sensitivity of the

camera.

Chromatic aberration is a type of distortion in which

a lens fails to focus different colors to the same point

on the image sensor. This occurs because lens material

refracts different wavelengths of light at different an-

gles [7]. The effect can be seen as colored and blurred

edges especially along boundaries that separate dark

and bright parts of the image. In the multi-aperture

camera, the chromatic aberration between the sensors

can be avoided by calibrating them for different wave-

bands. It should be also noticed that the aperture of a

single sensor can be smaller than in a conventional cam-

era for achieving equivalent f-number. This increases

the depth of field, which reduces the problem of varying

focus distances. The lenses in the multi-aperture cam-

era can also be simpler because the chromatic aberra-

tion is less of a problem when designing the optics. Be-

sides the improved image quality, a simpler design usu-

ally means lower manufacturing costs. It can be noted

that even though we have significantly less chromatic

aberration in the green, red and blue filtered images,

the luminance image may still suffer from chromatic

aberration.

One of the disadvantages of the current camera pho-

nes is that they cannot produce images with shallow

depth of field. Mobile phone applications such as Google

Lens Blur [11] aim to address this weakness. Lens Blur

captures the scene depth from the camera movement

and then uses the information for post-capture refocus-

ing. Multi-aperture camera can acquire depth informa-

tion via stereo matching. Depth information is also use-

ful in various other applications such as background re-

moval and replacement, resizing of objects, depth based

color effects and 3D scanning of objects [8,9].

There already exist patents of multi-aperture cam-

eras [1,2]. Some of the largest mobile phone companies

have also patented their versions of the cameras [3–5].

Probably the most complete implementations of multi-

aperture camera modules come from LinX Imaging [8],

Pelican Imaging [9] and Light [10].

LinX Imaging has successfully developed small-sized

multi-aperture cameras for mobile devices. Camera mod-

ules have two, three or four cameras and they come in

various configurations and sizes. Modules use different

combination of color and monochrome cameras. Based

on the technology presentation in [8], captured images

have higher dynamic range, lower noise levels and better

color accuracy over the traditional mobile phone cam-

eras. The height of the camera module is nearly half of

a typical mobile phone camera module.

PiCam (Pelican Imaging Camera-Array) is another

example of a commercial multi-aperture camera. Pi-

Cam module consists of 4 × 4 array of cameras, each

having dedicated optics and color filter. The final image

is constructed from the low-resolution images using su-

perresolution techniques. The image quality is compa-

rable to existing smartphone cameras and the thickness

of the camera module is less than 3 mm. [9]

Most recent announcement in the field comes from a

company called Light [10]. The Light L16 multi-aperture

camera contains 16 individual camera units. The cam-

era captures ten images simultaneously with different

focal lengths and fuses them together. Resolution of the

final image is up to 52 megapixels. The camera seems to

offer a good low-light performance based on the sample

images captured by the latest prototype. There is also

possibility to change the depth of field and focus of the

image after the image has been captured.

In this paper, we propose a novel image fusion algo-

rithm for a four aperture camera in Figure 1. The final

image is formed by combining the sub-images into a sin-

gle RGB image. In contrast to PiCam, we cannot match

images that are captured with similar color filters. This

complicates the disparity estimation since correspond-

ing pixels may have completely different intensities in

each image. Therefore, we use a robust matching cost

such as mutual information or Census transform. We

improve the robustness of disparity estimation over tra-

ditional two-view stereo methods such as [12,13] by

combining matching costs over four-views. We further

improve the estimation by adding a luminance con-

straint to the cost function.

2 Image Fusion Algorithm

In this Section, an image fusion algorithm is proposed

for a four-aperture camera. The parallax error arising

from the distances of the lenses is taken into account

when fusing the images. The algorithm is based on dis-

parity estimation, in which the aim is to find corre-

sponding pixels from each image. Disparities are esti-

mated from the single-spectral images captured by the
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Fig. 2 Processing steps of the image fusion algorithm

four-aperture camera. Parallax error between the im-

ages is then corrected using the disparity map. The

processing steps of the algorithm are shown in Figure 2.

2.1 Offline Calibration

For this implementation, it was chosen that I1 is the

reference image and it corresponds the image captured

with green color filter. Images I2 and I3 correspond to

red and blue filtered images, respectively. The fourth

image is used as a luminance image. The algorithm as-

sumes that the camera movement between the first and

second view is purely horizontal. This is difficult to en-

sure in practise, which is why image pair I1 and I2 is

rectified. After the rectification, the corresponding pix-

els are located on the same horizontal pixel rows. Other

images are not rectified because algorithm utilizes tri-

focal tensors.

Image fusion can be performed by matching each

image pair independently. However, such approach wo-

uld not utilize the full potential of multiple views. Ar-

ranging cameras to have both horizontal and vertical

baselines can resolve ambiguities that are common in

two-view case. For example, matching a pixel that is

located on the edge, parallel to baseline. Also the ro-

bustness against noise increases when matching costs

from different views are combined. This will lead to a

more accurate disparity map as will be demonstrated

in Section 3. Consequently, the fused image will have

better quality as well.

In the case of two views, a fundamental matrix is of-

ten defined to relate the geometry of a stereo pair. For

three views, this role is played by the trifocal tensor.

It allows images to be processed together, instead of

matching each image pair independently. Trifocal ten-

sor encapsulates all the geometric relations among three

views. It only depends on the motion between the views

and the internal parameters of the cameras [14]. Trifo-

cal tensor is expressed by a set of three 3 × 3 matrices

defined uniquely by the camera matrices of the views.

Tensor can be constructed from the camera matrices

or from the point correspondences. We used the latter

approach because the camera matrices are assumed to

be unknown and they are calibrated in this process.

In practice, one can use the tensor to transfer a

point from a correspondence in two views to the corre-

sponding point in a third view. This is known as point

transfer. We define two trifocal tensors between the four

images. First tensor T1 is computed for the images I1,

I2 and I3. Similarly, a second tensor T2 is defined for

the images I1, I2, and I4. Let us assume that there is

a point p1 = (x, y) in the first image and its disparity

d in relation to the second image is known. Then, the

corresponding points in the second, third and fourth

images are computed as follows:

p2 = (x− d, y)

p3 = transferPoint(p1, p2, T1)

p4 = transferPoint(p1, p2, T2)

(1)

It can be noted that when a point is transferred, the new

coordinates are not exact integer values. In other words,

the point does not correspond to any particular pixel.

The corresponding pixel intensity is computed from the

neighboring pixels using bilinear interpolation. For the

technical details of the trasferPoint function we refer to

[14, p. 382].

2.2 Matching Cost Computation

In order to find the corresponding pixels from each im-

age, one needs a way to measure the similarity of im-

age locations. The simplest way to measure whether

two pixels are similar is by taking their absolute in-

tensity difference. This constant intensity assumption
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is often violated in the presence of radiometric differ-

ences such as lighting and exposure changes or noise.

Similar problems arise when cameras are equipped with

different color filters. This work utilizes mutual infor-

mation and Census transform as similarity measures.

They both are known to be robust against radiometric

differences [15,16].

To further improve the robustness of disparity esti-

mation we use a luminance cost CL, which is combined

with the mutual information or the Census transform

costs. The cost of assigning disparity d for a pixel p is

defined as follows:

C(p, d) = CMI/census +K · CL, (2)

where K is a constant, which controls the influence of

the luminance cost CL. The terms CMI/census and CL

are explained next.

2.2.1 Mutual Information

Mutual information (MI) has been used as a similarity

measure with local [16] and global [12,13] stereo match-

ing methods. The main advantage of MI is its ability to

handle complex radiometric relationships between im-

ages. For example, MI handles matching image I1 with

the negative of image I2 as easily as simply matching

I1 and I2. Mutual information of images I1 and I2 is

defined using entropies:

MII1,I2
= HI1

+HI2
−HI1,I2

, (3)

where HI1
and HI2

are the entropies of individual im-

ages and HI1,I2 is their joint entropy. The idea of using

mutual information for stereo matching comes from the

observation that joint entropy is low when images are

well-aligned. It can be seen from the previous equation

that mutual information increases when joint entropy

is low.

In order to calculate the entropies, one needs to esti-

mate the marginal and joint probability distributions of

underlying images. This can be done by using a simple

histogram of corresponding image parts. Joint distribu-

tion is formed by binning the corresponding intensity

pairs into a two-dimensional array. The marginal dis-

tributions are then obtained from the joint distribution

by summing the corresponding rows and columns.

It is possible to apply mutual information to fixed-

sized windows [16]. Window-based approach suffers from

the common limitations of fixed-sized windows, such as

poor performance at discontinuities and in textureless

regions. To overcome the difficulties of window-based

approach, Kim [12] used mutual information as a pixel-

wise matching cost. The computation of joint entropy

HI1,I2
was transformed into a cost matrix hI1,Ī2

(i1, i2)

using Taylor expansion. The cost matrix contains costs

for each combination of pixel intensities I1(p) = i1 and

Ī2(p) = i2.

The cost matrix is computed iteratively using the

full images and the disparity map from the previous it-

eration. A single iteration is visualized in Figure 3. Note

that pixels in the second image need to be remapped

Ī2 = fD(I2) according to current disparity map D. Af-

ter remapping, the corresponding pixels will have the

same image coordinates (apart from the occlusions) if

the disparity map is correct. The correct disparity map

will also maximize the mutual information between the

images. At the end of each iteration we will have a new

cost matrix, from which we can estimate a new dispar-

ity map for the next iteration. The idea is that the dis-

parity map becomes more accurate after each iteration.

Disparity estimation methods are discussed in Section

2.3.

In our case, there are four images and three different

cost matrices hI1,Ī2
, hI1,Ī3

and hI1,Ī4
. At the beginning

of each iteration, we remap the pixels in images I2,

I3 and I4 with the help of current disparity map and

trifocal tensors. This can be done using the Equations 1.

The first iteration can use a random disparity map since

even wrong disparities allow a good estimation of the

joint distribution due to high number of pixels. Usually

only a few number of iterations (e.g. 3 iterations) are

needed until the disparity map no longer improves. The

cost matrix for the image pair I1 and I2 is computed

with formula:

hI1,Ī2
(i1, i2) = − 1

n
log((PI1,Ī2

(i1, i2)∗g(i1, i2))∗g(i1, i2)

(4)

where g(i1, i2) is Gaussian kernel, which is convolved

with the joint distribution PI1,I2(i1, i2). Number of all

combinations of intensities is n.

The final mutual information matching cost is a

combination of three cost matrices. The cost of assign-

ing disparity d for a pixel p is defined as follows:

CMI(p, d) = hI1,Ī2
(i1, i2) + hI1,Ī3

(i1, i3) + hI1,Ī4
(i1, i4).

(5)

Even though the previous equation only contains three

cost matrices, we could also compute similar matrices

between all image pairs. In our experiments, we found
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Fig. 3 Computation of mutual information cost matrix hI1,Ī2

that such approach did not improve the results notice-

ably. Therefore, we concluded that the above approach

is sufficient.

2.2.2 Census transform

Census transform is based on the relative ordering of

local intensity values. It can tolerate all radiometric dis-

tortions that preserve this ordering [17]. Census trans-

form maps the local neighborhood of pixel into a bit

string. Pixel’s intensity is compared against the neigh-

boring pixels and the bit is set if the neighboring pixel

has lower intensity than the pixel of interest. Census

transform for a pixel p can be defined as follows:

Rp = ⊗
[x,y]∈W

ξ(p, p+ [x, y]), (6)

where symbol ⊗ denotes concatenation and W is the

window around pixel p. The comparison operation ξ(p, p+

[x, y]) equals to 1 if the neighboring pixel has lower in-

tensity than the pixel p and otherwise 0. In this work,

we use a window of 9 x 7 pixels since it gave good results

in practise. Each pixel inside the window is compared

to the center pixel. This will result to a bit string that

consists of 62 bits and it can be conveniently stored into

a 64 bit integer. The above computation is repeated for

each of the four images.

The actual pixel-wise matching cost depends on the

Hamming distance between the corresponding bit strings.

Hamming distance is defined by counting the number

of bits that differ in the two bit strings. For instance,

the Hamming distance between two identical bit strings

is zero since all bits are the same. Disparity value that

minimizes the distance represents the best match. Let

H(Rp,1, Rp,2) denote the Hamming distance between

the corresponding bit strings in images I1 and I2. Since

there are four images in this implementation, the pixel-

wise cost is a sum of Hamming distances:

Ccensus(p, d) = H(Rp,1, Rp,2) +H(Rp,1, Rp,3)

+H(Rp,1, Rp,4).
(7)

2.2.3 Luminance Constraint

There is an additional constraint related to the fourth

image, which can be combined with mutual informa-

tion or Census transform costs. Let us assume that

there are four corresponding points p1, p2, p3 and p4

in each image. Because the fourth image represents the

luminance, the corresponding points should satisfy the

following equation:

Î4(p4) = G · I1(p1) +R · I2(p2) +B · I3(p3), (8)

where point’s intensity is denoted by I(p). The coeffi-

cients G, R and B depend on the color filters of the

cameras. They should be defined via photometric cali-

bration to match the properties of the color filters. In

case there is a large difference between the left and right

side of the above equation, it is likely that points are

not correspondences. Based on this assumption, the lu-

minance cost can be written as:

CL = |I4(p4)− Î4(p4)|. (9)

In practice, one might find that Equation 8 does not

perfectly hold for all frequencies in the visible light.

In such case, the luminance cost could be modified to

use more robust cost, e.g. Census transform. Our ex-

periments did not show noticeable improvement when

using Census transform instead of Equation 9 directly.

2.3 Disparity Estimation

Disparity estimation methods aim to find correct dis-

parities for every pixel in the image based on the match-

ing costs. We evaluate two different methods, graph

cuts and semi-global matching. As already mentioned,

here the disparity refers to the horizontal coordinate

difference between the corresponding pixels in the first

and second image. These disparities relate to other im-

ages via trifocal tensors according to Equations 1.
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For each pixel in the first image, we need to con-

sider all possible disparities within a given disparity

range. The simplest way would be to choose the dispar-

ity value that minimizes the matching cost between the

pixels. It is common that incorrectly matched pixel gets

a lower matching cost because of the image noise, light-

ning variations, occlusions etc. Graph cuts and semi-

global matching also consider the smoothness of the

disparity map. They use the assumption that in the

real world, the changes in the scene will vary smoothly

and therefore, the neighboring pixels can be assumed

to have similar disparities.

Many of the computer vision problems can be ex-

pressed in terms of energy minimization. In case of dis-

parity estimation, the goal is to assign disparity values

for each pixel in such way that global energy function

is minimized. Graph cuts and semi-global matching are

both based on energy minimization. These methods are

well-known and relatively well placed in the Middlebury

stereo evaluation website [26]. This is the main reason

why we decided to use them in this work.

2.3.1 Graph Cuts

Instead of computing disparities for each pixel indepen-

dently, graph cuts method performs a global optimiza-

tion process over the whole image. The idea is to con-

struct a specialized graph for the energy function. The

energy is minimized with a max flow algorithm that

finds the minimum cut on the graph. A general form of

the energy function is:

E(D) =
∑
p

C(p,Dp) + λ
∑

p,q∈N

Vp,q(Dp, Dq), (10)

where, the first term is the sum of all matching costs

when using the disparity map D. The second term is the

smoothness term. The set of pairs of adjacent pixels is

denoted by N . The neighborhood interaction function

Vp,q(Dp, Dq) assigns higher penalties for pairs of neigh-

boring pixels if they have different disparities. Since dis-

parity can also change rapidly at the object boundaries,

this should be a robust function, which can preserve dis-

continuities. Scale factor λ controls the influence of the

smoothness term.

We employ the multi-label optimization library de-

veloped by Veksler et al. [18,19,21]. With this library,

either expansion move or swap move algorithm can be

used to minimize the global energy function. The ex-

pansion move algorithm was chosen since it gave slightly

better results and was faster than the swap move al-

gorithm. After testing different smoothness costs with

varying parameters, truncated absolute distance was

chosen. It gave the best overall performance compared

to Potts model and truncated quadratic difference.

2.3.2 Semi-global Matching

Semi-global Matching (SGM) approximates the global

energy by pathwise optimization from all directions th-

rough the image. It approximates 2D smoothness con-

straint by combining many 1D constraints. The energy

is defined by the formula:

E(D) =
∑
p

(C(p,Dp) +
∑
q∈Np

P1T [|Dp −Dq| = 1]

+
∑
q∈Np

P2T [|Dp −Dq| > 1]).
(11)

The first term is the sum of all matching costs when

disparity map D is used. The latter terms penalize the

disparity differences of neighboring pixels Np with the

costs P1 and P2. The larger cost P2 is added when the

disparity differs more than one pixel.

The energy function is computed with dynamic pro-

gramming along 1D paths from 8 directions towards

each pixel of interest. The costs of all paths are then

summed and the final disparity is determined by winner-

takes-all approach.

This work implements the semi-global block match-

ing algorithm that is part of the OpenCV library. It is

a variation of the original SGM algorithm presented in

[13]. In contrast to graph cuts, the SGM performs post-

processing steps such as subpixel interpolation, left-

right consistency check and speckle filtering.

2.4 Parallax Correction

After the disparity estimation, the parallax error be-

tween the images can be corrected. In practise, pixels

in the red filtered image I2 and blue filtered image I3
are remapped using the calculated disparity map. The

green filtered image I1 is used as a reference so there

is no need to remap the image. Whereas image I2 can

be directly remapped using the disparity map, trifocal

tensor is needed to remap images I3. Pixels that are

located near the borders of the image may not be vis-

ible in all the images. These areas are removed from

the final image based on maximum disparity parame-

ter. The maximum disparity depends on the baseline of

the cameras and the distance between the camera and

the closest object in the scene.

Now that corresponding pixels have the same image

coordinates, an RGB image can be constructed by sim-

ply combining images I1, I2 and I3. In our implemen-
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tation, the luminance image I4 is not used when form-

ing the final image. However, the fourth image could

be used to improve the signal-to-noise ratio of the lu-

minance channel. This would be particularly useful in

low-light conditions.

3 Experiments

The performance of the image fusion algorithm was

evaluated using a test camera system. The evaluation

aims to find the best combination of similarity measures

and disparity estimation methods for the image fusion.

Input images were captured with a traditional Bayer

matrix camera, which was moved between the shots. In

order to simulate the presence of different color filters,

the original 24-bit RGB images were split to separate

color channels. In each camera position, one of the chan-

nels was chosen. Luminance image was created from the

original RGB image by weighting each color component

with coefficients G = 0.587, R = 0.299 and B = 0.114.

We used these same coefficients in the Equation 8.

Test scenes are shown in Figure 4. Tea, Flowers and

Grass datasets were captured using the same camera

arrangement as illustrated in Figure 1. The baseline was

approximately 12 mm for each pair of horizontal and

vertical camera positions. We also used the standard

Middlebury stereo datasets Teddy, Cones and Venus in

which all cameras are parallel to each other [22,23].

Ground truth disparity maps were only available for

the images 2 and 6 in each dataset. In order to perform

comparison to ground truth, we used images 2 and 6 as

a first and second input image. Improved fused image

could have be obtained if adjacent images were used.

Image sizes and disparity ranges are listed in Table 1.

Fused images were compared against the original

RGB images captured by the camera system. We also

measured the similarity of the images using the peak

signal-to-noise ratio (PSNR) and structural similarity

(SSIM). SSIM values are computed for each channel of

the image. Value of 1 represents the perfect match. The

accuracy of the disparity estimation was evaluated by

counting the number of invalid disparities in the dispar-

ity map. Disparity was classified as invalid if its value

Table 1 Image sizes and disparity ranges in pixels

Dataset Image size Disparity range

Tea 1000x745 64
Flowers 1150x860 32
Grass 1024x783 32
Teddy 450x375 64
Cones 450x375 64
Venus 434x383 32

differs more than 1 pixel from the ground truth. Dis-

parities were not evaluated in occluded areas since oc-

clusion handling was not implemented.

Smoothness parameters of the semi-global matching

and graph cuts methods were manually tuned for the

mutual information and Census transform costs. Pa-

rameters were kept constant for Tea, Flowers and Grass

datasets. Different, although constant parameters were

used for Middlebury datasets.

Table 2 shows the statistics for both similarity mea-

sures when graph cuts method is used. Census trans-

form outperforms the mutual information in all test

cases if error percentages are considered. There are no

significant differences in PSNR and SSIM scores. Fig-

ure 5 shows the result of image fusion for Tea dataset.

The image was created by using graph cuts with mu-

tual information. In comparison to original RGB image

in the same figure, it can be concluded that visual qual-

ity of the fused image is near the reference image. In

contrast, the right most image in Figure 5 shows the

output obtained without correcting the parallax error.

The image is constructed by simply combining the red,

green and blue channels of the original images. As can

be seen, the resulting image has very severe color errors.

The results of semi-global matching are shown in

Table 3. As with graph cuts, the Census transform per-

forms better than the mutual information. SGM fur-

ther improves the accuracy of disparity estimation over

graph cuts. PSNR and SSIM scores are also better. The

main improvements come from the sub-pixel accurate

disparity estimation and left-right consistency check.

The resulting disparity map and fused image for the

Teddy dataset is shown in Figure 6.

The advantages of using trifocal tensor and four dif-

ferent views are best demonstrated with disparity maps.

The left most disparity map in Figure 7 is generated

Table 2 Results of graph cuts method

Mutual Information

Dataset Errors PSNR SSIM (rgb)

Teddy 11.01 37.97 0.86; 1.00; 0.81
Cones 7.11 33.97 0.83; 1.00; 0.79
Venus 2.80 39.56 0.89; 1.00; 0.83
Tea - 39.47 0.95; 1.00; 0.88
Flowers - 39.44 0.94; 1.00; 0.86
Grass - 33.97 0.82; 1.00; 0.84

Census Transform

Dataset Errors PSNR SSIM (rgb)

Teddy 7.60 37.57 0.87; 1.00; 0.81
Cones 4.92 34.42 0.85; 1.00; 0.79
Venus 1.49 39.26 0.89; 1.00; 0.83
Tea - 39.58 0.95; 1.00; 0.88
Flowers - 39.36 0.94; 1.00; 0.86
Grass - 34.12 0.83; 1.00; 0.85
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Fig. 4 Reference views for the Teddy, Cones, Venus, Tea, Flowers and Grass datasets

Fig. 5 The result of graph cuts with mutual information on Tea dataset. For demonstration, we also show the result obtained
without parallax correction

Fig. 6 The result of semi-global matching and Census transform on Teddy dataset. Red areas in the error map represent
erroneous disparities and black areas are occlusions

using only one pair of stereo images, graph cuts and

Census transform. In this example, the green filtered

image is matched to red filtered image. The second im-

age is matched using green, red and blue filtered im-

ages and trifocal tensor. The third image uses all four

input images but does not take advantage of the lumi-

nance constraint. Adding the luminance constraint to

the cost function will further improve the disparity map

as shown in the last image. Consequently, the disparity

map will also produce the best fused image. Smoothness

parameter was tuned for each test so that the disparity

map would be as accurate as possible.

Even though the disparity maps, which are com-

puted using Census transform are more accurate, the

differences in the fused images are quite imperceptible.

Some of the errors in the disparity map are only slightly

inaccurate. Moreover, it can be noted that even though

the image fusion is based on the disparity map, the er-

rors in the disparity map do not necessarily propagate

to the fused image. For example, there are erroneous

disparities in the right side of the teddy bear in Fig-

ure 6 but there are no color errors in the corresponding

areas in the fused image. This is true for many other

areas in all of the datasets. Generally, the errors are

not visible if the erroneous disparities are located in

non-textured areas.

On the other hand, even the ground truth disparity

map does not give the perfect output image because oc-

clusions are not considered. In fact, for all Middlebury

datasets it holds that the estimated disparity map gives

better results than the ground truth map. In the esti-

mated disparity map, the occluded areas are interpo-
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Fig. 7 Disparity maps generated using two, three and four views. Bottom row shows the corresponding fused images.

lated from the occluder rather than from the occludee.

From the viewpoint of the first view, this will result to

somewhat incorrect disparity map. However, such dis-

parity map works better for the image fusion.

In general, color errors are most noticeable in oc-

cluded areas and near discontinuities. This is expected

because proper occlusion handling is not implemented.

Blue rectangle in Figure 9 shows a smaller image patch

chosen for the closer inspection. The red flower on the
foreground occludes some of the grass on the back-

ground. These areas are not visible in the blue filtered

image. Consequently, the corresponding areas in the

Table 3 Results of semi-global matching

Mutual Information

Dataset Errors PSNR SSIM (rgb)

Teddy 10.92 38.43 0.88; 1.00; 0.81
Cones 6.84 34.95 0.86; 1.00; 0.79
Venus 2.96 41.22 0.91; 1.00; 0.83
Tea - 39.47 0.95; 1.00; 0.88
Flowers - 40.05 0.94; 1.00; 0.87
Grass - 34.19 0.82; 1.00; 0.84

Census Transform

Dataset Errors PSNR SSIM (rgb)

Teddy 6.81 38.32 0.89; 1.00; 0.81
Cones 4.67 35.10 0.87; 1.00; 0.79
Venus 1.30 40.40 0.90; 1.00; 0.83
Tea - 40.36 0.96; 1.00; 0.89
Flowers - 40.12 0.95; 1.00; 0.87
Grass - 35.01 0.86; 1.00; 0.87

fused image have turned blue. The color error results

from the fact that missing color values in the blue fil-

tered image are taken from the pixels that belong to the

red flower. One can see similar problems in the Flower

dataset in Figure 8. The pink rectangle reveals that the

background has turned from white to yellow. It can be

noted that this type of color errors can also be more no-

ticeable depending on the foreground and background

colors. For example, if in the previous case, the flower

was white and the background was red, then we could

expect magenta like errors.

The red rectangle in Figure 5 shows details of the

Tea dataset. It can be seen that the gray strip in pineap-

ple tea box has slightly changed its color in compared

to reference image. In fact, the strip has a chrome coat-

ing, which makes it extremely reflective. Errors caused

by the reflections are difficult to avoid completely since

even the correct disparities may result to unexpected

color artifacts.

All tests were performed with a desktop PC that has

Intel Core i5 3.20 GHz CPU and 8 GB of RAM. Com-

putational time highly depends on the chosen dispar-

ity estimation method, image size and disparity range.

Not surprisingly, the graph cut method is significantly

slower than the semi-global matching. For example, the

average running time of the graph cuts method with

Census transform is 69 seconds for the Tea dataset and
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Fig. 8 The result of semi-global matching with Census transform on Flower dataset

Fig. 9 Synthetic refocusing on Grass dataset. Details from the reference image (green), fused image (blue), foreground in
focus image (yellow) and disparity map (red)

55 seconds for the Grass dataset. The corresponding

times for the semi-global matching are 8.4 s and 4.9 s.

The result of synthetic refocusing on Grass dataset

is shown in Figure 9. The underlying disparity map was

computed using SGM and Census transform. The over-

all quality of the depth of field effect is good. The refo-

cusing ability depends on the accuracy of the disparity

map. There are small inaccuracies in the disparity map

near the edges of the flower (red rectangle). As a re-

sult, some of these areas are unrealistically blurred in

the refocused image (yellow rectangle). Errors are most

visible in the middle of the image where foreground is

in focus.

3.1 Occlusion handling

Experiments showed that color errors are typically found

near the object borders. This is mainly caused by the

fact that our implementation does not consider occlu-

sions. A proper occlusion handling would significantly

increase the quality of fused and refocused images. In

this paper, we did not address this problem because the

effects of occlusions depend much on the camera setup

and configuration.

In our experiments, the baseline was relatively large

and the objects were close to the camera. This em-

phasizes the need for occlusion handling. We wanted

to make sure that possible matching errors would be

clearly visible and that occlusion problem was also cov-

ered although not solved. In typical shooting situations,

we would not expect the occlusions to be as severe.

This is the case, especially if the baseline was smaller.

Nonetheless, the occlusion handling would be an im-

portant direction for future research.

The occlusion handling consist of two main steps:

occlusion detection and occlusion filling. In the first

step, we would detect the areas in the reference im-

age (green image), which are not visible in the red and

blue filtered images. In the second step, we would fill

the missing color values using inpainting or colorization

methods.

A simple way to detect occlusion and false matches

is to perform disparity calculation in both directions.

That is, matching the first image to the second and then

the other way around. This will produce two slightly

different disparity maps in which the inconsistent dis-

parities represent occlusions or false matches. Alterna-

tively, it is possible to detect occlusions by encoding
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the visibility constraint directly into the global energy

function [20].

After the occlusion detection, we need to assign val-

ues for the occluded pixels. The missing color values

would be interpolated from the neighborhood. More

specifically from the background rather than from the

foreground object. Here we could also utilize coloriza-

tion methods such as [24].

4 Conclusion

In this paper, an image fusion algorithm was designed

and implemented for a four-aperture camera. Accord-

ing to experiments, the semi-global matching with Cen-

sus transform gave the best overall performance. The

quality of the fused images is near the reference images.

Closer inspection of the fused images reveals small color

errors, typically found near the object borders. Future

improvements, such as occlusion handling would signif-

icantly increase the quality of fused images.

It was also demonstrated that the robustness of dis-

parity estimation increases when matching costs from

multiple views are combined. Even though this work is

focused on the image fusion, similar approach could be

used in other multi-spectral matching problems. One

could also add more cameras to the system without

significantly increasing the computation time. Dispar-

ity estimation would stay the same, only the matching

costs would be different. Moreover, there are no lim-

itation on how cameras are arranged since algorithm

utilizes trifocal tensors.

It is safe to say that our implementation does not

meet the time constrains of a real four-aperture camera.

However, there exists fast GPU based implementations

of semi-global matching. For instance, the algorithm

presented in [25] could easily solve the disparities in a

fraction of a second even if we would use larger input

images and greater disparity range.

Our test setup did not show all the advantages of the

actual four-aperture camera because test images were

captured with a Bayer filter camera. On the other hand,

this was not a problem since evaluation was more fo-

cused on matching performance rather than improve-

ments in image quality. After all, the disparity estima-

tion plays a very important role what it comes to the

quality of the final image. The promising test results

imply that further research and development of the al-

gorithm is worthwhile. The four-aperture camera has

potential to become a serious competitor to the tradi-

tional Bayer matrix cameras in portable devices.
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