
Multi-View Alpha Matte for Free Viewpoint
Rendering

Daniel Herrera C., Juho Kannala, and Janne Heikkilä

Machine Vision Group, University of Oulu, Finland,
{dherrera,jkannala,jth}@ee.oulu.fi

Abstract. We present a multi-view alpha matting method that requires
no user input and is able to deal with any arbitrary scene geometry
through the use of depth maps. The algorithm uses multiple observa-
tions of the same point to construct constraints on the true foreground
color and estimate its transparency. A novel free viewpoint rendering
pipeline is also presented that takes advantage of the generated alpha
maps to improve the quality of synthesized views over state-of-the-art
methods. The results show a clear improvement on image quality by im-
plicitly correcting depth map errors, providing more natural boundaries
on transparent regions, and removing artifacts.

1 Introduction

Transparency in a scene is often desirable and usually unavoidable. It can be the
result of hair, semi-transparent materials, motion blur, or even aliasing. It gives
the objects in the scene a realistic look as boundaries in real scenes are usually
not pixel sharp.

A very popular application that suffers greatly from transparency artifacts
is free viewpoint rendering. The goal is to render new views by interpolating
from nearby cameras [1]. New view synthesis is particularly useful for 3D TV.
Mixed boundary pixels produce ghosting artifacts in the synthesized view that
significantly reduce its quality.

This paper deals with estimating the transparency of objects in an image,
also known as an alpha map, using multiple views of the scene. It is a chal-
lenging problem since the transparency can have different causes and the object
boundaries are often complex (e.g. hair). We also address the application of the
obtained alpha maps to the free viewpoint rendering problem to improve the
quality of novel views.

1.1 Alpha matting background

The literature contains many single view alpha matte estimation algorithms,
including a comprehensive online benchmark [2]. Due to the under constrained
nature of the problem they all require user input to identify some pure foreground
and background regions to be used as examples. Some accept a sparse labeling

in the form of strokes, while others require dense labeling in the form of a tri-
map. This is a considerable limitation since the need for user input limits the
applicability of the algorithms, particularly for video sequences.

Single view alpha matting algorithms can be divided into three categories
according to the assumptions made for an image: color sampling, alpha propaga-
tion, and optimization methods. Color sampling methods (e.g. shared sampling
[3]) take samples from nearby labeled regions. They assume color smoothness
to interpolate the alpha values between the labeled regions, usually requiring
a dense tri-map. Alpha propagation methods assume that the alpha values are
correlated to some local image statistics and use this to interpolate the alpha
values (e.g. Closed form matting [4]). These methods often allow sparse user
input. Optimization methods combine the previous two approaches to exploit
their strengths (e.g. Robust matting [5]). Although very impressive results have
been shown for single view alpha matting [2] it is expected that a multi-view ap-
proach would improve the existing methods since more information is available
and several observations of the same point can be used.

Zitnick et al. presented a free viewpoint rendering system that estimates the
alpha matte along depth discontinuities [6]. It uses a variant of Bayesian matting
[7] to estimate colors and opacities for mixed boundary pixels. Although the
stereo and rendering is multi-view, the matting is performed using a single view.
Moreover, they assume a fixed width boundary which limits the applicability in
scenes with large semi-transparent regions.

Hasinoff et al. [8] propose a method to estimate transparency at object
boundaries using boundary curves in 3D space. They use a multi-view approach
but limit theirselves to mixed boundary pixel transparency. Intrinsic material
transparency is not addressed and objects are assumed to be opaque. Joshi
et al. [9] suggest a multi-view variance measure to estimate transparency. The
approach computes a tri-map and propagates color statistics. This imposes limi-
tations on the color statistics of the scene. Moreover, it does not use all available
information by using only the variance of the samples.

Wexler et al. [10] present a multi-view environment matting algorithm to
estimate the light transfer function of a foreground object (e.g. a magnifying
glass). They include alpha estimation in their algorithm but only handle planar
backgrounds in their paper. Moreover, they assume an alpha value independent
of viewpoint, which limits the algorithm to planar foregrounds as well. The most
closely related work is that of Wexler et al. in [11]. They developed a multi-view
approach to alpha matte estimation under a Bayesian framework. They show
very good results but limit their model to planar layers. Moreover, their model
has an alpha value independent of view, which is not suitable for mixed boundary
pixels.

The goal of our matting stage is to generate a layered depth image [12] from
each input camera. However, we focus on the construction of this LDI from real
world images while estimating transparency. Even modern LDI approaches like
[13] suffer from artifacts due to mixed pixel boundaries and transparency.

1.2 Free viewpoint rendering background

A review of the latest free viewpoint rendering methods [1] shows that one of
the dominant approaches is to calculate a depth map for each image and then
warp the pixel colors to the new view using camera calibration information. The
problem with this approach is that traditional depth maps have only a single
depth per pixel and do not take transparency into account. This results in ghost-
ing artifacts. Recent methods like Müller et al. [14] attempt to discard mixed
pixels to remove the artifacts. Yet, this approach discards information, suffers
from unnaturally sharp boundaries, and still produces artifacts for complicated
semi-transparent regions.

Our approach also shares a strong similarity with Fitzgibbon et al. [15]. We
use a similar scanning of the optical rays to find matching colors amongst the
images. Our approach is novel in that it uses linear constraints on RGB space to
estimate the true color of semi-transparent points while their approach ignores
transparency issues.

2 Modeling transparency

When the transparency and color of an object are unknown the observed color
of a pixel can be the result of different situations. As mentioned in [10], if the
background is known to be white and the pixel is a 50% combination of red and
white, this can be due to any of the following:

1. Object is pink.
2. Object is red with a transparency of 50%.
3. Object is red but covers only 50% of the pixel (mixed boundary pixel).

Both transparency types are view dependent. The former because light rays will
traverse different paths through the object, and the latter because a 3D point
observed from a different view might not be a 2D boundary pixel any more.

Our model for a semi-transparent pixel p in image i is described by the
following matting equation:

Mi = αiF + (1− αi)Bi (1)

The observed color Mi is a mixture of the foreground and background colors.
It assumes a Lambertian surface, which results in a single foreground color F
shared by all images. Yet, the background color Bi and alpha value αi are view
dependent. Because most of the work is done individually for each pixel, the
index p is omitted.

3 Multi-view alpha estimation

Our algorithm requires the camera projection matrix and depth map for each
input image. Using this information all pixels can be back-projected into 3D

Algorithm 1 Multi-view alpha algorithm

1: for all i ∈ Images do . Sample collection
2: for all p ∈ Image(i) do
3: object clusteri(p)← FindCluster (p, depthmin)
4: depthobj ← depth(object cluster)

5: background clusteri(p)← FindCluster
(
p, depthobj + εf

)
6: Bi(p)← ref color(background cluster)
7: end for
8: end for
9: for all i ∈ Images do

10: for all p ∈ Image(i) do
11: sample set ← ∅ . Sample assembly
12: for all pixel ∈ object clusteri(p) do
13: j ← pixel.image
14: sample.M ← pixel.color
15: sample.B ← Bj(pixel)
16: If sample is stable Then add to sample set
17: end for
18: Project samples to main constraint . Alpha estimation
19: Fi(p)← farthest color along RGB ray

20: α∗i (p)←
‖Mi(p)−Bi(p)‖
‖Fi(p)−Bi(p)‖

21: end for
22: end for
23: Minimize energy using graphcut . Alpha smoothing

world space and several observations of the same scene point can be grouped
together. The main objective of the algorithm is to estimate Bi, F , and αi for
each pixel. Because we can obtain several samples for a scene point and its
background, alpha estimation can be done pixel-wise and no tri-map or user
input is needed.

Our method is summarized in Algorithm 1. It can be divided into four stages.
First, color samples are collected for each pixel and its background. Second, the
samples are assembled together into geometric constraints. Then, using these
constraints the true color and alpha value are estimated. These first three stages
treat each pixel individually. The final stage uses a graph cut minimization to
enforce spatial smoothness in the alpha map. Each stage is described in detail
in the following sections.

3.1 Sample collection

Instead of using neighbor pixels from the same image, as is common in most
alpha matting algorithms, our approach takes advantage of the fact that multi-
view systems observe a point in the scene several times from different angles.
Because of parallax the point is observed each time with a different background.
The background itself can often be directly observed in a different image, as
illustrated in Figure 1.

The colors observed for the same point are grouped together in clusters. Each
cluster can have as many samples as there are cameras in the system. The algo-
rithm scans the pixel’s optical ray to find the first two distinct clusters in space.
The first is denoted the foreground object cluster and contains the observed col-
ors from all the views where the corresponding space point is visible. The second

Algorithm 2 Find color cluster algorithm

1: function FindCluster(pixel, depth0)
2: c∗ ← ∅ . Best cluster found
3: for d = depth0...depthmax do
4: cd ← ∅ . Cluster at depth d
5: pref (x, y, z)← back-project pixel using d
6: for j ∈ V iews do
7: pj(u, v, w)← project pref to view j
8: wmap ← nearest neighbor(depthj , u, v)
9: if |w − wmap| ≤ εw then

10: rgb← bilinear interpolation(j, u, v)
11: Add rgb to cd
12: end if
13: end for
14: if score(cd) > score(c∗) then
15: c∗ ← cd . New best cluster
16: end if
17: if d− depth(c∗) ≥ εf then
18: break . No cluster found for a while, end search
19: end if
20: end for
21: return c∗

22: end function

view 2 view 3view 1

F

B1

B3
B2

(a) (b) (c)

Fig. 6. Estimation of the clean-plate background. (a) The region labelled F is a mixed
pixel in all views. The background colors B2 and B3 can be obtained from view 1, by
following the dashed lines. However, B1 is occluded in all views. (b–c) A region of
Fig. 4(a) is shown, (b) with pixels near the boundary highlighted in black, and (c)
with these pixels filled in using our clean-plate background estimate.

We also modify our initial guess to reflect the fact that occlusion boundaries
tend to coincide with strong edges. To do this we perturb the control points
in the reference image to the local peak of an edge potential field (Fig. 5(d)).
We first apply a multiscale difference-of-Gaussians edge detector to each im-
age, localizing edgels to sub-pixel precision and use this to pre-compute edge
potential fields, {Ei}, quantized to 0.25 pixels. We define these fields as the
sum of “forces” proportional to edgel strength and inversely proportional to
squared edgel distance. Although edges are a strong cue for occlusion bound-
aries in many scenes, this heuristic can also be distracted by spurious internal
texture, so we limit the perturbation to a one-pixel radius neighborhood.

4.2 Background (clean plate) estimation

As discussed in Sec. 3, using stereo data to triangulate the matting prob-
lem requires that the background B be known. A “clean plate” background
refers to an image where foreground pixels are replaced with (unmixed) back-
ground colors, and is specified in many systems using manual interaction at
keyframes [2,3]. However, this process can in theory be made automatic by
exploiting stereo information to grab corresponding background colors from
nearby frames in which the background is exposed (Fig. 6). Note that aside
from specifying the initial 3D boundary curve, the only place our approach
relies on accurate stereo is in warping the background from nearby views.

For a given boundary pixel, we find potentially corresponding background col-
ors by forward-warping that pixel to all other views. This warping is performed
according to the depth on the background side of the boundary, as given by
stereo. If a forward-warped pixel has background depth in the new view, it be-

11

(a) (b) Original (c) Background

Fig. 1: Background recovery. (a) The background color for views 2 and 3 is di-
rectly observed by view 1. Image taken from [8]. (b) and (c) show an example
of the recovered background.

is the background cluster and contains observed colors for the background. The
method of collecting samples is detailed in Algorithm 2.

Each discretized depth d along the pixel’s optical ray is projected onto the
epipolar line of the other images. If the expected depth and the pixel’s depth
are similar, the pixel is added to a cluster at this position d. Due to noise and
necessary tolerances, this procedure will obtain many similar clusters at nearby
depths. These are essentially the same cluster at slightly different displacements.
To select the best cluster for a point in space the candidate clusters are ranked
according to the following formula:

score = median
Mk∈cluster

(‖Mref −Mk‖) (2)

where the median is over all the samples in the cluster. The choice of reference
color Mref differs for the object and background clusters. For the object cluster it
is the pixel color of the current view Mi. This creates a bias towards higher alpha
values as it tries to find similar colors, but maximizes the chances of finding a
match with the same foreground color. For the background cluster, the sample

60
80

100
120

140

80
100

120
140

160
180

70

75

80

85

90

95

100

105

110

P
3

M
i

B
i

M
3

B
3

(a) Different background

60
80

100
120

140

80
100

120
140

160
180

70

75

80

85

90

95

100

105

110

P
2

M
i

B
i

M
2

B
2

(b) Similar background

60
80

100
120

140

80
100

120
140

160
180

70

75

80

85

90

95

100

105

110

P
3
=F

P
2

M
i

B
i

(c) Final constraints

Fig. 2: Projection of samples onto main constraint. According to the final result
in (c), P3 is selected as Fi(p) and Mi is assigned an alpha of 42%.

Mj is selected whose camera j is closest to i because camera calibration and
depth map noise have a smaller impact on nearby cameras.

The object cluster has the observed colors for this point {Mj |j ∈ [views
where point is not occluded]}. The background cluster is discarded and only the
reference color is stored for the following stages. This reference color becomes
the background color for the current pixel Bi. If only one cluster is found then
no estimation is performed for this pixel (i.e. Fi(p) = Bi(p) = Mi(p), α

∗
i (p) = 0).

3.2 Sample assembly

From (1) it can be seen that Mi lies on the line segment between Bi and F in
RGB space. Because we do not know F we can use each sample to create a ray in
RGB space that starts from Bi and passes through Mi. One ray is constructed
for each entry in the object cluster. For an entry from image j, the background
is obtained from the corresponding Bj .

3.3 Alpha estimation

Since Mi is directly observable and Bi was estimated in the previous stage,
the remaining task is to estimate F in Eq. (1). However, in order to facilitate
new view synthesis, we would like to have an image-based representation for the
color of the foreground objects (i.e. pre-rendered per source view) and hence we
estimate the foreground layers Fi(p) in a view dependant manner. To this effect,
using the assembled rays in RGB space one can derive two types of constraints,
as shown in Figure 2 and detailed in this section.

The first type of constraint is derived from the fact that all pixels belonging to
the same foreground object cluster should share the same F , thus all rays should
intersect at F (Fig. 2a). This is the underlying idea used for triangulation in
standard blue screen matting [16]. However, rays originating from backgrounds
with very similar color have very unstable intersection points, demonstrated in

Figure 2b. In the case where the backgrounds are exactly the same color the
rays are collinear.

The second type of constraint captures the idea that Mi lies in the line

segment BiF . This means that F must lie on the
−−−→
BiMi ray at least as far as

Mi. This gives an upper bound to the observed alpha values. This is specially
useful for samples which are always observed with similar background colors and
their intersection is therefore unreliable. If at least one image sees the true color
of the point (i.e. Mi = F), which is a common case for mixed pixels at object
boundaries, then we can still recover the true alpha value even if the background
is non-textured.

To estimate Fi(p) for a pixel p in image i, we first consider the ray defined
by Bi and Mi to be the main ray. Each Mj from the foreground object cluster
of the pixel p is then projected onto this ray in one of two ways, depending on
the intersection angle between the rays:

Pj =

{(
(Mj −Bi) · d̂i

)
d̂i +Bi if ∠ij ≤ ε∠

Ray intersection else
(3)

where d̂i is the ray direction from Bi to Mi.
If the angle between rays is lower than the threshold, the intersection is

considered unreliable. Because this is caused by similar backgrounds, Mj can
be directly projected onto the main ray (Fig. 2b). If the intersection angle is

above the threshold, the point on
−−−→
BiMi closest to

−−−→
BjMj is used as the sample’s

projection Pj (Fig. 2a).
Once all samples have been projected onto the main ray (Fig. 2c), Fi(p) is

taken as the farthest P along the ray. The alpha value is then calculated as the
distance of Mi to Bi relative to Fi(p):

α∗i (p) =
‖Mi(p)−Bi(p)‖
‖Fi(p)−Bi(p)‖

(4)

3.4 Alpha smoothing

The previous stage estimates the foreground and background colors as well as
the alpha value for each pixel. However, this is done independently for each pixel
and is noisy. We can improve this estimate by taking spatial information into
account. Since the alpha gradient directly contributes to the total gradient, we
assume that regions with low color variation imply low alpha variation. This is
exploited by applying a graph cut algorithm [17] to the obtained alpha values.
The continuous interval [0, 1] of alpha values is discretized into 100 labels with
constant separation. The energy to be minimized is of the standard form:

E =
∑
p∈I

Ed(p) + λ
∑
p,q∈I

Es(p, q) (5)

where λ controls the weight of the spatial term relative to the data term.

The data term controls how much the new alpha deviates from the previous
estimation. A truncated L1 norm is used as a robust cost measure:

Ed(p) = min (|α(p)− α∗(p)| , εα) (6)

The spatial term penalizes variations in alpha value where the image gradient
is low. However, if the depth of the recovered clusters differs, the spatial term is
set to zero because the pixels belong to different objects.

Es(p, q) =

{
min(|α(p)−α(q)|,εα)
|∇M(p,q)|+1 if |Zi − Zj | < εz

0 else
(7)

3.5 Noise considerations

There are three sources of noise for the algorithm: camera calibration parameters,
depth map, and RGB noise. Each of these was analyzed to determine their impact
in the estimation.

Camera calibration errors lead to an inaccurate optical ray for each pixel. The
effect is directly visible in the plot of the epipolar line. We tested this effect in
our datasets [6] using both the provided camera calibration and estimating the
parameters using off-the-shelf structure from motion techniques. In both cases
the epipolar line’s inaccuracy was visibly less than half a pixel. We therefore
assume sufficiently accurate calibration parameters.

The depth map on the other hand, presents considerable errors. Even though
the quality of the depth map can be improved by using better stereo methods,
it will still likely contain inaccuracies. This is taken into account in the sample
collection stage. The clustering of the backprojected points and ranking of the
clusters provides robustness against some depth map errors.

RGB noise has a stronger impact on pixels where the observed and background
colors are similar. This can be measured by the length of each sample constraint
(i.e. ‖Mj − Bj‖). Constraints with a small length have an unstable direction
and its projection is unreliable. Therefore, if the length is smaller than a given
threshold the constraint is ignored. If the main constraint is to be ignored then
no alpha value is calculated for the pixel (i.e. Fi(p) = Mi(p), α

∗
i (p) = 1).

4 Free viewpoint rendering

As an application for the obtained alpha maps, a free viewpoint rendering sys-
tem was developed that handles transparent layers appropriately. The algorithm
takes four layers as input: left background, left foreground, right background,
and right foreground. Each layer has a depth map, an RGB texture, and an

alpha map. The layer components are obtained directly from the output of the
alpha estimation output for the left and right views. Areas where no alpha esti-
mation could be performed have an empty foreground, with the original image
color and depth used for the background layer. Left and right layers are merged
to produce the final background color Bn, foreground color Fn, and alpha value
αn.

Each layer is first warped to the novel viewpoint independently. Small cracks
that appear due to the forward warping are filled using the same crack-filling
algorithm presented in [14]. Cracks are found by looking for depth values that
are significantly larger than both neighboring values in horizontal, vertical, or
diagonal directions. The median color of neighboring pixels is then used to fill
in the cracks. Warped background layers are then combined pixel by pixel using
a soft z threshold:

Bn =


dlBl+drBr
dl+dr

if
∣∣Zbl − Zbr ∣∣ < εz

Bl else if Zbl < Zbr
Br else

(8)

where dl and dr are the distances from the novel view’s camera center to the left
and right views’ camera centers respectively. Merging of the foreground layers
must take transparency into account. First the left and right foreground colors
are combined. If both foreground pixels are close to each other, the final fore-
ground color is interpolated between the two. If they are far apart, it is assumed
that they represent different transparent layers and are thus combined using (1):

Fn =


dlFl+drFr
dl+dr

if
∣∣∣Zfl − Zfr ∣∣∣ < εz

αlFl + (1− αl)Fr else if Zfl < Zfr
αrFr + (1− αr)Fl else

(9)

αn =

{
max (αl, αr) if

∣∣∣Zfl − Zfr ∣∣∣ < εz

1− (1− αl)(1− αr) else
(10)

Finally, (1) is applied to produce the final output color using Fn, αn, and Bn.
Because the foreground layers already have an alpha channel no extra processing
is necessary for the transparent regions or the boundary mixed pixels.

5 Results

5.1 Alpha maps

Figure 3 shows the obtained alpha maps for the well known ballet and break-
dancers datasets [6]. A close up of two relevant regions is presented in Figure
4. The dancers in the scene have a mixed pixel boundary several pixels wide,
as seen in 4. The alpha values for these mixed pixels were succesfully recovered
without any user input. Hair presents a challenge for alpha estimation and even

though the semi-transparent region of Figure 4 has an uneven width, its alpha
matte was also extracted properly. The central region of the breakdancer has no
alpha values because the background could not be observed in any of the images.
Yet the mixed pixel boundary was also detected.

Fig. 3: Extracted alpha maps for the characters in the scenes.

Fig. 4: Close up of semi-transparent regions. Left: Boundary pixels. Middle:
Semi-transparent hair. Right: Incorrect estimation.

Figure 4 shows how the algorithm labels as semi-transparent the area where
the yellow sleeve and black vest meet. These pixels are indeed mixed pixels as
can be observed by the mixture of yellow and black on the border. However,
when the algorithm classifies them as transparent, it incorrectly assumes that
they are mixed with the wall behind.

5.2 Free viewpoint rendering

A novel view generated using our method is presented in Figure 5. Müller et
al.’s state-of-the-art method presented in [14] was implemented and used as a
comparison. At a broad scale, both algorithms produce novel views of similar
quality. Close ups of the most relevant differences are presented in Figure 6.

On Figure 6a it can be observed how an error in the depth map causes the
thumb to be warped incorrectly by Müller et al.’s method. The alpha matte
estimation stage of our algorithm succesfully recovers from this error in the
depth map and assigns the thumb to the proper place.

A semi-transparent region made of hair is presented on Figure 6b. Müller et
al.’s method produces an unnaturally sharp and even boundary for the hair. The
alpha map obtained with our method allows a more natural look of the hair.

Figure 6c shows an artifact present in Müller et al.’s approach due to the wall
being incorrectly assigned to the foreground, similar to a ghosting artifact. Our

(a) Müller et al.’s method [14] (b) Our method using alpha matte

Fig. 5: Comparison of synthesized views from a novel viewpoint.

(a) Correction of depth innacuracies.(b) Improved transparency handling.

(c) Removal of line artifact on left
border.

(d) Näıve hole filling vs. recovered
background.

Fig. 6: Comparison of synthesized views from a novel viewpoint.
Left column: Müller et al.’s method. Right column: our proposed method.

method does not suffer from this type of artifacts. However, our method presents
more noise on the border. The noise suggests that the alpha smoothing stage
could be improved. The current algorithm enforces spatial smoothness only on
the alpha map and not in the foreground or background color maps.

Finally, Figure 6d shows that the näıve hole filling approach used in [14] is
not suited to big holes in the background. Because our method uses the entire
dataset for the alpha estimation stage, the background can be recovered from
other images and no hole filling is necessary.

6 Conclusions

We presented a multi-view alpha estimation algorithm that requires no user in-
teraction. It handles arbitrary scene geometry using pre-computed depth maps.

It automatically detects semi-transparent pixels in the images. The algorithm
handles mixed boundary pixels and hair regions correctly estimating their trans-
parency and true colors.

Using the results of the alpha estimation algorithm, a novel free viewpoint
rendering pipeline was developed and compared to the state of the art. The
alpha estimation stage allowed the free viewpoint rendering algorithm to correct
some depth map errors. The obtained results are of high quality and removed
several artifacts found in the state-of-the-art methods. Future research can focus
on better use of spatial information during alpha estimation and in simultaneous
depth and transparency estimation.

References

1. A. Smolic, “3d video and free viewpoint video-from capture to display,” Pattern
Recognition, 2010.

2. C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott, “A percep-
tually motivated online benchmark for image matting,” in CVPR, 2009.

3. E. Gastal and M. Oliveira, “Shared sampling for real-time alpha matting,” Com-
puter Graphics Forum, vol. 29, no. 2, 2010.

4. A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural image
matting,” PAMI, 2007.

5. J. Wang and M. Cohen, “Optimized color sampling for robust matting,” in CVPR,
2007.

6. C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High-quality
video view interpolation using a layered representation,” ACM Trans. on Graph.
(Proc. SIGGRAPH), 2004.

7. Y. Chuang, B. Curless, D. Salesin, and R. Szeliski, “A bayesian approach to digital
matting,” in CVPR, 2001.

8. S. Hasinoff, S. Kang, and R. Szeliski, “Boundary matting for view synthesis,”
Computer Vision and Image Understanding, vol. 103, no. 1, 2006.

9. N. Joshi, W. Matusik, and S. Avidan, “Natural video matting using camera ar-
rays,” ACM Trans. Graph., vol. 25, 2006.

10. Y. Wexler, A. Fitzgibbon, and A. Zisserman, “Image-based environment matting,”
in Proceedings of the 13th Eurographics workshop on Rendering, 2002.

11. Y. Wexler, A. Fitzgibbon, and A. Zisserman, “Bayesian estimation of layers from
multiple images,” in ECCV, 2002.

12. J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered depth images,” SIGGRAPH,
1998.

13. A. Frick, F. Kellner, B. Bartczak, and R. Koch, “Generation of 3d-tv ldv-content
with time-of-flight camera,” in 3DTV Con, 2009.

14. K. Müller, A. Smolic, K. Dix, P. Merkle, P. Kauff, and T. Wiegand, “View syn-
thesis for advanced 3d video systems,” EURASIP Journal on Image and Video
Processing, 2008.

15. A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering using image-
based priors,” in ICCV, 2003.

16. A. Smith and J. Blinn, “Blue screen matting,” in Proc. of ACM SIGGRAPH, 1996.
17. Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via

graph cuts,” PAMI, vol. 23, no. 11, 2002.

