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Tyossé kisitellddn ndkymén kolmiulotteisen rakenteen midrittdmistd automaattises-
ti kuvasarjasta. Sovelluksena on viemériputken muodon méérittdminen videokuvasta
putken sisélld liikkuvaan robottiin asennetun kameran avulla. Kamerassa on kalan-
silmiélinssi, jonka hyvin laaja kuvakulma mahdollistaa koko putken seindmin kuvaa-
misen yhden lapikulun aikana. Tyon keskeiset osat ovat (1) kalansilmélinssin kalibrointi
ja (2) putken muodon automaattinen rekonstruointi kalibroidulla kameralla kuvatusta
kuvasarjasta.

Kalansilmilinssin kalibrointiin esitetddn menetelmi, joka perustuu tasomaisen ka-
librointikohteen kéyttoon. Tydssd esitelldén yleinen matemaattiseen mallintamiseen
pohjautuva kameramalli, joka soveltuu paitsi erityyppisille kalansilméilinsseille my6s ta-
vanomaisille linsseille. Menetelma kameraparametrien médriaédmiseksi on monitasoinen,
jotta vaikeahko optimointiongelma saadaan ratkaistua. Kéyttiden kalibroinnissa koh-
distusmerkkeind ympyroitd saavutettiin sekid tavanomaisella ettd kalansilméikameralla
alle kymmenesosapikselin suuruinen projektiovirheen keskihajonta.

Putken muodon méirittdminen kuvasarjasta pohjautuu kuvissa nikyvien piirrepis-
teiden jaljittdmiseen perikkiisistd kuvista. Piirrepisteilld tarkoitetaan téssi pisteité,
jotka ovat paikannettavissa putken sisépinnan tekstuurin epédtasaisuuksista. Kuvasar-
jan yli muodostetut vastaavuudet piirrepisteiden vililld mahdollistavat kameran liik-
keen ja pisteiden kolmiulotteisten koordinaattien yhtdaikaisen ratkaisemisen. Vastaa-
vuuksien automaattisessa méirittadmisessd hyédynnetidin geometrisia rajoitteita, jotka
médrdytyvit kuvaparien ja -kolmikoiden vilille fundamentaalimatriisin ja trifokaali-
tensorin perusteella. TyGssi esitetddn geometristen rajoitteiden kiayttaminen pisteiden
jaljityksessd tavalla, joka yleistyy erityyppisille kalibroiduille kameroille.

Viemirivideolla tehdyt kokeilut osoittavat, ettd kuvasarjasta jiljitetyt ja rekonstruoi-
dut pisteet ovat putkimaisessa muodostelmassa, josta putken todellinen muoto on
madritettavissa. Saavutettavissa olevan mittaustarkkuuden sekd menetelmén soveltu-
vuuden arviointi erilaisille putkimateriaaleille vaatii kuitenkin jatkotutkimusta. Pitkien
kuvasarjojen rekonstruointi on nykyiselld toteutuksella tyoldstd ja siten menetelmén
soveltaminen kédytdnnon vieméritarkastuksissa edellyttda tuntuvaa jatkokehitysté.

Avainsanat: tietokonen#ks, kalansilméilinssi, kameran kalibrointi,
monen nikymén geometria, kolmiulotteinen rekonstruktio
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In this thesis we consider automatic 3D model acquisition from video sequences. The
application problem is to recover the shape of a sewer pipe from a video sequence
taken by a camera moving inside the pipe. The camera is equipped with a fish-eye
lens, whose wide field of view makes it possible to obtain a scan of the whole pipe by a
single pass. This thesis has two central parts: (1) calibration of a fish-eye lens camera
and (2) recovery of the shape of a sewer pipe from a calibrated image sequence.

We describe a camera calibration method for fish-eye lens cameras that is based on
viewing a planar calibration pattern. A general camera model is presented that is
suitable for both fish-eye lens cameras and conventional cameras. The method for
determining the camera parameters is hierarchical so that the optimisation problem
can be solved successfully. The standard deviation of the calibration residuals was
below 0.1 pixels for both a fish-eye lens camera and a conventional camera when a
calibration plane with circular control points was used.

Recovering the shape of a sewer pipe from a video sequence is based on tracking interest
points across successive images in the sequence. Here the interest points are points
where the image intensity changes rapidly due to irregularities in the surface texture
of the pipe. The established point correspondences over the image sequence allow to
compute simultaneously the camera motion and the 3D coordinates of the points. To
avoid false correspondences in tracking we utilise the geometric constraints between
successive image pairs and image triplets. Tracking and reconstruction of points from
image sequences is described in a general framework that extends to different kinds of
calibrated cameras.

The experiments with real sewer videos show that the arrangement of the reconstructed
points is tubular and the shape of the pipe may be estimated from the reconstruction.
However, evaluating the attainable measurement accuracy and determining the validity
of the approach for different kinds of sewer pipes are topics of future research. By our
current implementation it is laborious to compute reconstructions from long image
sequences, hence, a lot of further development is needed before the methods can be
used in real sewer pipe inspections.

Keywords: computer vision, fish-eye lens, camera calibration,
multiple view geometry, three-dimensional reconstruction
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Chapter 1

Introduction

One of the most fundamental problems in computer vision is to understand
the structure of a real world scene given several images of it. The problem
is commonly known as the structure from motion problem. However, since it
usually involves the simultaneous estimation of the camera motion it is also
called the structure and motion problem.

Reconstructing the three-dimensional world from two-dimensional projec-
tions has many applications. In photogrammetry for instance, topographic
maps have been constructed for a long time. In robotics, autonomous vehicles
require advanced vision algorithms. Modelling of buildings and precise three-
dimensional measurements of big industrial parts provide applications for the
three-dimensional computer vision. The application area of this thesis, video-
based measurements of sewer pipelines, may be classified to the latter category.

Finding solutions to the structure and motion problem requires knowledge
of the geometric laws that describe how the different views of a scene are re-
lated. Although geometry is one of the oldest branches of mathematics, there
has been some remarkable progress in the understanding of the geometry of mul-
tiple views during the past decades. The foundation for this progress is in the
projective geometry which has several advantages over the usual Euclidean one.
For example, in projective geometry perspective projections may be represented
by linear matrix equations. The discovery of the multiple view tensors, which
enclose the geometric constraints between multiple views of a single scene, is
one of the recent advances in the theory of geometric computer vision.

Besides the theoretical advances, the improvements at a more practical level
have also been important. In practice, geometrical transformations, like rota-
tions and translation between the views, are estimated from image measure-
ments which always contain noise. Often automatically extracted data, such
as point correspondences between two views, also contain false measurements
which are in disagreement with the geometric model. For these reasons it is
not always trivial, how to convert the geometric knowledge into working algo-
rithms. The current stage of development of theory and practice in geometric
computer vision is extensively summarised in two recent books [Hartley00] and
[Faugeras01].

In this thesis, we look at the reconstruction problem from the viewpoint of
a video-based sewer line measurement system. The aim is to measure the shape
of sewer pipes from video sequences that are acquired by a robot moving in
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Figure 1.1: A typical sewer inspection system

the sewer. While the multiple view geometry and robust estimation algorithms
provide the theoretical background for the solutions, the implementation of a
working system for the reconstruction of sewer pipes still contains many prob-
lems. To give a better overview of the application problem we describe it in
more detail in the following section.

1.1 Problem Setting

Typical equipment for the inspection of sewer pipelines consists of a video cam-
era and a remote controlled tractor. The tractor is connected to a mobile con-
trol station by a cable which provides the power for the robot and transmits
the video signal to the operator. Usually the camera and lighting are attached
to a special pan and tilt head of the robot which enables the camera to look
at different directions. The sewer robot we used had a fixed installation of the
camera instead, but the camera was equipped with a fish-eye lens, which has a
very wide field of view. The wide field of view makes it possible to obtain a high
resolution scan of the whole pipe by a single pass. A typical sewer inspection
system is schematically illustrated in Fig. 1.1.

The condition assessment of sewer pipes is usually carried out by visual in-
spection of the video to find defects and deformations. However, the manual
inspection has a number of drawbacks such as subjectivity, varying standards,
and high costs. Therefore there has been intentions to develop techniques for au-
tomatic assessment of sewer lines. The automatic measurement of deformations
places the research problem for this thesis. The full three-dimensional recon-
struction of the pipe would definitely solve the problem, but it is a difficult task
to obtain such a reconstruction solely from the video. However, from a scientific
point of view, the reconstruction problem contains many interesting subprob-
lems while addressing them is useful, even if one would need other instruments,
in addition to a camera, in order to realise a robust sewer measurement system.
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1.2 Aims of the Thesis

The principal goal of this thesis is to develop methods for video-based shape
measurement of sewer pipes. Our approach is to use a video camera as the only
measuring instrument and to solve the general structure and motion problem by
tracking interest points across successive frames in the video sequence. In this
case the interest points are points where the image intensity changes rapidly
due to irregularities in the surface texture of the pipe. If enough interest points
can be tracked and reconstructed, the arrangement of the corresponding three-
dimensional points should be tubular. Thus, in principle, the shape of the pipe
may be estimated this way.

The advantage of the approach pursued in this thesis is its generality. The
implemented methods could be used also in other applications, where there is a
need to recover the scene structure or the camera motion from video sequences.
However, the approach above may be computationally heavy and its validity for
different kinds of pipes is unclear. Therefore we will also briefly discuss other
possible solutions to the problem. For instance, the use of structured light to
determine the cross-sectional shape of the pipe is considered.

Before any precise metric measurements can be done by the camera, it must
be calibrated. The calibration roughly means that for each point in the image
we determine the direction of the back-projected ray. The calibration is par-
ticularly important in our application because usual methods for the structure
and motion problem assume the pinhole camera model, which is not a valid
approximation to a fish-eye lens. The problem is that an accurate and easy-to-
use calibration method has not been available for fish-eye lenses. Therefore an
important partial goal of this thesis is to propose a calibration procedure for
fish-eye lenses.

1.3 Overview of the Thesis

The organisation of the thesis is as follows. First in Chapter 2, we review some
previous approaches to the structure and motion problem as well as different
equipment and methods for sewer pipe inspections. Chapter 3 presents the cam-
era model and calibration method that we propose for fish-eye lens cameras. The
calibration experiments and results are described in Chapter 4. In Chapter 5,
we tell how the interest points are extracted from the images and how puta-
tive point correspondences between successive frames are obtained. Chapter 6
concentrates on multiple view geometry and describes the geometric constraints
between two and three views. Then, Chapter 7 illustrates how these constraints
may be used for automatic and reliable tracking of points. In Chapter 7, we also
describe the reconstruction procedure and show an example of a reconstructed
pipe section. Finally, the results of the thesis are summarised and discussed
in Chapter 8. To make this thesis self-contained, Appendix A provides a short
introduction to the projective geometry.



Chapter 2

Related Work

The aim of this chapter is to review previous and ongoing research that is related
to the subjects of the thesis. First in Section 2.1, we give an overview of the
common approaches to the structure from motion problem and then in Section
2.2, we study different equipment and methods for sewer pipe inspection.

2.1 Structure from Motion

The problem of reconstructing a three-dimensional scene from its two-dimension-
al projections lies in the intersection of two disciplines. Basically, it is the
case of “measuring graphically by means of light” which falls into the field of
photogrammetry by definition [Slama80]. On the other hand, the objective of
making automatic measurements from digital images has made the problem a
fundamental one also in computer vision. Since there is a tendency towards
automation of the standard photogrammetric processes, these disciplines will
continue to overlap [Schenk99).

A characteristic feature of the modern geometric computer vision is that
the approach is uncalibrated [Hartley00]. When the conventional way is to first
calibrate the cameras and then compute a metric reconstruction from matched
images, the modern way allows ignoring the values of internal camera parameters
to obtain a projective reconstruction. It is even possible to update the projective
reconstruction to a metric one by determining the camera parameters directly
from multiple uncalibrated images without any specific calibration objects. This
is called auto-calibration [Faugeras92a, Pollefeys98].

The advantage of the modern approach is that it leads to a more general
theory of geometric relations between multiple views. However, the uncalibrated
approach usually assumes pinhole cameras and ignores lens distortion, apart
from a few exceptions [Fitzgibbon01, Mi¢u§ik03]. Often pinhole camera is not
a valid assumption if the aim is to make precise measurements. In this thesis,
we adopt the traditional photogrammetric principle of camera calibration prior
to measurements. One reason for this is the peculiarity of the fish-eye lens and
the other is the requirement of high accuracy. Although we use the calibrated
approach, we also utilise novel geometric concepts, such as the multiple view
tensors, originating from a more general uncalibrated framework.

The current state-of-the-art vision systems aim at fully automatic 3D model
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acquisition from uncalibrated image sequences allowing even zooming of the
cameras [Fitzgibbon98a, Pollefeys99, Johansson01]. Unlike some other 3D mod-
elling systems they do not require any special equipment, such as laser radars
[Leica] or structured light [ShapeCam]|, or manual extraction of feature cor-
respondences [PhotoModeler]. The scope of these systems is wide since only
general assumptions are made, e.g. rigid scene, pinhole camera, piecewise con-
tinuous and sufficiently textured surfaces. The techniques have also matured at
the stage where first commercial products have entered the market. For exam-
ple, the automatic camera tracker boujou [2d3], which is based on the research
work done at the University of Oxford [VGG], is used by the film industry to
compute camera motion from video sequences. The 3D animators need this
information in adding special effects to a live-action background.

The structure from motion problem can be divided into several, more man-
ageable subproblems. A typical automatic scene reconstruction system consists
of sub-modules addressing these different subproblems. In the following, we
describe the subproblems and give references where they are discussed in more
detail. After that we briefly consider the implementation of our system from
the viewpoint of the sub-modules.

Feature extraction and matching The first problem is to obtain the initial
feature correspondences between successive images in the sequence. In gen-
eral, matching is a difficult problem but it is simplified if one may assume a
short baseline between the images. In this case, one may usually match fea-
tures through intensity cross-correlation since the intensity neighbourhoods of
corresponding features are similar in both images [Xu96]. If the appearance of
a feature changes between the views, the pure translation model for the feature
neighbourhoods is not adequate and one may allow affine changes of the fea-
ture windows as in [Shi94]. The matching algorithm in [Shi94] is based on the
Lucas-Kanade tracker [Lucas81].

Commonly the matched features are points or lines because they are simplest
to handle in later stages, in fact, concurrency and collinearity are invariant to
planar projective transformations while more complex geometric primitives are
not. Often the features are interest points that are extracted by the Harris
corner detector [Harris88]. In the sequel, we mainly assume that the feature
correspondences are points.

Feature tracking The aim in this stage is to track features across several
views. Although it is possible to obtain a reconstruction from just two views,
the accuracy of the estimated 3D structure may be poor if the distance be-
tween camera centres, the baseline, is very small. Tracking across several views
usually results to a larger effective baseline and thereby to a better reconstruc-
tion. Simultaneous robust estimation of camera motion helps also to discard
the wrongly matched features.

The point correspondences obtained in the initial matching stage contain
almost unavoidably some false matches. This is because the local neighbour-
hoods of different interest points may look similar. However, most of these
false matches do not satisfy the geometric constraints between multiple views
of a rigid scene. For two views this constraint is called the epipolar constraint
and it is imposed by the fundamental matrix which is the multiple view ten-
sor in the two-view case. Hence, estimating the fundamental matrix from the
putative correspondences by some robust method allows one to discard those
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matches that do not satisfy the epipolar constraint. The fundamental matrix
was first introduced by Faugeras [Faugeras92b] and Hartley [Hartley92] but its
counterpart for calibrated cameras, the essential matrix, appeared already in
[Longuet-Higgins81].

In the three-view case the multiple view tensor is called the trifocal tensor
and it imposes all the effective constraints for correspondences across three views
[Hartley00]. Thus, by robustly computing the trifocal tensor for each successive
image triplet one may further discard false matches and obtain correspondences
practically free from false ones. The estimated three-view geometry may also
be used to obtain additional matches by lowering similarity threshold for those
putative correspondences which fit well to the geometry [Beardsley96].

There are several robust estimation methods that may be used in comput-
ing the multiple view tensors. Most common are RANSAC (Random Sample
Consensus) [Fischler81] and LMedS (Least Median of Squares) [Rousseeuw87]
and their different variants [Torr00, Zhang95]. A novel approach is the MLRE
(Maximum Likelihood Robust Estimator) [Brandt02].

Uncalibrated structure from motion After the point correspondences are
established over the successive triplets of views one must solve the structure
and camera motion for the entire sequence. The optimal way is to compute the
camera matrices and the 3D points in such a way that the sum of squared dis-
tances between projected and measured points is minimised. This is a nonlinear
optimisation problem known as bundle adjustment and it requires a good initial
guess. In the special case of affine cameras, there is a noniterative factorisation
algorithm for optimal reconstruction [Tomasi92], and an iterative modification
of it for situations where all the point correspondences are not visible in all the
views [Brandt02]. Similar factorisation based methods have been proposed for
general projective reconstruction [Sturm96, Heyden97a, Martinec02], and they
can be used to compute an initial guess for the final bundle adjustment. Another
approach is to proceed from triplets towards final reconstruction by hierarchical
merging and bundle adjustment of sub-sequences [Fitzgibbon98b].

Auto-calibration The process of determining internal camera parameters di-
rectly from a sequence of images acquired by an unknown camera undergoing
unknown movement is called auto-calibration. With known internal camera pa-
rameters it is possible to upgrade the projective reconstruction to metric. The
first auto-calibration methods assumed constant internal parameters, i.e., the
whole sequence is taken by the same camera with fixed focal length and focus
[Faugeras92a, Heyden96]. However, auto-calibration is possible also under less
restrictive constraints [Heyden97b, Pollefeys98]. For example, Pollefeys et al
[Pollefeys98] showed that the assumption of zero-skew (i.e. orthogonal pixel
coordinate system) alone is sufficient for auto-calibration. Pollefeys also experi-
mented different auto-calibration techniques for zooming cameras [Pollefeys99].

Dense stereo matching The tracked features are scattered around the scene
and typically there are by far too few of them to obtain a dense reconstruction.
Small details and even some important scene features may be missing from the
reconstruction even if some kind of interpolation between the feature points is
used. One solution to this problem is the dense stereo matching which is possible
after solving the motion and calibration of the camera. The stereo matching
algorithms have been developed for calibrated stereo rigs and they utilise the
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known epipolar constraint to reduce the search space of correspondences to one
dimension (along the epipolar lines). Pollefeys uses a variant of Cox’s stereo
algorithm [Cox96] to compute dense depth maps between adjacent image pairs
and then fuses these maps together in order to reduce uncertainty and to detect
outliers [Pollefeys99].

Model building Building the final, texture-mapped model is the last stage
in automatic scene reconstruction system. The dense or sparse depth map
must be approximated by a 3D surface model for visualisation. A simple way
to do this is to generate a triangular wire-frame model by performing a 2D
Delaynay triangulation in one of the images (e.g. the middle image in the
sequence) and projecting this into 3D, but also more sophisticated methods
exist [Johansson01, Morris00]. Finally the texture extracted from the images is
mapped on the facets of the mesh.

Above we have described the modules of a general purpose system for au-
tomatic scene reconstruction from image sequences. Depending on the require-
ments of different applications, all modules might not be necessary. Our ap-
proach to the sewer reconstruction problem follows the general framework above,
but there are certain differences too. The first difference is the precalibration
of the camera that will be described in Chapters 3 and 4. Thus, in the track-
ing stage we compute calibrated multiple view tensors and the reconstruction
obtained is directly metric. Naturally, the auto-calibration stage is skipped.
Furthermore, the pipe may be directly modelled by fitting a cylindrical surface
to the 3D points and dense matching is not needed.

2.2 Sewer Survey

Sewerage systems are an important part of modern infrastructure and their
proper functioning is essential. However, in many countries sewer networks are
deteriorating due to their high age [Kuntze98, Cooper98, Chae01]. Deteriorated
sewer systems are threatening to contaminate ground water and soil, in addition
to causing traffic disruptions and loss of property. Since the restoration and
maintenance of sewer systems require huge investments, a great effort has been
put in developing new pipe inspection methods. In the following section, we
review different equipments and methods suggested for sewer pipe inspection.
After that, we focus on the DigiSewer-system which was used to scan our test
videos.

2.2.1 Review of Equipments and Methods

Traditional and widely used technique for sewer pipeline inspection is the closed-
circuit television (CCTV) survey. The data acquired from this kind of survey
consists of a videotape, photographs of specific defects and a record produced
by a technician. During the inspection, the CCTV camera provides a real time
frontal view of the pipe. When the operator notices defects, he is able to turn
the camera head and take a closer look. Diagnosis of defects depends heavily on
the experience of the operator which makes the evaluation error prone. Later
access to video images of particular sections of pipe is also difficult and time
consuming.
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Several approaches for automation of sewer surveys have been suggested. Xu,
Luxmoore and Davies [Xu98] investigated video images of clay and concrete
pipes and observed that the structural changes in pipes are associated with
diametric changes of their mortar joints. They proposed a method for automatic
detection of pipe-joints and their shape analysis. Ruiz-del-Solar and Koppen
concentrated on automatic detection of pipe sockets [Ruiz-del-Solar96]. The
limitation of these approaches is that they ignore the parts of pipes between
sockets, so their practical applicability is a bit unclear. Cooper, Pridmore and
Taylor presented an idea of a system recovering the three-dimensional shape of
a surveyed pipe from survey videos [Cooper98]. They also recovered the pose
of the camera relative to the central axis of the pipe, but unfortunately their
method is restricted to brick sewers with visible mortar lines [Cooper01].

There are also multisensoric pipe inspection systems, where the sewer robot
is equipped with additional sensors besides the camera. For example, the robot
by Gooch, Clarke and Ellis [Gooch96] has a cylindrically scanning range cam-
era employing a laser based optical triangulation scheme. The range camera
measures the cross-sectional shape of the pipe while the robot moves forward.
The range measurements are reported to have a very good accuracy, varying
between 60 and 600 um depending on the diameter of the pipe.

Another multisensor sewer robot is the German KARO [Kuntze98] which, in
addition to the usual video camera, has an 3D-optical, ultrasonic and microwave
sensors. The 3D-optical sensor is based on optical triangulation and it consists
of a circular pattern projected onto the pipe wall and a high resolution infrared
camera. The sensor is used to measure pipe deformations. The ultrasonic sen-
sors measure the pipe wall thickness as well as coarse cracks and deformations.
The microwave transmitters and receivers are used to observe damages (e.g.
water leakages) behind the pipe wall. The many sensors of multisensoric robots
provide much information, but they naturally also lead to a more complex and
expensive construction.

Researchers at Fraunhofer Institute in Germany [Fraunhofer AIS] have addi-
tionally developed autonomous sewer robots, which have batteries and manage
without a cable. An on-board processor evaluates the data acquired by differ-
ent sensors and decides on operations needed for execution of a given mission.
Autonomous robots open up many interesting problems from autonomous nav-
igation and motion control to power saving [Hertzberg96, Kolesnik02]. Never-
theless, this kind of robots are not yet ready for extensive use in sewer measure-
ments.

2.2.2 DigiSewer-system

This thesis is a part of a larger project that aims at developing automatic image
analysis methods for digital sewer images. The project is done in co-operation
with VT'T Building and Transport and corporate partner is Painehuuhtelu Oy
PTV. A platform for the development work is the DigiSewer-system, which was
also used to scan the test videos. DigiSewer name is registered by Painehu-
uhtelu Oy PTV but the manufacturer of the measurement equipment is OYO
Corporation from Japan. In the USA, similar scanning technology is marketed
as SSET (Sewer Scanner and Evaluation Technology) by Blackhawk-PAS Inc.
which is a subsidiary of OYO.
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Figure 2.1: DigiSewer robot equipped with an additional laser unit (the cylinder
with red light on top of the LEDs).

A special feature of the DigiSewer-equipment is the fish-eye lens, which pro-
vides a hemispherical frontal view of the pipe. The fish-eye lens camera and the
illuminating LEDs are installed onto a separate probe, which can be attached to
different sized tractors depending on the diameter of the pipe. The probe is also
equipped with a precision dual-axis inclinometer. The probe does not contain
any moving parts, like rotating mirrors, cameras etc., that would require con-
stant maintenance. The robot shown in Figure 2.1 is a prototype version with
an additional laser unit (see Section 2.2.3) on top of the probe. Some versions
of the robot also have a gyroscope which is used together with the inclinometer
to map horizontal and vertical profiles of pipes. Without the gyroscope only
the vertical or slope profile is computed.

The scanning methodology of the DigiSewer-system is illustrated in Fig.
2.2 and 2.3. The robot moves at a constant speed in the pipe and the video
camera captures the hemispherical frontal view. A single frame from the video
is shown in Fig. 2.2. The portion of the moving image that passes through the
annular zone indicated by the yellow dashed line gets digitally scanned in. The
ring-shaped image zones are cut off, flattened and concatenated to form the
unfolded image shown in Fig. 2.3. The zones are always cut off at the lowest
point, which is determined by the inclinometer. Hence, the top of the pipe is
always on the centre line of the unfolded image, even when the robot leans. The
concatenation is done with an electronic distance counter which measures the
speed of the robot from the cable. The maximum scanning speed is about 4
m/min.

The digital side scan image is convenient in sewer surveys for several rea-
sons. First, one is able to gain a quick overview of long pipe sections by having
a look at the concatenated side scan images. Secondly, the compressed digital
images can be easily stored and archived. The side scan image is also a good
starting point for the development of automatic condition assessment methods.
For example, Pantsar [Pantsar00] and Chae and Abraham [Chae01] have inves-
tigated methods for automatic detection and classification of cracks and pipe
joints. This is also another topic in our ongoing research project.
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Figure 2.2: A hemispherical frontal view of sewer pipe. The annular zone under the
yellow dashed line is the scan area for the side scan image.

Figure 2.3: Unfolded side scan image of the pipe. The roof of the pipe is in the
middle. The lateral joint shown on the right in Fig. 2.2 is here in the upper left
corner.
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2.2.3 Prototype with Structured Light

Incorporating shape measurements to the DigiSewer-system is an important
field of development. Although the slope profile gives some information of the
longitudinal shape of the pipe, the cross-sectional shape is mostly unknown. In
the following chapters, we consider solutions for obtaining a three-dimensional
reconstruction of the pipe which is the contribution of this thesis. However, if
there is not any significant texture on the inner wall of the pipe, the structure
from motion approach does not work. Therefore we have also considered alter-
native approaches. Here we discuss briefly the possibility of using structured
light to determine the shape of the pipe.

A prototype version of the robot was equipped with a laser light source and a
beam splitter. The beam splitter was designed in the University of Joensuu and
fabricated by electron beam lithography. The resulting light pattern after beam
splitting is illustrated in Fig. 2.4. The pattern consists of concentric circles
each containing eight principal rays of high intensity. Since it is possible to
precalibrate the system and find out the direction of each ray with respect to
the optical axis of the camera, the 3D position of lighted dots (with respect to
camera) is solved from a single image. Thus, if one assumes that the optical axis
is collinear with the central axis of the pipe one may estimate the cross-sectional
shape by fitting an ellipse to the eight lighted dots.

However, the schema above is not yet implemented and some practical prob-
lems also exists. For example, in the situation of Fig. 2.5 one laser dot is dis-
placed due to the lateral joint. The elliptical shape model is an approximation,
which is needed due to the small number of points (eight). In this respect a
projected circular pattern, as in KARQO, would be better. The localisation of
the laser dots from the images is a subject of future research too.
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Figure 2.4: The pattern formed by the splitted laser beam.

Figure 2.5: The laser dots on the inner wall of a sewer pipe.



Chapter 3

Camera Models and
Calibration

The purpose of this chapter is to propose a generic camera model for cameras
equipped with fish-eye lenses and a method for calibration of such cameras.!
Moreover, it will be shown that the proposed camera model is also valid for
conventional cameras with narrow-angle lenses. In this chapter, we describe the
generic camera model and the calibration procedure, but the related experimen-
tal results are postponed to Chapter 4. But first, we begin by introducing the
conventional pinhole camera model and show its limitations.

3.1 Pinhole Model

Traditional film cameras as well as modern CCD cameras are usually modelled
with the pinhole camera model, which is just a perspective projection followed
by an affine transformation in the image plane. The pinhole camera geometry
is illustrated in Fig. 3.1. The centre of projection is called the camera centre,
C, and its distance from the image plane is the focal length, f. By similar
triangles, it may be seen from Fig. 3.1 that the point (X,,Y;, Z.)" in camera
coordinate frame is projected to the point (fX./Zc, fYe/Z:)" in normalised
image coordinate frame. In terms of homogeneous coordinates, see Appendix
A, this perspective projection is expressed by a 3 x 4 homogeneous projection
matrix,
f

0 00
f 0 0 X..
010

However, instead of the normalised image coordinates (z,y)' one usually
uses pixel coordinates (u,v) " which are obtained by the affine transformation

(1) = 2] () + (). o

where (uo, ’U())T is the principal point and m,, and m, give the number of pixels

1The content of this and the following chapter is partly published in [Kannala04].
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Figure 3.1: Pinhole camera model. C is the camera centre and the origin of the
camera coordinate frame. The principal point p is the origin of the normalised image
coordinate system (z,y). The pixel image coordinate system is (u,v). Sometimes the
pinhole model is illustrated by placing the image plane behind the camera centre, but
the resulting model is the same (cf. Fig. 3.3(b)).

per unit distance in u and v directions, respectively. The skew parameter s is
zero in the conventional case of orthogonal pixel coordinate axes.

In general, points in space are not expressed in the camera coordinate frame
but in a different Euclidean coordinate frame, known as the world coordinate
frame. The representations of points in the two coordinate frames are related
via a rotation and a translation:

X, X
V.| =R |V ] +t. (3.2)
Z. z

Now, from the previous equations, one obtains the relation between the
homogeneous world point X and its image m in pixel coordinates, i.e.,

f 0 0 0
m= |0 my v| |0 f 0 0 [R t]X
0 010

0 0 1 01

[ s uo (3.3)
=0 a w|[R t/X

0 0 1
=K[R t]X,

where products fm, and fm, have been replaced by «, and «, because a
change in the focal length and a change in the pixel units are indistinguishable.
The upper triangular matrix K is the camera calibration matrix and contains
the internal camera parameters. The rotation and translation parameters, R
and t, are called the external camera parameters.

It follows from (3.3) that a general pinhole camera may be represented by a
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homogeneous 3 x 4 matrix
P=K [R t] (3.4)

which is called the camera projection matriz. If the left hand submatrix KR
is non-singular, the camera P is called a finite projective camera. > A camera
represented by an arbitrary homogeneous 3 x 4 matrix of rank 3 is called a
general projective camera.

3.1.1 Calibration

Calibration of a pinhole camera refers to the determination of the calibration
matrix K. Calibration is possible by viewing a calibration object which contains
control points in known positions. In the following, we describe two ways to
determine K, the first one is via the projection matrix P and the second is a
direct way.

If the projection matrix P (3.4) is given, the calibration matrix K may be
extracted from its left hand 3 x 3 submatrix by the RQ-decomposition. There
is a linear algorithm for computation of the camera projection matrix from at
least six correspondences m® < X° in general position [Hartley00]. The points
X are not allowed to be coplanar, hence, a three-dimensional calibration object
is required. If the measurement errors are Gaussian, the estimate of P given
by the linear algorithm should be refined by minimising the sum of squared
distances between the measured and projected control points, i.e.,

> d(m',PX)? . (3.5)

This is a non-linear minimisation problem with respect to the 12 parameters of
P and requires iterative techniques, such as Levenberg-Marquardst.

The direct method for solving K [Sturm99, Zhang00] is based on viewing
a planar calibration object at different orientations. The mapping between a
scene plane and its perspective image is a planar homography. Since one may
assume that the calibration plane is the plane Z = 0, the homography is derived
as follows:

> X
m_K[R t] 0 =H|Y |, (3.6)
1 1
where the 3 x 3 homography
H=K|[r' r* t] (3.7)

is formed by dropping the last column of the rotation matrix. The outline of
the calibration method is to first determine the homographies for each view and
then use (3.7) to derive constraints for determination of K. In the following, we
describe these constraints in more detail. Methods for determining a homogra-
phy from point correspondences are described in [Hartley00], for example.

2Every non-singular square matrix has a unique decomposition into a product of an upper-
triangular and orthogonal matrix where the diagonal elements of the upper-triangular matrix
are positive (RQ-decomposition, see e.g. [Hartley00]).
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Denoting the columns of H by h? and using the knowledge that r! and r2
are orthonormal one obtains from (3.7) that

h!' 'K TK 'h% =0, (3.8)
h!"K-TK~!h! = h? K~ TK'h2. (3.9)

Thus, each homography provides two constraints on the intrinsic parameters,
and the constraints above may be written as linear equations on the elements
of the homogeneous symmetric matrix w = K~ TK~'. The equation system is of
the form Av = 0, where the vector of unknowns v = (w11, w12, w13, Waz, W3, w33) |
Matrix A has 2N rows, where N is the number of views. Given three or more
views, the solution vector v is the right singular vector of A corresponding to
the smallest singular value. Under the general skew-zero assumption two views
are enough (see [Sturm99]). When w is solved (up to scale) one may com-
pute the calibration matrix K by Cholesky-factorisation [Golub96]. Still, the
solution should be refined by minimising error (3.5) in all views. The external
parameters for the projection matrices may be retrieved from (3.7) given H and
K.

3.1.2 Lens Distortion

The above calibration techniques assume that the pinhole model is an accurate
model of the imaging process. This is true for most long focal length lenses of
high quality. However, when the focal length and price of the lens decrease,
the deviations from the pinhole model increase. The most important deviation
is radial distortion which causes an inward or outward displacement of a given
image point from its ideal location, as Fig. 3.2 illustrates. Decentering of lens
elements causes additional distortion that has also tangential components.

A commonly used approach for correcting lens distortion contains models
for radial and decentering distortion [Brown71, Slama80]. The corrected coor-

Figure 3.2: Effect of radial distortion on the image of a square. a) barrel distortion,
b) pincushion distortion.
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dinates z’,y' are obtained from

o =z + T (Kir? + Kor* + Kar® +..))

+ (Pu(r? + 23%) + 2P7g) (1 + Psr? +..)
Y =y+ g (Kir? + Kor' + K35 +..)

+ (2Pizg+ P(r® +25°)) (1 + Psr® +...),

(3.10)

where x and y are the measured coordinates, and

T

T —Zp

Yy=y—
r—\/m—mp (y —yp)2.

The centre of distortion (xp, ;) is also a free parameter in addition to the radial
distortion coefficients K; and decentering distortion coefficients P;. The values
for the distortion parameters are computed by least-squares adjustment by re-
quiring that images of straight lines are straight [Brown71]. The problem with
the formulation above is that not only the distortion coefficients but also the
other camera parameters are normally unknown.The formulation (3.10) requires
that the scales in both coordinate directions are equal that is not the case with
pixel coordinates unless the pixels are square. In addition, (3.10) corrects the
noisy measurements, which may deteriorate the calibration result.

To cope with the problems above, slightly different models have been pro-
posed [Zhang98, Heikkild00b]. They are of the form

m = P(X) = PX + D(PX), (3.11)

where P is a general imaging function of the camera. D is some nonlinear
distortion function whose parameters are estimated together with the other
camera parameters by minimising the error

DO d(mi, Pi(X))?, (3.12)

j=1i=1

where N is the number of views and M is the number of control points. In
[Zhang98|, only radial distortion is modelled but the model in [Heikkild00b]
also contains decentering distortion coefficients, as derived from (3.10).

3.2 Generic Model
3.2.1 Fish-Eye Lenses

Although the pinhole model accompanied with lens distortion models is a fair
approximation for most conventional cameras, it is not suitable for fish-eye lens
cameras. The fish-eye lens is designed to cover the whole hemispherical field in
front of the camera, hence, the angle of view is very large, about 180°. Because
it is impossible to project the hemispherical field of view on a finite image plane
by a perspective projection, fish-eye lenses are designed to obey some other
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projection model. Therefore the inherent distortion of a fish-eye lens should not
be considered only as a deviation from the pinhole model [Miyamoto64].

There have been some efforts to model the radially symmetric distortion of
fish-eye lenses with different models [Basu95, Devernay01, Brauer-Burchardt01].
The idea of these approaches is to transform the original fish-eye image to follow
the pinhole model. In [Devernay0l] and [Brauer-Burchardt01], the parameters
of the distortion model are estimated by forcing that straight lines are straight
after the transformation but the problem is that the methods do not give the
full calibration. They can be used to “correct” the images to follow the pinhole
model but their applicability is limited when one needs to know the direction of a
back-projected ray corresponding to an image point. The calibration procedures
in [Shah96] and [Bakstein02] instead aim at calibrating fish-eye lenses generally.
However, their methods are slightly cumbersome in practise because a laser
beam or a cylindrical calibration object is required.

In the following two sections, we describe a general camera model which is
also valid for fish-eye lens cameras, and in Section 3.3, we propose methods for
estimating the parameters of the model.

3.2.2 Radially Symmetric Model

The perspective projection of a pinhole camera can be described by the following
formula

r= ftan6 (i. perspective projection), (3.13)

where 6 is the angle between the principal axis and the incoming ray, r is the
distance between the image point and the principal point and f is the focal
length. Fish-eye lenses instead are usually designed to obey one of the following
projections:

r = 2ftan(6/2) (ii. stereographic projection), (3.14)
r= f0 (iii. equidistance projection), (3.15)
r = 2fsin(6/2) (iv. equisolid angle projection). (3.16)

Perhaps the most common model is the equidistance projection. Sometimes
lenses obeying orthogonal projection,

r= fsinf (v. orthogonal projection), (3.17)

are also categorized as fish-eye lenses. However, here we decided to treat or-
thogonal projection separately since the principal point is not well defined for
such lenses.The behaviour of the different projections is illustrated in Fig. 3.3(a)
and the difference between a pinhole camera and a fish-eye camera is shown in
Fig. 3.3(b). Evidently, all the above models are radially symmetric, though the
centre of symmetry is not unique for orthogonal projection.

The real lenses do not exactly follow the designed projection model. From
the viewpoint of automatic calibration, it would also be useful if we had only
one model for different types of lenses. Therefore we consider projections in the
general form

7(0) = k10 + k20® + k30 + ka0 + ... | (3.18)



3.2 Generic Model 25

(a) (b)

Figure 3.3: (a) Curves of projections (3.13)-(3.17) with f = 1. (b) Fish-eye camera
model. The image of the point P is p whereas it would be p’ by a pinhole camera.

where, without any loss of generality, even powers have been dropped. This is
due that we may extend r onto the negative side as an odd function while the
odd powers span the set of continuous odd functions.

For computations we need to fix the number of terms in (3.18). An important
property for a projection model is that it can be analytically inverted. Therefore
we choose

1"(0) = k160 + k203 (319)

as the basic model. When modelling real lenses, the values of parameters k;
and kg will be such that () is monotonically increasing on the interval [0, 7/2].
Therefore we may solve 8 from (3.19) if r is given: from the three possible roots
to a cubic equation we choose a real root that is between 0 and 7/2. Although
the model (3.19) contains only two parameters, it can approximate all the pro-
jections (3.14)-(3.17) on the interval [0, 7/2] with a moderate level of accuracy.
The difference would be hardly distinguishable if the approximation nearest in
the L2-norm would be plotted to Fig. 3.3(a) for each projection. Moreover, also
the perspective projection (3.13) can be approximated with (3.19) when 6 is
notably less than 7/2, as it is for normal lenses.

To achieve a complete camera model we need to transform the camera coor-
dinates (X¢, Yz, Zc) " )=(p, ¢,0) " into the image pixel coordinates. As an inter-
mediate, step we compute the normalised image coordinates (see Fig. 3.3(b))

(5) =) (See). (3.20)

where r(0) is obtained from (3.19). By assuming that the pixel coordinate
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system is orthogonal we get the pixel coordinates (u,v)' from

() -5 ) G)= () @20
v 0 my| \y Yo

where (ug,v0)" is the principal point and m, and m,, give the number of pixels
per unit distance in horizontal and vertical directions, respectively.

3.2.3 Extended Model with Distortion

The lens elements of a real fish-eye lens may deviate from precise radial sym-
metry and they may be inaccurately positioned causing that the projection is
not exactly radially symmetric. We hence propose adding two distortion terms:
one acting in the radial direction

A6, p) = (110 + 150° + 136°) (i1 cos o+

. : o (3.22)
igsin @ + i3 cos2¢ + igsin2¢) ,
and the other in the tangential direction
A8, ) = (m16 + m26® + m36°)(j1 cos p+
t(0,9) =(m 2 36°)(j1cos ¢ (3.23)

ja2sin + jzcos2¢ + jasin2¢) .

The distortion functions are thus separable in the variables 6 and ¢. Because the
Fourier series of any 27-periodic continuous function converges in L2-norm and
any continuous odd function can be represented by a series of odd polynomials
we can, in principle, model any kind of continuous distortion by simply adding
more terms to (3.22) and (3.23).

With the distortion parameters we get the following formula for the nor-
malised image coordinates

(i) = (r(0) + Ar(0,0))ur () + Au(6, P)us (), (3.24)

where u,(¢) and u,(p) are the unit vectors in the radial and tangential direc-
tions. Since the analytical invertibility of the model (3.20) is anyway lost in
(3.24), we may also take more parameters to the radially symmetric part r(6).
Using the model (3.18) with terms up to the ninth order increases the total
number of parameters to 23.

Compared to the lens distortion models in Section 3.1.2 our approach has a
different philosophy. Instead of modelling different physical phenomena in the
optical system we have a flexible mathematical model that is only fitted to agree
with the observations. Since there are several possible sources of imperfections
in the optical system we think it is not meaningful to build a separate model
for all of them. For example, in addition to decentering of lenses, the image
plane and individual lens elements may be tilted with respect to the principal
axis. Another difference between the philosophies is that in our approach radial
distortion is not considered to be a distortion at all but a feature indispensable
in wide-angle imaging.
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3.3 Calibrating the Generic Model

The basic camera model introduced in Section 3.2.2 contains the six internal
camera parameters ki, ka, My, My, ug and vg. If the extended model is used the
total number of internal parameters is 23. When the external parameters R and
t in (3.2) are added, the full camera model is expressed as a nonlinear imaging
function P, m = P(X), defined by equations (3.2), (3.20) or (3.24) and (3.21).
Depending on the projection type of the camera, we propose different methods
for estimating the parameters of the model.

3.3.1 Projective Cameras

When calibrating perspective cameras (i.e. finite projective cameras), it is pos-
sible to use the extended model of Section 3.2.3 as an alternative to the usual
distortion models complementing the pinhole model. The calibration methods
of Section 3.1.1 may be used to compute an initial calibration that is used to ini-
tialise the parameters of our nonlinear model. The parameters m., m, ug and
vp are directly extracted from the calibration matrix K (assume that f =1 and
set my, = au, My = ay). The coefficients k; are initialised so that (3.18) approx-
imates (3.13) (with f = 1) on some suitable interval [0, fmax]. The coefficients
of the asymmetric distortion terms (3.22) and (3.23) may be initialised to zero.
After the initialisation, the parameter values are again refined by minimising
(3.12).

If the camera projection is orthographic, it is not a finite projective cam-
era but an affine camera which is a special case of general projective camera
and has only three internal parameters [Quan96]. Affine camera is a simplified
projection model which is mainly used as an approximation to the perspective
camera when the depth of an object is small compared to the viewing distance.
However, sometimes the effects of lens distortion may be more significant than
the perspective effects ignored in the affine approximation. Hence, the camera
models of Section 3.2 might be usable even for cameras close to affine. But in
this case, of course, some of the simplicity of the affine camera model would be
lost.

3.3.2 Fish-Eye Lens Cameras

Next we present a method for calibration of fish-eye lens cameras with the
generic camera model. The camera projection is assumed to be approximately
either a stereographic projection, an equidistance projection or an equisolid
angle projection. The calibration method is based on viewing a calibration plane
which contains control points in known positions. Only one view of the plane is
sufficient for calibration but more views should be used for better results.

The calibration procedure consists of four steps that are described below.
We assume that M control points are observed in N views. For each view,
there is a rotation matrix R; and a translation vector t; describing the position
of the camera with respect to the calibration plane. We choose the calibration
plane to lie in the XY-plane and denote the coordinates of control point
with X* = (X% Y?%0)"T. The corresponding homogeneous coordinates in the
calibration plane are denoted by xé = (X% Y% 1) and the observed coordinates
in view j by m} = (u}, v})—'—. The first three steps of the calibration procedure
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involve only the basic model and its six internal parameters. For these internal
parameters we use a short-hand notation p = (k1, ka2, My, My, ug,vg). If the
extended model is used the additional parameters are inserted only in the final
step.

Step 1: Initialisation of internal parameters
The initial guesses for k; and ko are obtained by fitting (3.19) to the desired
projection (3.14)-(3.16) with the manufacturer’s values for the nominal focal
length fy and the angle of view Omax. Then we also obtain the radius of the
image on the sensor plane by rmax = k10max + kQGfHaX.

With a circular image fish-eye lens, the actual image fills only a circular area
inside the image frames. In pixel coordinates, this circle is an ellipse

U — Uug 2 vV —1 2
(=) < () -+
a b
whose parameters can be estimated. Consequently, we obtain initial guesses for
the remaining unknowns m,, m,, ug, and vg in p, where m, = a/rmax and
My = b/Tmax. With a full-frame fish-eye lens, the best thing is probably to

place the principal point to the image centre and use the reported values of the
pixel dimensions to obtain initial values for m, and m,,.

Step 2: Refinement of the internal parameters
With the internal parameters p, we transform the observed points m;'- to points
5(3 that approximately follow the perspective projection for each j (in Fig. 3.3(b),
this corresponds to transforming the point p to p’). Under perspective imaging,
the mapping between the calibration plane and the image plane is a planar
homography for which holds X% = Hjx},. The aim of this step is to iteratively
search such parameter values that the mapping between x;:s and i;:s is as close
to a homography as possible.

In practise, we suggest the following scheme for computing the error vector
€ = F(p), where F : RS — RVM,

(i)Back-project the control points by first computing the normalised image

coordinates . .
m; _ 1/my, 0 u; — Ug
Y 0 1/my v —vg )’
transforming them to the polar coordinates (%, %)=(x%, %), and finally
computing 6% from (3.19).
(ii)Re-project the rays (6%, ¢%) using (3.13) with f = 1 to obtain the points
(iii) Compute the homography estimates I:Ij from the correspondences i; > x%,
by the linear algorithm with data normalisation [Hartley00]. Define )‘(3 as
the exact image of xé under I:I]- such that )”c; = I:Ijx;',.

(iv)Compute the distances €} = d(%},%%), combine them to vectors €; =
(€},--.,€}") and further to a single vector € = (e1,...,€n).

We then use the Levenberg—-Marquardt algorithm to minimise ||€|| with respect
to p.
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Step 3: Initialisation of external parameters
First we refine the homographies H; by minimising the errors ||€;|| while keeping
p fixed. Then, perspective imaging of the calibration plane, with f =1, gives

7 S I
S y; = [RJ tj] 0 = [I‘j I‘j tj] Y?
1 1 1
which implies H; = [r} r3 t;], up to scale. Furthermore
r} = )\jh;, r? = )\jhi, r:;- = r} X r?,
3
t; = Ajhj,

where \; = sign(H?’g) /||h}||. Because of estimation errors, the obtained rota-
tion matrices are not orthogonal. Thus we use the singular value decomposition
to compute the closest orthogonal matrices in the sense of Frobenius norm
[Zhang98] and use them as initial guess for each R .

Step 4: Minimisation of projection error

As we have the estimates for the internal and external camera parameters, we
use (3.2), (3.20) or (3.24), and (3.21) to compute the imaging function P; for
each camera, where a control point is projected to ﬁlé- = P;(X?). The camera
parameters are refined by minimising the sum of squared distances between the

measured and modelled control point projections

D) d(mi,ml)? (3.25)

j=14i=1

using the Levenberg-Marquardt algorithm. If the extended model (3.24) is used,
the additional parameters may be initialised to zero.

3.3.3 Modification for Circular Control Points

In order to achieve an accurate calibration, we used a calibration plane with
white circles on black background since the centroids of the projected circles
can be detected with a sub-pixel level of accuracy [Heikkild96]. In this setting,
however, the problem is that the centroid of the projected circle is not the image
of the centre of the original circle. Therefore, since mj- in (3.25) is the measured
centroid, we should not project the centres as points rh’

To avoid the problem above, we propose solving the centroids of the projected
circles numerically. We parameterise the interior of the circle at (Xo,Yp) with
radius R by X(o,a) = (Xo + osin(a), Yy + ocos(a),0)T. Given the camera
parameters, we get the centroid rh for the circle by numerically evaluating

27
m detJ dod
. WL ,@)|det J(o, )| dov 0 (3.26)
fo |detJ 0,a)| dadp

where 1h(p, a) = P(X(p,a)) and J(p, a) is the Jacobian of the composite func-
tion P o X. The analytical solving of the Jacobian is rather a tedious task but
it can be computed by mathematical software such as Maple.
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3.3.4 Backward Model

Above we have described the calibration of the forward camera model P. In
practice, one needs to know also the backward model, which tells the direction
of an incoming light ray, (6, )T, corresponding to a given image point (u,v)'.
Computation of the backward model for our extended camera model is not
entirely trivial due to the asymmetric distortion terms. Anyway, first we explain
how the backward model is computed for the basic model.

The basic (forward) camera model is illustrated as follows

@)=6)* ()

where the mappings F and A are defined by
— — cosey) p2i—-1 ] [COSQP
x = F(y) = 1(0) (Sm w) - (Z it ) (Shw> L 2

m = A(x) = ["é“ rr?v] <z> + (Zg) : (3.28)

using notations x = (z,y)", ¥ = (,)" and m = (u,v)". The computation
of the backward model is straightforward since both 4 and F may be inverted
analytically. In practice, the cubic equation k26> + k10 — r = 0 has only one
real root on the interval [0,7/2] and that is the sought solution. If higher than
third order terms are used in r(6), then the roots must be solved numerically.
Again a single root should exist on the interval [0, 7/2].

The extended model (3.24) contains an additional shift s, s = A.(6, p)u,(p)+
Ay(0, p)u,(p), in the image plane. We consider that when the measured image
point is x the unshifted point is the corrected point x.. The corresponding di-
rection . = (0, )" is the true direction of the incoming ray. The extended
model is illustrated as

F I1+D A
P, — X — x —m,
where I is the identity mapping and the distortion function D gives the shift
between x and x,
x — Xe = D(X¢)- (3.29)

Since A and F are easily inverted the only problem is the inversion of (I + D).
Given a point X, the problem is to find the shift s so that x. = x —s. The
distortion function D may be expressed as the composite function

D(xc) = (G o F1) (%), (3.30)
where the function G is defined by

s = g(¢) = Ar(ev (,D)UT(QO) + At(ev (P)U<p((ﬂ)- (331)

Here A,(0, ¢) and A.(8,¢) are the distortion terms in (3.22) and (3.23). Using
the first order Taylor approximation for D one obtains from (3.29) that

s=D(x;) =D(x—s)

= D) - 22 (s,
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and further

s = (I+ Z—Z(x))_l D(x).

However, since we do not have an explicit expression for D it is not possible to
compute the Jacobian 0D/dx analytically. But we may numerically compute
1 = F~1(x) and the chain rule gives

- (1+220) "ot

(3.32)

Since the Jacobians G /04 and 0F /0 are easily computed from (3.27) and
(3.31), equation (3.32) may be used to compute s. Then x, is directly given by
x — s and finally 1), is computed by 1, = F1(x.).

It seems that the first order approximation for the asymmetric distortion
function D is tenable in practice. We experimented the backward model error
for real lenses by backprojecting random image points and then reprojecting
them. The mean displacement of the image points was typically several degrees
smaller than the achieved calibration accuracy for the forward model. The
experiments are described in detail in Chapter 4.



Chapter 4

Calibration Experiments

The plane-based calibration procedure for fish-eye and perspective cameras was
implemented as a calibration toolbox on Matlab. In the following, we describe
the implementation and structure of the toolbox in more detail. After that
we present some calibration results for real cameras and compare the proposed
camera models to the model used in Heikkild’s calibration toolbox [Heikkila00al.
Finally, we summarise the results and draw some conclusions.

4.1 Implementation

The calibration toolbox can be divided into two modules. The first module
localises control points from calibration images but the second module is the
core module which computes the camera parameters from point correspondences
between the calibration plane and its images.

4.1.1 Finding Control Points

An evident requirement for accurate camera calibration is a precisely built cal-
ibration object. Besides, the calibration pattern must be such that the control
points can be localised accurately from the images. A usual choice for the cali-
bration pattern is the Tsai grid or a checkerboard pattern [Zhang98, Bouguet04]
but the-state-of-the-art calibration results in terms of accuracy have been ob-
tained with circular control points [Heikkila96, Heikkila00b]. To maximise the
expected accuracy, we also used circular dots in the experiments.

To make repeated calibrations easy we implemented a semi-automatic pro-
cedure for finding the centroids of the dots from calibration images. For each
calibration image the toolbox user must manually pick up a polygonal image
region which contains the calibration dots. Thereafter the centroids of the dots
are sought automatically. The circles must be organised into a rectangural grid
on the calibration plane and they may be either white on black background or
black on white background.

The control point localisation begins with thresholding the grayscale im-
ages. Because the thresholded image regions are ideally black and white a suit-
able threshold value is easily found by fitting two normal distributions to the
grayscale histogram and implementing a Bayes classifier. The centroids of the
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dots can be directly measured from the thresholded binary image. Optionally
one may compute the grayscale centroids which give a more accurate locali-
sation if the illumination is uniform [Heikkild96]. The dots are automatically
organised in such a way that each of them is associated with a unique dot on
the calibration plane.

4.1.2 Computing Camera Parameters

In the calibration toolbox, there are currently three possible choices for the
camera model. The simplest one is the basic model of Section 3.2.2 with the six
internal camera parameters pg = (k1, k2, My, My, Ug, vo). The second model pg
has three additional parameters (ks, k4, k5) in the radially symmetric part. The
most diverse model is the extended model pa3 of Section 3.2.3. The number of
degrees of freedom in the models is however one less than the number of param-
eters. This is because a scale change in the pixel units m,,, m, is compensated
by an opposite change in the coefficients k;.

Particular algorithms for estimating the parameters of the camera model
were described in the previous chapter. The choice between the procedures
depends on the assumed projection type of the camera. For perspective cameras
at least two views of the calibration plane are needed, nevertheless, singular
configurations should be avoided [Sturm99]. For fish-eye lenses one view of the
plane is generally sufficient for calibration. However, in all the cases, several
views should be always used for most reliable results. For circular control points
the modification in Section 3.3.3 is implemented. In this case the radius of the
original circles must be given.

4.2 Results

4.2.1 Fish-Eye Lens Camera

In the fish-eye lens experiments, we used an equidistance lens with the nominal
focal length of 1.178 mm attached to a Watec 221S CCD colour camera. The
calibration object was a 2x 3 m? plane containing white circles with the radius
of 60 mm on the black background. The calibration images were digitised from
an analog video signal to 8-bit monochrome images, whose size was 640 by 480
pixels.

When the basic model pg is used, the calibration can be performed even
from a single image of the planar object as Fig. 4.1 illustrates. In that ex-
ample we used 60 control points for the calibration. However, for the most
accurate results, the whole field of view should be covered with a large number
of measurements. Therefore we experimented our method with 12 views and
740 points in total, the results are in Table 4.1. It can be seen that the centroid
correction has a very important role. The extended model p23 gives the smallest
deviations o, and o, in the z and y directions, respectively, but the radially
symmetric model pg gives almost as good results. Nevertheless, there should
be no risk of over-fitting because the number of measurements is large. The
estimated asymmetric distortion and the residuals are displayed in Fig. 4.2.

To demonstrate the achieved level of accuracy in another way, we approxi-
mate the size of the solid angle that projects to an ellipse with principal axes
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Figure 4.1: Fish-eye lens calibration using only one view. (a) Original image where
the ellipse depicts the field of view of 150°. (b) The image corrected to follow pinhole
model. Straight lines are straight as they should be.

Table 4.1: Standard deviation of the residuals (m — rh) for the fish-eye lens camera.
The star (*) indicates that the centroid correction of Sec. 3.3.3 is not used.

Pé Ps P9 P23
ou[pix] | 0.26 0.11 0.074 0.069
ou[pix] | 0.24 0.10 0.060 0.058

Figure 4.2: (a) The estimated asymmetric distortion (A,u,+ Au,) using the ex-
tended model pa3. (b) The remaining residual for each control point that shows no
obvious systematic error. Both plots are in normalised image coordinates and the
vectors are scaled up by a factor of 150 to aid inspection.
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Table 4.2: Standard deviation of the residuals (m — 1) for the conventional camera.
The star (*) indicates that the centroid correction of Sec. 3.3.3 is not used.

Ps Ps6 Po P23
ou[pix] | 0.100 0.100 0.091 0.078
oy[pix] | 0.081 0.081 0.069 0.063

20, and 20,. For the equidistance projection the solid angle corresponding to
the small area dS in the image plane is

isinﬂ
20

Near the principal point (6 = 0) with f ~ k1=1.12 mm we have d) =4.7-10~7. At
the distance of 500 mm from the camera centre this corresponds approximately
to the area of a circle with the radius of 0.2 mm, which is in good agreement
with the assumed accuracy of the calibration device.

The backward model error for ps3, caused by the first order approxima-
tion of the asymmetric distortion function (see Section 3.3.4), was evaluated by
backprojecting random image points and then reprojecting them. The mean
and maximum displacement were 5.9 - 10~7 and 9.8 - 1076 pixels, respectively.
Both values are several degrees smaller than the achieved level of calibration
accuracy. Therefore, it is justified to ignore this error in practice.

dQ = ds . (4.1)

4.2.2 Conventional Camera

The calibration plane used above was also viewed by a conventional camera. The
camera was Sony SNC-RZ30N with a zoom lens. The lens obeys approximately
perspective projection but there is significant distortion in the peripheral regions
of the image. Seven calibration images were taken at different orientations with
fixed focus and zoom. The images were in compressed JPEG format and one
of them is shown in Fig. 4.3. In addition, the illumination was noticeably non-
uniform which, together with the compression artefacts, degrades the calibration
result. The obtained results are in Table 4.2. Despite the shortcomings of the
calibration images the residuals are relatively small. Naturally, the most diverse
model fits best to the observations. Again we verified that the backward model
error for pog was several times smaller than the mean magnitude of the residuals.

4.2.3 Comparison with Heikkila’s Model

The camera models pg, pg and pas were compared to the camera model used
in [Heikkild00b]. Heikkild’s model is the skew-zero pinhole model accompanied
with four distortion parameters and it is denoted by ds in the following. The real
image data for the comparison was provided by Heikkild and is the same data
as in [Heikkild00b]. It was originally obtained by capturing a single image of
a calibration object consisting of two orthogonal planes, each with 256 circular
control points. The camera was a monochrome CCD camera with a 8.5 mm lens
causing a distortion of several pixels near the periphery of the image. There were
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Figure 4.3: Calibration image captured by a conventional camera. Notice the non-
uniform illumination.

Table 4.3: Standard deviation of the calibration residuals for Heikkila’s data.

ds Pe P9 P23
Ou [pix] 0.048 0.084 0.045 0.041
Oy [pix] 0.037 0.066 0.032 0.032

491 control points that were visible in the image and were used for calibration.
The control point centroids in the image were measured by ellipse boundary
detection and conic fitting.

The calibration results are shown in Table 4.3. Especially interesting is the
comparison between models dg and pg because they both have eight degrees of
freedom. Model pg gives slightly smaller residuals while it does not contain any
tangential distortion terms. The model pos gives again the smallest residuals
but there may be a risk that it is fitted to the systematic errors of the calibration
data. This is due that there are measurements only from a one plane, either
one of the orthogonal planes, in each part of the image. Thus, the asymmet-
ric distortion terms may quite easily fit to the errors of the calibration object
or to the localisation errors caused by non-uniform illumination, for example.
The estimated asymmetric distortion and remaining residuals for model pog are
shown in Fig. 4.4. The relatively large residuals in the lower right corner of the
calibration image (Fig. 4.4(b)) may be an indication of inaccurate localisation
which is partly compensated by the asymmetric distortion (Fig. 4.4(a)).

4.3 Summary

We have proposed a novel camera calibration method for fish-eye lens cameras
that is based on viewing a planar calibration pattern. The experiments verified
that the method is easy-to-use and provides for a relatively high level of accu-
racy by using circular control points. The proposed camera model is generic,
easily expandable and suitable also for conventional cameras with narrow angle
lenses. The achieved level of accuracy for both conventional and fish-eye lenses
is comparable to the results in [Heikkild00b]. This is promising considering
especially the aim of using fish-eye lenses in measurement purposes.
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Figure 4.4: Heikkild’s calibration data. (a) The estimated asymmetric distortion
(Aru, +Aguy,) using the extended model p2s. (b) The remaining residual for each
control point. The vectors are scaled up by a factor of 150.



Chapter 5

Interest Point Matching

Recovering scene structure from a sequence of images requires such image fea-
tures that can be tracked across the sequence. The tracked features are often
interest points or corners that are such locations in the image where the in-
tensity changes two-dimensionally. Interest points are extracted by a suitable
interest point detector and they are usually matched between successive views
through intensity cross-correlation. In this chapter, we first introduce the in-
terest point detector we used for video sequences of concrete sewer pipes. Then
we describe a multi-resolution matching scheme which we used to compute the
initial interest point correspondences between successive video frames. We also
show some results with real sewer images.

5.1 Interest Point Detectors

Several different interest point detectors have been proposed and evaluated in
the literature [Schmid00, Tissainayagam04]. The two evaluation criteria in-
troduced in [Schmid00] are repeatability rate and information content. The re-
peatability rate is the percentage of the total observed points which are repeated
between two images taken under varying imaging conditions (orientation, scale,
illumination, camera noise). The other criterion, information content, measures
the distinctiveness of the local greylevel pattern at an interest point. Evidently,
both repeatability and information content are essential for image matching.
The above two criteria, repeatability rate and information content, were used
in [Schmid00] to evaluate six different corner detectors. An improved version of
the Harris corner detector, described in detail in Section 5.1.1, obtained the best
results. Tissainayagam and Suter evaluated four different corner detectors in
terms of localisation accuracy and detection stability [Tissainayagam04]. Again
the Harris detector performed well. Besides the evidence of these comparative
studies, the Harris corner detector is widely used and approved interest point
detector in applications. Hence, it was our choice for interest point extraction.
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5.1.1 Harris Corner Detector

The Harris corner detector [Harris88] is based on the following 2 x 2 symmetric
matrix

WxT2(z,y) Wx*LIy(z,y)

M(z,y) = W LT, (z,y) WxT2(z,y) |’

(5.1)
which is computed at each point of the greylevel image Z(z,y). I, and Z,
indicate the x and y directional derivatives of the intensity function respectively.
The convolution mask W is a Gaussian smoothing function used to suppress the
effect of noise.

The matrix M is related to the local auto-correlation function of the image
and it captures the shape of the intensity function in the neighbourhood of the
point (z,y). When the both eigenvalues of M are small the image is approxi-
mately constant in intensity. When they are large, the point (z,y) is a corner
point. An edge is detected if one eigenvalue is large and the other is small.

To measure the corner quality the Harris detector uses the following corner
response function

R(z,y) = det M — k (trace M)? (5.2)

where we used a value k = 0.06 [Schmid00]. In order to obtain a good corner
response, i.e. high value of R, both of the eigenvalues of the matrix M must be
large. The detected corners are the local maxima of the response function that
exceed some selected threshold. Sub-pixel precision in localisation is achieved
through a quadratic approximation of the response function around a local max-
imum. By using response function (5.2) the explicit eigenvalue decomposition
of M is additionally avoided.

The original paper of Harris and Stephens [Harris88] proposed computing
the directional derivatives Z, and Z, by convolution with the mask (—1,0,1)
and its transpose respectively. However, the improved version of the detector,
proposed in [Schmid00], computes Z, and Z, by convolution with derivatives
of a narrow Gaussian (¢ = 1). This modification improves repeatability rates,
especially when the second image is rotated for an angle of about 45°.

5.2 Matching

The problem of image matching is to establish correspondences between the
detected interest points in two different views of the same scene. In the first
matching stage we choose the match candidates by requiring that the neighbour-
hoods of the interest points are similar enough. Ways to measure this similarity
are described next.

5.2.1 Cross-Correlation

Given a corner point (z1,y1) in the first image and a corner point (z2,y2) in the
second image we select a square window of size (2n+ 1) x (2n+ 1) around both
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points and compute the normalised cross-correlation between the windows,

n

Z (11(931 +i,y1+7) —Il(wl,yl)) (12(332 + 4,92+ 7) —I2(x2,y2)>

i,j=—n

6(Zi(z1,11)) 6(Za(z2,y2)) ’
(5.3)
where

n

&(Tu(@r,yr)) = | D (Ik(mk + 4,y + J) —Ik(xk,yk))2, k=12 (54)

1,j=—n

and Zy(xk, yi) is the mean intensity over the selected window. The values of the
correlation score p vary between -1 and 1. For two identical windows p = 1 and
for windows that are not similar at all p = 0. If the correlation score is higher
than a given threshold, the interest points (z1,y1) and (z2,y2) are considered
as a match candidate. It is possible that a point in the first image may match
with several points in the second image, and vice versa. The simplest way to
solve this ambiguity is to pair the points with highest correlation score but other
techniques also exist [Xu96].

Since interest points are detected with a sub-pixel level of accuracy the lo-
cations (x + 4, yr + j) in (5.3) are not at the centres of the pixels. Therefore
the intensity values should be interpolated from the original image. Of course,
one could just use the greylevel values of nearby pixels (nearest neighbour in-
terpolation) but better localisation results are obtained by bilinear or bicubic
interpolation.

If there is a significant rotation about the optical axis between the views, the
correlation score (5.3) can be small also for true correspondences. To deal with
this problem Xu and Zhang [Xu96] computed correlations on several rotations.
However, in our sewer measurement application this is not necessary since the
successive frames have similar rotations.

5.2.2 Multi-Resolution Matching

In order to reduce the number of false matches, we use a multi-resolution match-
ing method instead of using only one-sized correlation window. The method is
similar to that proposed in [Brandt01], and it is motivated by the way humans
seem to perform the matching task. Usually one first looks for similarity of fairly
large areas at a lower resolution level and then focuses into details at a higher
resolution. Utilising larger correlation windows is especially advantageous if the
images contain repeated patterns which may give ambiguous matches. However,
it is often not reasonable to compare large neighbourhoods at a high resolution
level due to disparity caused by the change in camera position.

The principle of multi-resolution matching is illustrated in Fig. 5.1. The
correlation windows around an interest point are shown at two resolution levels.
The original high-resolution image block is of size 6 x 6 and the corresponding
low-resolution image, obtained by decimating the original image, is of size 3 x 3.
The size of the correlation window (denoted by crosses in Fig. 5.1) is 3 x 3 at
both resolution levels, but the window in the low-resolution image naturally
corresponds to a larger neighbourhood in the original image. The neighbour-
hoods are compared at the higher resolution level only if the correlation score
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original image
(high-resolution)

decimated image
(low-resolution)

Figure 5.1: Correlation windows in multi-resolution matching. At both resolution
levels the 3 x 3 window, denoted by crosses, is positioned to the detected interest point.

at the lower level exceeds a given threshold. The actual number of resolution
levels used is adjustable in our implementation. One may also change the size of
the correlation window and choose distinct correlation thresholds for different
resolution levels.

5.3 Sewer Videos

Next we show some matching results from experiments with real sewer videos.
The test video sequence was scanned in an eroded concrete pipe using the
DigiSewer robot. The uncompressed digital video was captured from an analog
NTSC video signal at a resolution of 320 x 240 using a consumer grade cap-
ture card. The capture resolution was rather low due to the limitations of our
hardware. However, capturing both fields of the NTSC signal, i.e. 480 lines
instead of only 240, would cause problems related to interlacing. Interlacing
here means that the camera does not capture both fields simultaneously and
this causes problems when the camera moves. We avoid these problems, at the
expense of losing some information, by capturing only even or odd lines.

The frame rate of the test video is 30 fps. Since the robot moves relatively
slow, there is very little difference between successive frames. Therefore we only
process every fifth frame of the sequence. The interest points are detected with
the improved Harris detector using the value 0.2 for the standard deviation
of the smoothing Gaussian and the value 0.5 for the standard deviation of the
Gaussian derivatives. The threshold for corner response R is set adaptive so that
a reasonable number of corners is detected in each quadrant of the image. The
interest point correspondences are computed by the multi-resolution matching
technique using two resolution levels. The size of the correlation window is 7 x 7
and the correlation threshold is 0.75 at both resolution levels. We also assume
that the camera moves approximately in the direction of the optical axis and
require that the corresponding points must lie approximately in the same sector
(the difference of polar angle ¢ must be below 10°).

In Fig. 5.2 two frames from the test video sequence are shown together with
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the matched Harris corners (cyan and yellow crosses). The matches denoted by
yellow crosses do not satisfy the epipolar constraint which is robustly estimated
from all matches (see Sections 6 and 7). Since the estimation of the two-view
geometry has been successful, most of the cyan crosses denote true matches and
the yellow ones are badly localised or totally false matches. In total, there were
744 corners in the first frame and 758 in the second. The number of matches
is 325 of which 43 were classified false on the basis of the two-view geometry.
The results above are typical for the rest of the test sequence, which consisted
of hundreds of frames.
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(b)

Figure 5.2: The matched Harris corners between two frames of the test video se-
quence. The matches denoted by yellow crosses were later classified erroneous on the
basis of the estimated epipolar geometry.



Chapter 6

Multiple View Tensors

In this chapter, we introduce the multiple view tensors, which enclose the geo-
metric constraints between multiple views of a single scene. Two- and three-view
cases are considered. The tensor formulation of multiple view relations assumes
projective cameras. However, also in the case of calibrated nonlinear cameras,
such as fish-eye lens cameras, the multiple view tensors are useful geometric
objects when solving the camera motion. This is discussed in Section 6.5.

6.1 Fundamental Matrix

The geometric constraint between two views of a single scene is called the epipo-
lar constraint and is illustrated in Fig. 6.1. Given a point m in the first image its
corresponding point in the second image is constrained to lie on a line called the
epipolar line of m, denoted by 1'. The line I’ is the intersection of the plane m,
defined by m, C and C’, with the second image plane. Thus, the epipolar con-
straint states that an object point X, its images m, m’ and the camera centres
C, C’ must always lie on a single plane. Algebraically the epipolar constraint
is expressed by the fundamental matriz which is the multiple view tensor in the
two-view case. The following derivation of the fundamental matrix F is based
on [Xu96].

Assume that the two camera projection matrices are P and P’. The ray back-
projected from m by P is obtained by solving PX = m. The one-parameter

family of solutions is
X(A\) =P m+ \C, (6.1)

where P71 is the pseudo-inverse of P, i.e. PPT = I, and the camera centre C
is the null-vector of P. Two points on the back-projected ray are C and P+m.
Their projections in the second image are P'C and P’/Ptm and the epipolar
line I is the line joining these points, I’ = (P’C) x (P’PTm). A cross-product of
two 3-vectors can always be replaced by a product of a skew-symmetric matrix
and a vector, i.e., a X b = [a]x b where

[alx = | a3 0 —ai. (6.2)
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epipolar plane 7

Figure 6.1: Epipolar geometry. Given a point m in the first image its corresponding
point in the second image is constrained to lie on the line 1’ which is the epipolar line
of m. Correspondingly, the line 1 is the epipolar line of m’. Points e and e’ are the
epipoles.

Thus, the formula above for I’ may be written as
I = [P’C]xP'P*m = Fm, (6.3)

where the homogeneous 3 x 3 matrix F is the fundamental matrix. Since the
point m’ must lie on I, ie. m’'l = 0, the algebraic representation of the
epipolar constraint is

m’' Fm = 0. (6.4)

Any pair of corresponding points m < m’ in the two images must satisfy (6.4).

The rank of the fundamental matrix F is two and the epipoles e and €’
are its left and right null-vectors, respectively. The fundamental matrix has
nine elements but the rank-two constraint and indeterminate scale reduce the
number of degrees of freedom to seven.

The above derivation shows that the two camera projection matrices define
the fundamental matrix uniquely up to scale. On the other hand, the camera
projection matrices may be retrieved from the fundamental matrix only up to
a projective transformation. This is because the fundamental matrices corre-
sponding to the pairs of camera matrices (P,P’) and (PH, P'H) are the same,
where H is an arbitrary projective transformation of 3-space.

6.1.1 Essential Matrix

When the cameras are calibrated it is useful to write the correspondence condi-
tion (6.4) in terms of normalised image coordinates. In this case the fundamental
matrix satisfies additional constraints and is called the essential matriz.

Finite projective cameras are of the form (3.4). Since only the relative
position of the two cameras matters, we may fix the world coordinate frame at
the first camera. Therefore the two camera matrices may be written as

P-KI[ 0], P =K [R t].
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Then

K-! 0
+ _ —
Pl e
and from (6.3) one obtains
F = [P'C|,P'P" = [K't|,K'RK ! = K’ [t|,RK .. (6.5)

The last equality above follows from the fact that for any vector a and non-
singular matrix M it holds [a]xM = M~T[M~!a], [Hartley00]. Substituting
(6.5) into (6.4) gives

m' K~ [t],RK'm = 0. (6.6)

By denoting the normalised image coordinates by x = K~ 'm and x’ = K’ “m/

and defining the essential matrix by

E =[t]xR (6.7)
the correspondence condition (6.6) gets the form

x'"Ex = 0. (6.8)

The essential matrix is determined only up to indeterminate scale by the
equation (6.8). Therefore it is reasonable to consider the essential matrix as a
homogeneous quantity. Then it has only five degrees of freedom, both t and
R in (6.7) have three degrees of freedom but the indeterminate scale reduces
the total number of degrees of freedom to five. The reduced number of degrees
of freedom translates into extra constraints that are satisfied by an essential
matrix, compared with a fundamental matrix. Because an essential matrix is a
product of a skew-symmetric matrix and an orthogonal matrix one may prove
that a 3 x 3 matriz is an essential matriz if and only if two of its singular values
are equal, and the third is zero [Hartley00].

In general, given the fundamental matrix and a set of point correspondences
one may compute a projective reconstruction for the points, i.e., the true and
reconstructed scene points are related via a projective transformation. However,
in the calibrated case it is possible to obtain a metric reconstruction, i.e., the
scene is determined up to a similarity transformation. This is due to the fact
that the rotation R and the direction of the translation t between the views
may be retrieved from the essential matrix. Actually, there are two possible
choices of R and two possible signs of t that satisfy (6.7) for a given essential
matrix E (the scale is usually fixed so that ||t|| = 1). This four-fold ambiguity
is however solved by requiring that the reconstructed points are in front of both
cameras [Hartley00].

6.2 Trifocal Tensor

The multiple view tensor of three-views is called the trifocal tensor. It has
analogous properties to the fundamental matrix of two-views. Both tensors are
independent of scene structure and depend only on the relations between the
cameras. Also in the three-view case there is a point correspondence relation
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that is linear in the elements of the tensor and is thus somewhat similar to (6.4).
Like the fundamental matrix the trifocal tensor is invariant to projective trans-
formations of the 3-space and the camera projection matrices may be retrieved
from the tensor up to a common projective transformation.

The additional property of three-view geometry compared to the two-view
case is the ability to transfer points and lines from two views to a third. Given
a point correspondence over two views the point in the third view is deter-
mined by the trifocal tensor. This transfer property is useful when establishing
correspondences over multiple views.

Above the fundamental matrix and the correspondence relation (6.4) were
derived by geometric reasoning. In the following we consider multiple view
relations in a more general framework of which the three-view case is a special
case. The aim is to obtain a mathematical formulation of the trifocal tensor.
The treatment is based on [Hartley00] and [Heyden00].

6.2.1 Bilinear and Trilinear Relations
Consider an object point X and its n images,

)\kmk = PkX k= 1, I N (6.9)

where the scale factors \; are added so that the equations hold also as inhomo-
geneous equations. Matrix formulation of these camera equations is

P1 m 0 0 0 _)\ 0
P, 0 me 0O ... O )\1 0
—A2

Ifs 0 0 H-ls 0 x| = 0 , (6.10)
\Pn 0 OVO m,, Y 0

G

which gives
rank G < n + 4.

This rank condition implies that all (n + 4) x (n + 4) minors of G are zero.
In the two-view case the above matrix G is a 6 x 6 square matrix and the
rank condition implies

det E; e H‘L] —0, (6.11)
which gives the bilinear constraint
3
> Fymimi =0, (6.12)
i,j=1

where coefficients F;; depend only on the camera projection matrices and m}'c
is the i:th element of my. Using calculation rules of determinants, i.e., the
Laplacian expansion by minors, one may verify the following expression for
coefficients F;;,

3
1
Fij = (Z Z €jpq€irs det p% y (613)

P,q,T,s=1 s
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where PZ denotes the i:th row of camera matrix Py, and ;51 is the permutation
tensor,
0 unless 4,7 and k are distinct

€ijk = § +1 if 4,5,k is an even permutation of 1,2,3 . (6.14)
—1 if 4,7,k is an odd permutation of 1,2,3

Comparison of equations (6.4) and (6.12) reveals that (6.12) is just another way
to express the correspondence relation (6.4) and the coefficients Fj; are actually
the elements of the fundamental matrix F.! Since the fundamental matrix is
defined only up to scale the factor 1/4 in (6.13) is inessential. It is written out
just to emphasise that (6.12) is equivalent expression to (6.11) including scale.

In the three-view case there are essentially two different types of 7 x 7 minors
of matrix G. One may choose either (i) three rows from each of two camera
matrices and one row from the third or (ii) three rows from one camera matrix
and two rows from each of the two others. However, it can be shown that the zero
determinant condition in the case (i) just reduces to the bilinear relationships
expressed by the fundamental matrices. More interesting relations are obtained
by considering minors of the second type. An example of such a determinant is
of the form

P1 mq
P} m)
det p% md s (6.15)
P3 m3
P} my

By expanding this determinant down the column containing mj; and setting it
to zero one obtains a trilinear relation of the form

3
> T mimbenpmiesng =0, (6.16)

iij’kiris

where the free indices p and ¢ correspond to the rows omitted from the matrices
Py and P3 in (6.15). Thus, depending on the choice of p and ¢, there are in
total nine different trilinear constraints. However, only four of them are linearly
independent [Hartley00]. The coefficients 77* in (6.16) are the elements of the
trifocal tensor, denoted by T, and are defined by

s P1

ik pPi
T)" = Zeirs det | 51 - (6.17)

e P2

P3

Since the first view has a special role in (6.17) the trifocal tensors corre-
sponding to different numberings of the views are distinct. Nevertheless, they
all represent the same geometric constraint and usually only one of them is
considered for a given triple of views.

The trifocal tensor has 27 elements but only 18 degrees of freedom. The
number of degrees of freedom may be counted by using the fact that the cameras
may be retrieved from the trifocal tensor up to a projective transformation.

1The fundamental matrix is sometimes called the bifocal tensor.
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The three camera matrices have 11 degrees of freedom each, giving 33 in total.
Subtracting 15 degrees of freedom to account for the projective world frame
leaves 18 degrees of freedom for the trifocal tensor.

6.2.2 Calibrated Trifocal Tensor

If the cameras are calibrated, the trifocal tensor satisfies additional constraints
and has fewer degrees of freedom than in the general case. The calibrated
camera matrices for a triple of views are

P=[I 0], P =[R' t], P’ =[R" t"], (6.18)

where the world coordinate frame is fixed at the first camera. The rotations R’
and R” and the translations t’ and t” represent the positions of the second and
third camera with respect to the first camera.

The trifocal tensor for cameras (6.18) may be expressed in terms of the
rotations and translations,

Tk = RI"F _ I RE, (6.19)
where the subscripts correspond to columns of the rotation matrices and su-
perscripts correspond to rows. Because the trifocal tensor is a homogeneous
quantity only the relative scale of vectors t’ and t” actually matters. The cali-
brated trifocal tensor has thus 11 degrees of freedom. Each of the rotations and
translations has three degrees of freedom, giving 12 in total, but the indetermi-
nate overall scale reduces the number to 11.

6.3 Estimation

Estimation of multiple view tensors is a key step in structure and motion recov-
ery from image sequences. The bifocal or trifocal tensors for successive pairs or
triplets of views provide an estimate of the (projective) camera motion through
the sequence. In the following, we describe how the tensors can be computed
from point correspondences.

6.3.1 Linear Method

Since the correspondence relations (6.12) and (6.16) are both linear in the entries
of the tensors, they may be written as

a'v=0, (6.20)

where v consists of the elements of the tensors and a is determined by the
correspondences. In the two-view case v has 9 elements, the entries F;; of F, and
in the three-view case 27 elements, the entries Tij Kof T. A point correspondence
over two views provides one linear constraint on F, but a point correspondence
over three views provides four linearly independent constraints on T.
Given n correspondences the above linear constraints form a set of linear
equations,
Av =0, (6.21)
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where A has n rows in the two-view case and 4n rows in the three-view case.
If the correspondences are exact the maximum rank of A is one less than the
number of its columns and the sought solution v is the generator of the one-
dimensional right null-space of A. In practice, due to noise in the point coordi-
nates, we seek a solution that minimises ||Av|| subject to the condition ||v| = 1.
This solution for v is the singular vector corresponding to the smallest singular
value of A and is obtained by singular value decomposition. The required num-
ber of correspondences is at least eight in the two-view case and at least seven
in the three-view case.

The linear algorithm does not consider the constraints satisfied by the bifocal
and trifocal tensors. For instance, the obtained solution for F may not be a rank-
two matrix. Therefore the solution is usually replaced by the closest singular
matrix under a Frobenius norm. The constraint enforcement for a trifocal tensor
is more complicated and is described for example in [Hartley00].

An important improvement to the linear estimation method is the normalisa-
tion of the image coordinates as described in [Hartley00]. The image coordinates
are transformed and scaled in such a way that the stability of the least-squares
problem is improved. Since the added complexity of the algorithm is insignifi-
cant, the normalisation should be always done when the linear method is used.

6.3.2 Minimisation of Geometric Distance

A problem with the linear method is that it does not minimise a geometrically
or statistically meaningfull quantity. A common and often reasonable assump-
tion is that the image coordinate measurement errors are normally distributed.
Specifically, we assume that the noise on each image coordinate is Gaussian
with zero mean and uniform standard deviation. Under this assumption the
maximum likelihood estimate of the multiple view tensor, both in the two- and
three-view cases, is obtained by minimising the geometric distance

Z Zd(m;'., )2, (6.22)

where m; are the measured coordinates and ﬁl;- are estimated noise free coordi-
nates which exactly satisfy the correspondence relation, (6.12) or (6.16). Since
the true noise free coordinates are also unknown they are estimated together
with the multiple view tensor. This is done by seeking such 3D-points X? and
camera matrices P; that minimise (6.22) where ) = P;X¢. The maximum
likelihood estimate of the bifocal or trifocal tensor is then directly computed
from the camera matrices.

Minimisation of (6.22) is a non-linear optimisation problem which can be
solved using the Levenberg-Marquardt algorithm, for example. To obtain the
initial values for the optimisation one must compute an initial estimate of the
multiple view tensor by the linear method. The initial camera matrices are
then retrieved from this tensor and the initial estimates of X¢ are computed by
triangulation [Hartley00].

6.3.3 The Calibrated Case

The calibrated bifocal and trifocal tensors satisfy additional constraints that
must be enforced during the estimation. Instead of (6.22) one should minimise
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the distance

ZZd xi, P;X")? (6.23)

where x’ are the normalised image coordinates and P; are the calibrated camera
matrices. Thus, the camera matrices must be parameterised in such a way that
the additional constraints are satisfied. For example, in the three-view case the
camera matrices have the form (6.18) and are parameterised via the rotation and
translation parameters. In the following, we describe linear estimation methods
that may be used to initialise the minimisation of (6.23).

The linear estimation method of the fundamental matrix, described in Sec-
tion 6.3.1, is easily modified for computing the essential matrix. Also in the
calibrated case the correspondence relation (6.8) leads to a set of linear equa-
tions of the form Av = 0, where v contains the elements of the essential matrix.
The method differs from the computation of the fundamental matrix only in the
enforcement of the constraints. Instead of choosing the closest singular matrix
in Frobenius norm, one must choose a matrix whose two singular values are
equal and the third is zero. This is done using the singular value decomposition
as described in [Faugeras01].

When there are three views the calibrated camera matrices may be written
as in (6.18). One may compute the essential matrices for view-pairs (1,2) and
(1,3) by the linear method. From these essential matrices one obtains estimates
of the rotations R/, R” and the directions of the translations t’, t”/. However,
the ratio of the magnitudes of the translations is left undetermined. In the
following, we propose solving also this ratio linearly when the rotations and
translation directions are known.

By denoting t' = s't’/||t'| = s't’ and correspondingly t” = s
write (6.19) in the form

"t we may

Tk = §"RIE"* — i RE. (6.24)

By substituting this into the correspondence relation (6.16), which is written in
terms of the normalised coordinates in the calibrated case, one obtains a relation

of the form )
al (j,,) =0. (6.25)

Thus, one correspondence over three views is enough to solve the ratio s'/s”.
When more correspondences are used a set of linear equations is formed and
the solution is obtained through the singular value decomposition.

6.4 Uncertainty of the Epipolar Geometry

Due to noise in the measured image coordinates the estimated fundamental
matrix is not exact. Because the estimate of F is uncertain and the measured
points are noisy the correspondences do not satisfy (6.4) precisely. Thus, given
a point m in the first image the corresponding point in the second image does
not lie exactly on the epipolar line Fm but probably in a narrow region on
either side of the line. This region is bounded by the epipolar envelope and
it is determined by the covariance matrix of the fundamental matrix. The
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estimation of the covariance of the fundamental matrix is discussed in [Csurka97]
and [Hartley00], and in the robust case in [Brandt02].
When the epipolar lines are defined by the normalised equation

Fm
= —) (6.26)
|Fm]|
the first-order covariance approximation is given by
o, al o, A’

where the two terms account for the uncertainty of F and m, respectively. Ag
is the 9 x 9 covariance matrix of F and 01/0F is the Jacobian of (6.26) with
respect to F, which is here regarded as a vector of 9 elements. The covariance
of m is often assumed to have the following simple form

o2 0 0
Am=10 %2 0]. (6.28)
0 0 0

Due to the constraint ||1| = 1 implied by (6.26) the covariance matrix Aj
has rank 2. It can be shown [Hartley00] that if 1 is a random line obeying a
Gaussian distribution with mean 1 and covariance matrix A of rank 2, then the
plane conic

C=11"T — k2A (6.29)

represents an equal-likelihood contour bounding some fraction of all instances
of 1. If F»(k?) represents the cumulative x% distribution and k? is chosen such
that F; ' (k?) = o, then a fraction a of all lines lie within the region bounded by
C. Normally the conic C is a hyperbola, whose branches lie on different sides
of the mean epipolar line, and it forms the envelope of the epipolar lines. For
example the 95 % envelope is obtained when k2 = 5.99 and it defines the region
within which the epipolar line lies with a probability of 95 %, according to the
above first-order Gaussian approximation.

6.5 General Calibrated Cameras

Next we consider the case where we have two or three views taken by a general
calibrated camera. For example, the camera may be a fish-eye lens camera that
is calibrated using the methods of Chapter 3. Also in this case the rotations
and translations between the views may be estimated by first computing the
calibrated multiple view tensor.

Assume that we have established a set of point correspondences over the
views. Point ¢ in view j is denoted by m; Because the camera is calibrated we
may transform the points mz- to points 5(3 that follow the perspective projec-
tion. The transformation is done by first back-projecting the points and then
perspectively re-projecting them. The points )"c; are considered as correspon-
dences over the transformed views and they are images of some object points
X' so that
= [Rj t]’] X¢, (6.30)
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where the rotations and translations are the same as between the original views.
The world frame may be fixed to the first camera by setting R; =TI and t; = 0.

Due to noise, there are no such object points that (6.30) would hold exactly.
However, one may still compute the points )”(; and use the linear methods of
Section 6.3.3 to compute the calibrated multiple view tensor between the trans-
formed views. This way one obtains estimates of R; and t;. Estimates X* for
the object points may then be computed by triangulation.

Again, the optimal way of estimating the camera motion is to minimise a
geometric distance in the original images where the measurements are done, i.e.,

minZZd(mé,rﬁé)Q, (6.31)
(]

where m] are the estimated exact correspondences,

m’ = P;(X). (6.32)

Here P; is the imaging function of the general camera in view j. The cost (6.31)
is minimised over the external camera parameters of P; and the 3D-points X*.

6.5.1 Essential Matrix and Epipolar Envelopes

In the two-view case, there is a way to compute an approximation to the ge-
ometric distance (6.31) without estimating the optimal 3D-points X*. Since n
3D-points has 3n parameters, the number of parameters in the minimisation
problem is reduced from 5+ 3n to 5. These five parameters are the parameters
of the essential matrix: three for the rotation and two for the direction of the
translation. We describe this method in the following because it also provides
a simple way to estimate the covariance of the essential matrix. The covariance
of the essential matrix is used to compute the epipolar envelopes.

The transformation that “corrects” the original image to a perspective one
is denoted by 7, i.e. X5 = 7(m}). Given the essential matrix E and the trans-
formed correspondences, X% « X%, there is a non-iterative algorithm [Hartley(0]
for computing the points %% and %% that minimise the geometric distance

> d(x],%))? + d(%5, %5)? (6.33)
;
in the transformed image plane subject to the constraint
KTEXL =0.
By transforming the points ic; to the original image, one obtains points

i = T1(&1), (6.34)

which may be used as approximations to the optimal exact correspondences
that minimise (6.31). Hence, one may write the minimisation problem (6.31) in

the form
min Z Ci(yi, 2)?, (6.35)
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where vectors y; contain the measured correspondences in both views and z
is the 5-vector containing the parameters of the essential matrix. The cost
function in (6.35) has such a form that as a by-product of the minimisation one
can compute an estimate for the covariance of the parameters z. This is possible
by making some simplifying assumptions as described in detail in [Csurka97].

The epipolar envelopes in the transformed image are determined by (6.29)
but the covariance matrix of the epipolar line is now approximated by

ol O o1 GE\ ' 4l o
Al:(c’TEE) As (8_E<9_> * om A om (6.36)

where the Jacobians are computed from

E(z)7T (m)

"= B Tm)

(6.37)

The explicit form of the Jacobian 91/0m depends on the transformation 7. For
our fish-eye lens camera we used the extended camera model of Section 3.2.3
with which it is possible to compute 01/0m analytically.



Chapter 7

Tracking and
Reconstruction

In this chapter we show how the theory and methods of the previous chapter can
be applied to acquire 3D models from video sequences. Sewer videos scanned
by the DigiSewer robot are experimented.

7.1 Computation of the Multiple View Tensors

In practice, the initial match candidates over successive video frames always
contain false matches, as illustrated in Fig. 5.2. The erroneous correspondences
are often referred to outliers since they usually do not satisfy the geometric
constraints between the views. Hence, when estimating the bifocal or trifocal
tensors from initial correspondences we need robust estimation methods that are
tolerant to false correspondences. The RANSAC (Random Sample Consensus)
algorithm [Fischler81] is a most commonly used robust estimation method in
geometric computer vision. We implemented the RANSAC algorithm for the
estimation of two- and three-view relations between views that are taken by a
calibrated fish-eye lens camera. For the most part the implementation follows
the recommendations in [Hartley00], but the application to the fish-eye case is
our own. In the following, we outline the procedure.

The objective of robust estimation is to fit a model to a data set which
contains outliers. Assume that we have a data set S containing n data points of
which some are outliers. Furthermore, assume that a minimum of s data points
are required to instantiate the free parameters of the model. The idea of the
RANSAC algorithm is to randomly select samples of s data points from S and
compute the model from each sample subset. For each instance of the model we
determine the set of data points which are within a distance threshold of the
model. This subset defines the inliers of S. The model with largest number of
inliers is selected and re-estimated using all the inliers. The estimate should be
close to the true model if enough samples were drawn so that at least one of
them is free from outliers.

When estimating the calibrated two-view geometry, the model is defined by
(6.8), the parameters of the model are those of the essential matrix and the
data points are the measured correspondences between the views. The size of
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the minimal data sample is eight if the linear algorithm of Section 6.3.1 is used
to instantiate the model. Nevertheless, there is an algorithm for solving the fun-
damental matrix from seven point correspondences [Torr00]. This algorithm can
be also used in the calibrated case by finally enforcing the additional constraints
of the essential matrix. We used the seven point algorithm in the experiments
because smaller sample sets have a higher probability to be free from outliers.
For the fish-eye images, the essential matrix is computed from the trans-
formed correspondences X « X', as described in Section 6.5. However, the
distance of a correspondence from the model is measured in the original image
by
d(m,m)? + d(m’, m’)?, (7.1)

where m and m’ are the observed points in the fish-eye images and the points
and m’ are computed by (6.34) and satisfy the two-view constraint as described
in Section 6.5.1. The distance threshold for the inliers, t2, is determined by
t?2 = F;1(0.95) 02, where F) represents the cumulative x? distribution and o
is the estimated standard deviation of the measurement errors in the original
fish-eye coordinates [Hartley00]. A robust estimate of o can be computed as
explained in [Xu96].

In the three-view case, we first robustly estimate the essential matrices for
view pairs (1,2) and (1,3). Then the RANSAC procedure is used to determine
the relative scale of the two translations from the three-view correspondences.
At minimum only one correspondence is required, which implies that only one
random sample needs to be drawn. The distance measure used for the three-view
correspondences is

d(m,h)? + d(m’, m’)? 4 d(m”, m")?, (7.2)

where m and m’ are computed exactly as in (7.1) and rm” is the point that is
obtained by transferring the correspondence m < m’ to the third view using
the transfer property of the trifocal tensor. Now the distance threshold is t? =
F;71(0.95) 0 because the codimension of the model is 3 in the three-view case
[Hartley00].

Nevertheless, the final estimate of the camera motion over each triple of
views is refined by minimising (6.31) over both the motion parameters and the
3D coordinates of the inliers. Furthermore, we iterate between (i) optimal fit to
inliers and (ii) re-classification of inliers; until the number of inliers converges.
The sub-optimal distance measures (7.1) and (7.2) in the RANSAC are used for
computational efficiency.

7.2 Tracking with Geometric Constraints

After we have successfully estimated the two- or three-view geometry for the
successive images in a sequence, we may discard those point correspondences
that are not consistent with the geometry. However, we may also use the es-
timated multiple view geometry to guide the matching. A weaker similarity
threshold can be employed because the geometric constraints discriminate the
false matches. In the following sections, we illustrate this with the sewer video
sequences.
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7.2.1 Two-View Geometry

In Fig. 5.2 we showed the initial point correspondences between two frames
in a sewer video sequence. In Fig. 7.1, the two-view geometry of the frames
is illustrated by choosing two points from the first image (denoted by yellow
crosses) and plotting the corresponding epipolar curves to the second image
(the magenta curves). The epipolar curves correspond to the epipolar lines in
the transformed image and are determined by (6.37). The curves were plotted
into Fig. 7.1 by transforming the epipolar lines back to the original image.

In Fig. 7.1, the epipoles are the cyan crosses near the centre of the images.
The yellow curves are the envelopes of the epipolar curves and they were com-
puted by using the estimated uncertainty of the essential matrix. The envelope
of the horizontal curve is broad because a very large value of k2 = 1000 was
chosen in (6.29) in order to better illustrate the error bounds. The narrow en-
velope of the vertical curve is the 95 % envelope which we used to define the
search region for the correspondence. The estimated value for the standard de-
viation of measured points was ¢ = 0.25. The narrow error bounds show that
the search region for the correspondence is very strictly limited by the epipolar
constraint.

The yellow crosses in the second image correspond to the narrowest point
of the envelope, i.e., the centre of the hyperbola in the transformed image.
It appears that the narrow point is often close to the true correspondence
[Hartley00, Brandt02]. Hence, if there are several match candidates in the
search region that exceed the similarity threshold, we choose the candidate that
is closest to the narrowest point. In the guided matching stage, the threshold
for the correlation score was set to 0.3 at both resolution levels of the multi-
resolution method.

7.2.2 Three-View Geometry

The point matches that are consistent with the estimated two-view geometry
are used as initial correspondences when estimating the three-view geometry.
In Fig. 7.2, we show the initial three-view correspondences over three frames.
Again, the correspondences that are denoted by yellow crosses were classified
outliers. Since the three-view constraint is much stronger than the two-view
constraint false matches are very improbable after imposing the constraint.

The matches that survive through several successive image triplets are ex-
tended over the sequence as follows. If a match in image triplet (1,2,3) and
another match in the successive triplet (2,3,4) correspond to the same interest
point in the overlapping views, images 2 and 3, they are combined into a sin-
gle match over four images. Continuing this way, some interest points may be
tracked across several images.

In Fig. 7.3 we illustrate the tracking results for a sewer image sequence that
consists of 159 images. The found interest points are on the vertical axis and the
horizontal line segments indicate the visibility of the track. The total number of
found interest points is 6864. Only points that could be tracked through at least
three successive images were accepted. Hence, due to the three-view constraint
practically all established correspondences are true. Because the camera moves
all the time forward the correspondence chains are short on average as illustrated
in the length histogram of the correspondence chains shown in Fig. 7.4.
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Figure 7.1: Estimated epipolar geometry for two fish-eye images. Two points in
the first image are chosen (yellow crosses) and their epipolar curves (magenta curves)
are plotted to the second image. The yellow curves are the confidence intervals of
the epipolar curves. The envelope of the horizontal curve is broad because a very
large value of k> = 1000 was chosen in (6.29) in order to better illustrate the error
bounds. The narrow confidence interval of the vertical curve is the 95 % envelope
that corresponds to a value k% = 5.99 and was used to define the search region for the
correspondence in our experiments.
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Figure 7.2: The initial matches over three frames. The matches denoted by yel-
low crosses were classified outliers on the basis of the robustly estimated three-view
geometry.
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Figure 7.3: The tracked interest points through a sequence of 159 sewer images.
There are 6864 interest points in total. Each horizontal line segment represents a
correspondence chain. The length of the pipe section covered by the images is about
two meters.
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Figure 7.4: Histogram of the lengths of the correspondence chains shown in Fig. 7.3.
Most of the chains have length of three, i.e., they appear only in one triple of images.
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7.3 Reconstruction

After the point correspondences are established over all the images, the task is
to recover their 3D coordinates. Assuming that the cameras are calibrated and
the image measurement errors are Gaussian, the maximum likelihood solution
for the structure and motion is obtained by minimising

>3 6y d(mi, Py(X))? (7.3)

i=1 j=1

over the 3D points X and the external camera parameters in P;. Here m;- are
the measured coordinates of point ¢ in view j and §;; is either 1 or 0 indicating
whether the point ¢ is found in view j. The explicit form of the imaging functions
P; depends on the camera model. For our fish-eye lens camera, we used the
extended camera model of Section (3.2.3) with the 23 internal parameters and
minimised (7.3) by the Levenberg-Marquardt algorithm.

The estimation of structure and motion by minimising (7.3) directly is called
bundle adjustment because it involves adjusting the bundle of rays between each
camera and the set of 3D points. Because reconstruction is possible only up to
a similarity transformation, which has 7 degrees of freedom, the number of free
parameters in the minimisation problem is (3M + 6N — 7). When N and M
increase the minimisation becomes costly and eventually impossible. Hence, one
is forced to partition long image sequences into shorter sections, bundle adjust
them individually and then merge the partial reconstructions.

Solving a large nonlinear minimisation problem requires a good initialisation.
We compute the initialisation by a hierarchical approach building from image
triplets. The method is similar to that in [Fitzgibbon98b] but in the calibrated
case it is somewhat simpler and is described in the following.

7.3.1 Hierarchical Merging of Sub-Sequences

As described in Section 7.1 the final estimate of the three-view geometry for each
image triplet is computed by minimising (6.31). Thus, each triplet is bundle
adjusted separately and a metric reconstruction is obtained for each of them.
The aim is to merge the reconstructions of overlapping triplets into longer sub-
sequences, bundle adjust them and then merge again. Iterating the two steps,
bundle adjusting and merging, leads to a hierarchical algorithm which eventually
gives an initial reconstruction for the whole sequence. Because the sub-sequences
are bundle adjusted at each hierarchical level the initial solution should be close
to the true minimum. The advantage of the hierarchical approach is that the
error is optimally distributed over the whole sequence.

Consider two 3D point sets that are the reconstructed correspondences from
two overlapping sub-sequences. Due to overlap some points are common to both
sets. Using these 3D point correspondences one may merge the reconstructions,
i.e., transform the point sets into a common coordinate frame. In the case of
uncalibrated perspective cameras the two point sets are related via a projective
transformation of the 3-space but in the calibrated case the transformation is a
similarity transformation. This is an advantage because there is a non-iterative
algorithm for computing the least-squares solution of the similarity transforma-
tion from 3D point correspondences [Arun87, Umeyama91]. Hence, the iterative
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estimation of the 3-space homographies is avoided in our implementation com-
pared to [Fitzgibbon98b].

7.3.2 Results

In this section we show some examples of computed reconstructions. The ex-
perimented sewer video sequence is the same as in Fig. 7.3, where the point
correspondence chains were illustrated. With our current implementation we
did not bundle adjust the entire sequence of 159 views as a whole since the
number of parameters is too large for a medium-scale Levenberg-Marquardt
implementation. Since a single point is typically found only in very few views
the structure of the optimisation problem is sparse (see Fig. 7.3), hence, sparse
optimisation methods would give significant advantage [Triggs00, Hartley00].
Nevertheless, in this work we confined ourselves to compute the reconstruc-
tion by simply concatenating partial reconstructions that were bundle adjusted
separately.

In Fig. 7.5, there is a three-dimensional reconstruction of points computed
from correspondences over 35 images, i.e., frames 106-140 of the sequence in
Fig. 7.3. The reconstruction was computed by using the hierarchical approach
described above. There were 1512 points in total and the RMS (root-mean-
squared) projection error after the final bundle adjustment was 0.26 pixels.
There are few reconstructed points in the bottom part of the pipe since it
is difficult to find correspondences from the water region. The points inside
the pipe near the roof form an interesting detail in the reconstruction. They
correspond to a root hanging from the roof of the pipe. Top and side views of
the reconstructed points are shown in Fig. 7.6.

In order to obtain a reconstruction of the pipe section covered by the whole
sequence of 159 images, we concatenated six partial reconstructions. These were
computed from the following sub-sequences: 1-35, 33-55, 53-87, 85-108, 106-
140, and 138-159. One of the partial reconstructions was already illustrated in
Figs. 7.5 and 7.6. The others were computed in a similar way. As there are three
view overlaps between successive sub-sequences, the partial reconstructions have
common points and the reconstructions can be transformed into a common
coordinate frame [Umeyama91].

In Figs. 7.7 and 7.8, top and side views of the concatenated reconstruction
are shown. The thick part near the beginning of the pipe is a pipe socket that
is visible because the pipe joint between two concrete sections is displaced. The
side view shows that the pipe is bent downwards. Visual inspection of the
original video showed that the pipe actually seems to be slightly bent, but the
bending in Fig. 7.8 is probably exaggerated due to the accumulation of error
in the concatenation. This is possible because the concatenated reconstructions
have an overlap of only three views. Thus, they are merged on the basis of quite
a few points on a short interval in the longitudinal direction. In order to avoid
this kind of accumulation of error one should bundle adjust as long sequences as
possible and when concatenating the partial reconstructions should have more
significant degree of overlap.

Computing a reconstruction like that shown in Figs. 7.7 and 7.8 is computa-
tionally demanding. By our current Matlab implementation it took several days
on a 2.2 GHz Pentium 4 workstation. To improve the computational efficiency,
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one of the most important fields of improvement is the bundle adjustment op-
timisation.

As the reconstructions shown in Figs. 7.5-7.8 are only sets of 3D points, one
must fit some parametric model to the reconstructed points to acquire a real
3D model of the pipe. A flexible cylindrical tube would be suitable model. The
model fitting should be quite straightforward as long as the point set is not too
sparse. However, the experiments were left for the future work.
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Figure 7.5: Front view of the reconstructed 3D points. The reconstruction is com-
puted from point correspondences over a sequence of 35 images. There are 1512 points
and the RMS projection error, i.e., the average distance between projected and mea-
sured points, is 0.26 pixels. Notice also the root hanging from the roof of the pipe.
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Figure 7.6: Top (a) and side (b) views of the reconstructed points in Fig. 7.5



7.3 Reconstruction 65

0S

10§
-1 00T
10891
-100¢

|
gL
o

Figure 7.7: Top view of the reconstructed points for the sewer image sequence in
Fig. 7.3. The reconstruction was computed by concatenating six shorter reconstruc-
tions, such as that in Fig. 7.6. The thick part near the beginning of the pipe is a pipe
socket in a displaced pipe joint.
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Figure 7.8: Side view. The pipe seems to have bent downwards. For the most
part the bending is caused by the accumulation of error in the concatenation, hence,
when concatenating partial reconstructions they should have greater overlap than used
here. The points clearly outside the pipe are such erroneous correspondences that are
consistent with the three-view geometry but do not correspond to a real object point.



Chapter 8

Conclusions

In this thesis, we have described how the interior shape of a sewer pipe can be
automatically recovered from a video sequence taken by a moving camera. An
important part of the work is the calibration of a fish-eye lens camera. A generic
camera calibration method was developed and implemented as a calibration
toolbox on Matlab. Second part of the work is the automatic structure recovery
from calibrated image sequences. Methods of modern geometric computer vision
were successfully applied to the fish-eye case and the experiments with real sewer
videos showed that the shape measurements are possible in practice.

From the scientific point of view, perhaps the most important result of this
thesis is the proposed general camera model and the camera calibration method,
which is based on viewing a planar calibration object. The calibration experi-
ments verified that the proposed camera model is suitable for both conventional
cameras and fish-eye lens cameras. By using circular control points a relatively
high level of accuracy was achieved in calibration. This is promising considering
the aim of using fish-eye lenses, or other types of lenses suffering from severe
distortion, in measurement purposes.

In this work, tracking and reconstruction of points from fish-eye image se-
quences were described in a general framework that also extends to other kinds
of calibrated cameras. For example, the approach may be useful when making
measurements with wide-angle lenses which deviate from the usual pinhole cam-
era model. Hence, although our experiments were done with the sewer videos,
the implemented methods have a more general applicability. They can be used
also in other applications to recover scene structure from video sequences taken
by a calibrated camera.

From the sewer measurement application point of view, the findings of this
work are interesting. It is an important result that the shape of a sewer pipe may
be recovered solely from the video. Nevertheless, a lot of work is still needed
before the methods of this thesis can be used in real sewer pipe inspections. For
instance, although the interest point extraction and tracking succeeded well for
the test video sequence, it is possible that the approach does not work as well
in all cases, especially plastic pipes may be difficult. Another drawback of the
structure from motion approach is its computational complexity.

However, despite the above difficulties this thesis has been fruitful also from
the application viewpoint. The camera calibration is a prerequisite for any opti-
cal measurement of a sewer pipe and is needed even if structured light were used
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to measure the shape of a pipe. Measuring the cross-sectional shape of sewer
pipes by using a camera and a light pattern is perhaps the direction for future
work which would lead to practical improvements in sewer pipe inspections in
a short run.



Appendix A

Projective Geometry

In this appendix, we introduce the basic concepts and notations in projective
geometry. We mainly concentrate on planar geometry but the geometry of 3-
space is just a straightforward generalization of the planar case for the most
part. First we state two general definitions and then go on to the 2D and 3D
cases. The treatment is based on the book [Hartley00].

Definition A.0.1 The set of one-dimensional subspaces of R*1 is called the
projective space of dimension n and denoted by P™.

Definition A.0.2 Any representation of x € P™ of the formx = (@1, ..., Tnt1) "
is called homogeneous coordinates for x.

A.1 Projective Geometry of 2D

A.1.1 Points and Lines

Homogeneous representation In planar projective geometry points are con-
sidered as elements of space P? and represented by their homogeneous coordi-
nates. Homogeneous representation of a point (z,y) " is obtained by adding a fi-
nal coordinate of 1, i.e. x = (x,%,1)". A homogeneous vector x = (z1,2,73) ',
assuming x3 # 0, represents the point (x1/x3,22/x3)" in the usual inhomoge-
neous coordinates.

The advantage of projective geometry is that besides points also lines are
elements of the same space P2. This may be motivated as follows. A line in the
plane is usually defined by an equation such as azx + by + ¢ = 0. This suggests
that a line may be represented as a 3-vector, (a,b,c)’. However, the above
equation multiplied by an arbitrary non-zero scalar defines still the same line.
Therefore it is reasonable to consider all 3-vectors related by an overall scaling
as equivalent representations of a line, i.e., 1 = (a,b,¢) " =\(a,b,¢)", X #0.

Incidence A point and a line are incident if the former lies on the latter.
In homogeneous representation this relationship has a simple expression which
follows directly from the general form of the line equation:

Result A.1.1 The point x lies on the line 1 if and only if x'1= 0.

Intersection of lines Two (non-parallel) lines intersect at a single point which
lies on both lines. The intersection point has a simple algebraic expression which
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is easily derived from the above incidence relation:

Result A.1.2 The intersection of two lines 1 and 1" is the point x =1x 1’.

Line joining points A line is defined by two points lying on it. Analogously
to the previous result it holds:

Result A.1.3 The line through two points x and x" is 1 = x x x'.

Ideal points The homogeneous vectors of the form (z1,22,0)T do not have
inhomogeneous representation. They are interpreted as points that lie at infin-
ity and are called ideal points. When result A.1.2 is applied to parallel lines
(homogeneous 3-vectors whose first two coordinates have the same ratio), the
intersection point is an ideal point. Therefore it is said that two parallel lines
intersect at infinity.

The line at infinity According to result A.1.3 the line joining any two ideal
points is 1o, = (0,0,1)T. Again, there does not exist inhomogeneous interpre-
tation for this line and it is called the line at infinity. One may easily confirm
that all ideal points lie on the line at infinity.

Duality In projective geometry points and lines have a symmetric role as can be
noticed from the above results. Every element of space P? has an interpretation
both as a line and a point. Since it is just a question of interpretation the roles
of points and lines may be swapped. This is the idea behind the duality princi-
ple which is stated as follows [Hartley00]: To any theorem of two-dimensional
projective geometry there corresponds a dual theorem which may be derived by
interchanging the roles of points and lines in the original theorem.

A.1.2 Conics

A conic is a curve described by a second-degree equation in the plane. In Eu-
clidean geometry conics are of three main types: hyperbola, ellipse and parabola.
In projective geometry all of them can be represented by a 3 x 3 symmetric ma-
trix. This is seen as follows.

A quadratic curve has the general form

az? + 2bzy + cy® + 2dz + 2ey + f =0, (A.1)

which may be written in matrix form

a b d| [z
(z,y,1) |b ¢ el |y] =0. (A.2)
d e f| \1

Denoting the above symmetric matrix by C and changing to homogeneous no-
tation gives
x'Cx =0. (A.3)

The matrix C may be multiplied by a non-zero scalar without altering the conic
defined by (A.3). Thus, C is a homogeneous representation of a conic, i.e., a
homogeneous matriz that is defined only up to scale.
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A.1.3 Projective Transformations

A planar projective transformation is an invertible mapping from points in P2 to
points in P2 that maps lines to lines. It is also called a projectivity, collineation
or a homography. From the computational viewpoint the following definition is
convenient.

Definition A.1.4 A planar projective transformation is a linear transformation
on homogeneous 3-vectors represented by a non-singular 3 x 3 matriz:

x' = Hx (A.4)

Like the homogeneous representation of a point is scale invariant so is the
matrix representation of a projectivity. The non-singular matrix H is a homoge-
neous matrix that may be multiplied by a non-zero scale factor without altering
the projective transformation. An example of a projective transformation is the
central projection which is a linear transformation on homogeneous coordinates
but non-linear on inhomogeneous coordinates.

When the points on a line 1 are mapped onto another line by a known
projectivity the homogenous coordinates of the transformed line are obtained
as follows.

Result A.1.5 Under a point transformation x' = Hx, a line 1 transforms to
I'=HTL

Proof. 0=x'l=xH'H T1=x'""H"T1 O

The transformation rule for a conic is derived in a similar manner.

Result A.1.6 Under a point transformation x' = Hx, a conic C transforms to
C =H TCH.

Proof. 0=x'Cx=x'H'H-TCH 'Hx=x''H-TCH-x' O

A.2 Projective Geometry of 3D

In projective 3-space P? points and planes are represented by homogeneous 4-
vectors. Hence, in P points and planes are dual analogous to the point-line
duality in P2. Now the incidence relation w'X = 0 (zero inner product of two
4-vectors) expresses that the point X is on the plane . The ideal points lie
on the plane at infinity, 7, = (0,0,0,1)T. Three planes, in a general position,
intersect in a unique point (which lies on the plane at infinity in the case of
coplanar planes) and three non-collinear points define a plane. The counterpart
of a conic in P2 is a quadric, which is represented by a homogeneous 4 x 4 matrix.
For example, ellipsoids are quadrics. The definition of projectivities in P? is
similar to the planar case, they are represented by non-singular homogeneous
4 x 4 matrices. The transformation rules of planes, quadrics and dual quadrics
are similar to the corresponding transformation rules of lines, conics and dual
conics in the planar case.
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