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ABSTRACT

Time-lapse microscopy imaging has advanced rapidly in last
few decades and is producing large volume of data in cell and
developmental biology. This has increased the importance of
automated analyses, which depend heavily on cell segmen-
tation and tracking as these are the initial stages when com-
puting most biologically important cell properties. In this pa-
per, we propose a novel joint cell segmentation and tracking
method for fluorescence microscopy sequences, which gen-
erates a large set of cell proposals, creates a graph represent-
ing different cell events and then iteratively finds the most
probable path within this graph providing cell segmentations
and tracks. We evaluate our method on three datasets from
ISBI Cell Tracking Challenge and show that our greedy non-
optimal joint solution results in improved performance com-
pared with state of the art methods.

Index Terms— joint segmentation and tracking, cell
tracking, cell segmentation, cell proposals

1. INTRODUCTION

In last couple of decades, advances in microscopy techniques
have enabled the investigation of dynamic processes of cells
at increasing temporal and spatial resolution. To a large ex-
tent, microscopy imaging can be automated resulting in a
huge amount of data with single imaging experiments gener-
ating up-to TBs of data [1]. Manual analysis of these huge
datasets is highly inefficient, not easily reproducible, often
only qualitative and limits the hypotheses which can be tested.
In cell and developmental biology, to better understand cell
functions and tissue development, it is often important to
analyze cell behavior at individual cell level. Robust cell
segmentation and tracking is necessary for automating these
detailed analyses.

Microscopic images often suffer from a low signal to
noise ratio, poor staining, variable fluorescence in cells or
cell organelles and high cell density. This results in images
which have some very ambiguous regions, often leading to
mistakes. Utilizing temporal constraints can be very helpful
in these situations as most ambiguities do not last for more
than few frames.

2. RELATED WORK

Most cell tracking methods can be grouped into two main cat-
egories, tracking by assignment and tracking by model evolu-
tion. In tracking by model evolution, a mathematical model of
cells, frequently based on level-sets [2], is evolved from frame
to frame to jointly segment and track cells. These methods re-
quire high frame rate, high resolution and usually need special
handling of cells entering or leaving the imaged region.

Tracking by assignment is by far the most popular ap-
proach within cell tracking field, with five out of six methods
in ISBI 2013 Cell Tracking Challenge [3] belonging to this
category. It decouples cell segmentation and tracking, making
it more generalizable and easier to manage. In the first stage,
cells are segmented and some features are extracted. In the
second stage, these features are used to link segmentations in
neighboring frames. The tracks can then be obtained by con-
sidering the whole graph with all frames linked together [4, 5]
or just neighboring frames or a combination of both of these
[6].

In recent years, object proposals have gained prominence
in computer vision field when it comes to object detection,
segmentation and tracking. They have also recently been used
in cell detection [7] and tracking [8, 9, 10]. Proposal based
joint segmentation and tracking methods [8, 9, 10] first gener-
ate a large number of cell proposals, connect them temporally,
and then use integer linear programming for inference. These
methods heavily restrict possible transitions between frames
to speed up inference for long sequences [9] which is not al-
ways suitable especially if sequences have low frame rate and
high cell density.

We propose a novel cell segmentation and tracking
method, which extends the idea of iteratively finding the
lowest cost path in a graph [4] by using cell proposals instead
of cell segmentations. Previously a similar idea [11], using
the lowest cost path in a graph representing proposals, has
been used to extract a single object from a video sequence.
However, we extend this idea to extract multiple cells from
sequences with many different challenges including mitosis
and a low frame rate.

Our method consists of three main stages: cell proposal
generation (Section 3), graph construction (Section 4) and
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Fig. 1: Cell Proposal Generation: a) Original Image from
HeLa-01, b) Binary Segmentation, c¢) Individual filter re-
sponses for a filter bank with filters shown in top left corner,
d) Accumulated filter response, e) Detected cell seeds, and f)
A set of segmentation proposals.

greedy approximate inference (Section 5).

3. PROPOSAL GENERATION

The first stage in our method is proposal generation, which
aims to generate a large number of segmentation proposals
such that they have a high recall. Fig. 1 shows main steps in
generation of one set of segmentation proposals: first, cells
are segmented from background; second, blob detection is
used to detect individual cells; finally, individual cells are seg-
mented using watershed. Initial binary segmentation can be
obtained using any method that can separate cells from back-
ground. We use either graph-cuts [12] or thresholding de-
pending on the sequence.

To split cell clusters in binary segmented image, we use
N generalized Laplacian of Gaussian (gLOG) filter banks
[13] covering common cell sizes and aspect ratios. All filters
within a filter bank are rotated version of a base filter hav-
ing scale (o, 0,) and aspect ratio (Z—':). Each filter bank is
applied to the image and response imJalge R,, is obtained by
summing the log scale normalized [13] response R,,,, of all
M filters within it using:

M
Ry =) (14log(oz)*)(1+log(oy)*) Rum (1)

m=1

where « is the parameter which controls the eccentricities of
the detected blobs [13]. This normalization is necessary to
ensure that responses of all filter banks have same scale and
can be compared. Local peaks, above a threshold, in the re-
sponse image R,, are detected and used as cell markers by
watershed transform to split cell clusters and obtain individ-
ual cell segmentations. This results in N sets of cell segmenta-
tion proposals, which contain many duplicate cell proposals.
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Fig. 2: a) Segmentation proposal tree for a connected region
from binary segmented image. b) Super-node structure. c)
Simplified graph structure (Mitosis and Apoptosis edges are
not shown).

Non-maxima suppression is used to remove these duplicate
proposals. Remaining proposals are arranged in hierarchical
proposal trees as shown in Fig. 2a (Fig. 2b and 2c will be ex-
plained in Section 4), where proposals along a branch conflict
with each other and only one proposal can be selected from
each branch during inference.

4. GRAPHICAL MODEL

In the second stage, our method creates a directed acyclic
graph for the whole sequence which includes links represent-
ing all probabilities necessary for selecting good cell propos-
als and their correct associations between frames.

4.1. Graph Structure

Fig. 2¢ shows a simplified graph structure for a sequence with
three frames and six cell proposals. Each cell track, starting
at tssqrt and ending at ., 4, in this graph begins from Start
node, passes through an entry node E:_,, ,, some cell pro-
posal super-nodes, P ;, an exit node L;_, and terminates at
End node. A high gating threshold is used to restrict con-
nections between proposals in adjacent frames which are too
far away from each other. In many cell tracking applications,
cells frequently enter or leave the imaged region; we use entry
nodes (E;) and exit nodes (L;) to allow new tracks to begin
and end respectively at each time instant ¢ for these cells.



4.2. Super Node Structure

Fig. 2b shows the structure of a super-node, P; ;, which rep-
resents each cell segmentation proposal. It consists of five
nodes, so that four of these nodes, D;; (move), M;; (mi-
tosis), A¢; (apoptosis) and V; ; (leave), represent the events
that the cell can go through and fifth node, F} ;, connects this
proposal to entry node F; and proposals in previous frames.

4.3. Model Probabilities

The green edges in Fig. 2b connecting F; ; with event nodes
represent the probability of that proposal being a cell. This
probability is computed using an SVM classifier which is fed
basic shape and appearance features. These features include
area, perimeter, solidity, eccentricity, extent, filter scale, hu
moments, mean and standard deviation of the gl.LOG response
and the intensity image. It ensures that proposals which re-
semble actual cells are more likely to be selected over pro-
posals with atypical shape or appearance.

Without specific intrinsic or external guidance cells fre-
quently and abruptly change their movement speed and direc-
tion so our method uses Brownian motion model. The prob-
abilities of blue edges in Fig. 2b and Fig. 2c connecting pro-
posals in adjacent frames are computed using the distance be-
tween centroids of both proposals and output of SVM classi-
fier which uses above mentioned features from both proposals
in addition to their overlap to predict if they belong to same
cell. Our model handles missed detections by allowing edges,
which have an additional cost term depending on the number
of skipped frames, between proposals in non-adjacent frames.

Our method assumes that when a cell goes through mito-
sis, it results in appearance of two daughter cells very close
to the parent’s centroid in next frame. It uses the overlap
of daughter proposal pair with parent proposal, distances be-
tween them and above mentioned features from all three pro-
posals to compute the probability of a parent proposal divid-
ing into the daughter proposal pair. It then connects, using
red edges in Fig. 2b, the parent proposal P, ; with the daugh-
ter proposal pair, P, ; and Py 3, which has the highest
mitosis probability among all daughter proposal pairs.

Cell disappearance also poses some challenges as any fail-
ure to detect disappearance of a cell due to either cell death
or it leaving the imaged region can cause its track to con-
tinue through a nearby proposal, which can interfere with the
paths of future tracks. Since in normal cell culture conditions
cell death is a relatively rare event and there are usually not
enough training samples, our method uses maximum overlap
of a proposal with proposals in next frame to compute this
probability, brown edges in Fig. 2b. In a sequence with high
death rate, shape and appearance features can be used to learn
this probability.

Cells frequently enter and leave the field of view at the im-
age boundaries and from axial direction. In some sequences,
cells entering/leaving the imaged region from axial direction

often have smaller size and lower intensity compared with
other cells. Our method uses a proposal’s size, intensity and
distance from nearest image border to compute its probability
of entering/leaving the imaged region, pink/orange edges in
Fig. 2b and Fig. 2c.

5. GREEDY APPROXIMATE INFERENCE

The edges, e, in the directed acyclic graph represent the prob-
ability, Pr(e), of different cellular events (move, mitosis,
death, entering, leaving) which each cell proposal can go
through. Each path, k, through this graph has a cost, C,
which is the negative logarithm of the probability of the cell
track that goes through the proposals and transitions (cell
events) traversed by the set of edges, S, in that path.

Cr = Z —log(Pr(e)) (2)

ecS

Our method tries to cover all proposals with cell tracks so that
the combined cost of all K tracks is minimized.

K
cost = min ch 3)

k=1

Globally optimal solution of (3) can be found using Integer
Linear Programming [8, 9, 10] but it can be computationally
expensive and may not always be feasible for very dense and
long sequences. So we use a greedy iterative shortest path al-
gorithm for performing inference on this graph. Our method
uses Dijkstra’s algorithm to iteratively find the lowest cost
path S from Start node to End node in this directed graph
passing through a set of cell proposals Ps. Then, it removes
all proposals which lie along the branches containing any pro-
posal in Pg and creates swap nodes [4], which allow future
tracks to make modifications to previously found tracks.

The first track found by our greedy method is globally
optimal since all possible proposals and transitions are con-
sidered. However, since there is no way to recover deleted
proposals, the subsequent tracks are no longer globally opti-
mal. Nevertheless, the sub-optimal paths still consider a very
large number of proposals and transitions and result in selec-
tion of very good tracks.

If a track passes through a mitosis node, M, ;, of a pro-
posal, indicating that a mitosis event has taken place, then
the next track is initiated from the second daughter cell node,
Fyy1,5, instead of Start node. If a track jumps over few
frames, our method uses linear motion to predict the loca-
tions of that cell in skipped frames and places the last detected
cell at those locations. Once all the proposals have been ex-
hausted, search is terminated.

6. RESULTS

We evaluate our proposed method on three fluorescence mi-
croscopy sequences, Fluo-N2DH-GOWT1-01, Fluo-N2DH-



Table 1: Tracking and segmentation results for our method,
KTH [4] and LEID [2].

| | TRA | SEG | TP | FN | FP | NS | EA | EC | ED2

GOWT1 Ours | 0.9628 | 0.7678 | 2006 | 46 | 222 | 11 81 17 1
KTH | 0.9348 | 0.5834 | 1927 | 125 | 81 0 137 | 1 0
LEID | 0.9462 | 0.6849 | 1955 | 97 | 147 | 0O 100 | O 0

HeLa Ours | 0.9782 | 0.7707 | 8560 | 79 | 601 | 15 | 364 | 90 | 58
KTH | 0.9775 | 0.8018 | 8496 | 143 | 318 | 17 | 222 | 38 | 27
LEID | 0.9082 | 0.7568 | 7960 | 679 | 636 | 109 | 727 | 35 15

SIM+ Ours | 0.9878 | 0.8528 | 2586 | 21 | 48 4 43 | 23 1
KTH | 0.9752 | 0.8377 | 2554 | 53 | 66 1 83 | 16 5

(c) KTH [4]

(d) LEID [2]

Fig. 3: Segmentation results for a frame (segmented cells are
labeled using 7 repeating colors). Contrast has been enhanced
in (a) to show dark cells. e in (a) mark the centroids of ground
truth cells. FN, , and Over-segmentation errors are
highlighted in (b), (c) and (d).

HeLa-01 and Fluo-N2DH-SIM+-01, from ISBI 2015 Cell
Tracking Challenge. We obtain initial segmentation for Fluo-
N2DH-SIM+-01 using thresholding, and for other two using
graph cuts [12]. We use the tracking performance measure
(TRA) and Jaccard similarity index (SEG) used in the ISBI
2015 Cell Tracking Challenge for comparison. TRA is de-
signed to mirror the manual effort needed to correct the errors
in the tracks generated by tracking algorithms by differently
penalizing following errors: FN (False Negatives), FP (False
Positives), NS (Under-segmentations), EA (Missing edges),
EC (Miss-labeled edges) and ED2 (Extra edges). Both TRA
and SEG values range between 0 and 1 (perfect result), mak-
ing comparison easier.

We compare our method with two methods from ISBI
2013 Cell tracking challenge [3]. KTH method [4] creates
a graph by connecting cell segmentations in adjacent frames
and then iteratively finds lowest cost paths in this graph us-
ing Viterbi algorithm. It had the best overall performance

in ISBI 2013 Cell Tracking Challenge. LEID method [2]
is based on model (level sets) evolution approach. We have
used the parameters provided with these methods for HeLa
and GOWT1 sequences. Fluo-N2DH-SIM+ is a new dataset
introduced in 2014 and the parameters for it are not provided
with these methods, so we only compare our method with the
KTH method and have tuned its parameters ourselves.

Table 1 lists the results for all three methods. Our method
has better tracking score, higher TRA, than both these meth-
ods for all three sequences. It is able to detect more cells ac-
curately (higher TP). For HeLa-01, even though our method
detects more cells, it has lower SEG score due to worse pixel
level segmentation. One shortcoming of our method is the
higher false positive rate for most sequences, this is due to
the fact that we try to include enough proposals so that recall
among proposals would be high. Including too many propos-
als sometimes also leads to a higher number of errors in the
links connecting cells in adjacent frames. We tried stronger
pruning in the proposal generation stage to reduce the number
of proposals, which led to lower number of FP, EA, EC and
ED errors but increased FN and NS errors and had a lower
overall tracking score. Using a better proposal generation
method or cell classifier should alleviate this issue.

Fig. 3 shows one frame from the results produced by all
methods; errors are highlighted using colored boxes. All
methods suffer from false negative errors (red boxes), but our
method has only one such error compared with five for KTH
and six for LEID. Our method and LEID fail to split two cells
which are in contact with each other leading to one under-
segmentation error (green box). All methods suffer from few
false positive errors especially near the image border as cells
which are within 25 pixel wide band around image border are
not marked in the ground truth.

7. CONCLUSION

We have presented a novel joint cell segmentation and track-
ing method, which utilizes cell segmentation proposals to
create a directed acyclic graph and then iteratively finds the
shortest path in this graph, which provides segmentations,
tracks and events for individual cells. Experimental results
show that our method achieves better performance than state
of the art cell tracking methods. They also indicate that
even when making greedy joint segmentation and tracking
decisions, it improves performance compared with when
segmentation and tracking are performed separately.
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