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Abstract—This paper is concerned with inertial-sensor-based
tracking of the gravitation direction in mobile devices such as
smartphones. Although this tracking problem is a classical one,
choosing a good state-space for this problem is not entirely
trivial. Even though for many other orientation related tasks
a quaternion-based representation tends to work well, for gravi-
tation tracking their use is not always advisable. In this paper we
present a convenient linear quaternion-free state-space model for
gravitation tracking. We also discuss the efficient implementation
of the Kalman filter and smoother for the model. Furthermore,
we propose an adaption mechanism for the Kalman filter which
is able to filter out shot-noises similarly as has been proposed
in context of adaptive and robust Kalman filtering. We compare
the proposed approach to other approaches using measurement
data collected with a smartphone.

Keywords—Gravitation tracking; Kalman filtering; Kalman
smoothing; Adaptive filtering; Smartphone

I. INTRODUCTION

The accurate tracking of gravitation direction is an impor-
tant task in many smartphone-based applications. For example,
in pedestrian dead reckoning (PDR) systems [1], magnetic field
based positioning systems [2]–[4] as well as in basic function-
ality of smartphones such as in determining the orientation
of the screen. The task of gravitation tracking is a common
and well studied task, and it is related to classical inertial
navigation technology (e.g., [5], [6]). It is also clear that the
Kalman filter [7]–[9]—or more precisely a Kalman filter—is
a suitable tool for this task. However, it is not that clear from
current literature what is the best state-space for the Kalman
filter and hence what does the practical algorithm actually look
like—obviously, a Kalman filter without a specified state-space
model is not a practical algorithm at all.

The aim of this article is to present a convenient linear
state-space formulation of the gravitation tracking task, as
opposed to non-linear state-space model which results from
many quaternion-based approaches for orientation tracking
(e.g. [5], [6], [10]–[12]). The advantage of this formulation
is that it is computationally light and it allows for exact
and light Kalman/Rauch–Tung–Striebel smoother (e.g., [9])
implementation on top of the Kalman filter. We also propose
an adaptation mechanism for the Kalman filter which is able
to filter out shot-noises in a bit similar manner as has been
proposed in context of adaptive and robust Kalman filtering
[13], [14]. We also compare the proposed approach to other
approaches using measurement data collected with a smart-
phone.
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Fig. 1. Illustration of measurement of the gravitation by smartphone ac-
celerometers. Although the measured gravitation acceleration in world (global)
coordinates gW is constant pointing towards the zW -direction (i.e., up) in the
world coordinate system (xW , yW , zW ), the direction of the locally measured
gravitation gL is depends on the orientation of the local coordinate system
(xL, yL, zL) with respect to the world coordinate system. In addition to the
gravitation, the acceleration sensors also measure the movement-generated
accelerations of the smartphone.

II. QUATERNION-FREE REPRESENTATION OF
ORIENTATION

A. How Sensors See Gravitation

Assume that both the acceleration sensor and gyroscope
are placed in the same position in the smartphone such that
they measure the acceleration and angular velocity in the
smartphone-local coordinate system (denoted with subscript
L), which is separate from the world coordinate system (de-
noted with subscript W ). The actual measurement returned by
the acceration sensor is the sum of the gravitation and the local
accelerations as follows:

aM (t) = gL(t) + aL(t). (1)

We are mainly interested in the gravitation and we believe that
it, on average, is the dominant component in the acceleration
sensor measurement. Therefore we model the local gravitations
as white random perturbations on the gravitation measurement.
Thus our basic model assumption is that the acceleration sensor
measures the local gravitation plus a Gaussian white noise
component ε(t):

aM (t) = gL(t) + ε(t). (2)
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Although the gravitation in the world coordinate system gW

is constant, the term gL(t) above is not contant, because how
gravitation shows in the local coordinate system depends on
the device orientation (see Fig. 1). However, at each time t
there exists a coordinate transformation φ(·, t) which converts
the world-gravitation into locally measured gravitation:

gL(t) = φ(gW , t). (3)

The coordinate transformation also defines the orientation of
the smartphone with respect to the global gravitation.

B. Quaternion Representation

One classical way to define orientation of the device is via
a unit quaternion

q =

(
cos(θ/2)
u sin(θ/2)

)
, (4)

which transforms a local vector such gL to the corresponding
world vector gW via the quaternion rotation

gW = qgL q∗ (5)

that essentially rotates gL around vector u for angle θ.
Above products are quaternion products and ()∗ denotes the
quaternion conjugate (see, e.g., [5], [6], [11]). The inverse
transformation is given as

gL = q∗ gW q , φ(gW , t). (6)

which thus defines the coordinate transformation in (3) where
the time-dependence comes from the time-dependence of the
quaternion. Thus our model has the form

aM (t) = q∗(t)gW q(t) + ε(t), (7)

where aM is the acceleration sensor reading which is a noisy
measurement of gravitation in the smartphone coordinate sys-
tem, and gW = (0 0 g)

T with g ≈ 9.81 m/s2 is the global
gravitation. We are now interested in the rotation quaternion
defining the orientation of the device. For that we need to have
an equation for the time-behavior of the quaternion.

The time-dependence of the quaternion can be expressed
as a differential equation driven by the local angular velocity
(e.g. [6], [11])

dq(t)

dt
=

1

2
q(t)ωL(t). (8)

Because the gyroscope measurement ωM (t) is only a noisy
version of ωL(t), as function of the gyroscope measurement
it is advisable to add a noise process to the equation leading
to

dq(t)

dt
=

1

2
q(t)ωM (t) + wq(t). (9)

Equations (7) and (9) define a state-space model which is
compatible with extended Kalman filters [7], [8] as well as
various other non-linear Kalman filters (e.g. [9], [15]–[17])—
but there are certain practical problems in this formulation,
which we discuss in the next section.

C. Disadvantages of Quaternion Representation

The fundamental problem in the quaternion-based state-
space formulation above is that it is not observable. This
is because we can always replace the quaternion q(t) with
another quaternion qgW

(t)q(t), where qgW
(t) represents ro-

tation around the global gravitation gW . The rotation angle of
qgW

(t) can be arbitrary without affecting the output of the
model and hence the system is not observable. This problem
would be automatically solved [11] if we had an independent
orientation measurement, for example, based on the magnetic
field, but here we assume that it is not available.

Another problem with the quaternion representation is that
even if it was observable, the requirement of the quaternion to
have a unit length often causes numerical problems in the non-
linear Kalman filter. These numerical problems are due to null
eigenvalues caused by the forced quaternion normalizations
after the process noise and estimation errors distract the length
of the quaternion away from unity.

It is, however, possible to derive a stable tracking algorithm
for the quaternion representation by reformulating the problem
as stochastic gradient descent as is done in Madgwick’s algo-
rithm [10]. In that approach the non-observability of the model
does not matter, because the non-observable rotation is simply
left as arbitrary. However, this is not (directly) possible in non-
linear Kalman filter kind of approaches, because the covariance
of the unobservable subspace grows without a bound which
causes the filter to eventually diverge. Although it is possible
to fix this problem by introducing pseudo-measurements, we
take another route of getting rid of the quaternions altogether.

D. Quaternion-Free Representation

The quaternion-free representation can be derived by de-
riving a differential equation directly for the gravitation in the
local coordinates (cf. [11] page 48). The equation for the local
gravitation is given as

gL(t) = q∗(t)gW q(t). (10)

Because the global gravitation is constant, by differentiating
both sides and using (8) we get
d

dt
gL(t) =

d

dt
[q∗(t)gW q(t)]

=

(
dq∗(t)

dt

)
gW q(t) + q∗(t)gW

(
dq(t)

dt

)
=

(
−1

2
ωL(t)q∗(t)

)
gW q(t)

+ q∗(t)gW

(
1

2
q(t)ωL(t)

)
= −1

2
ωL(t)gL +

1

2
gL ωL(t)

= −ωL(t)× gL.

(11)

If we further put an additional noise process into the differ-
ential equation above while we replace ωL with its noisy
gyroscope version ωM we get the following quaternion-free
equations

dgL(t)

dt
= −ωM (t)× gL(t) + wg(t),

aM (t) = gL(t) + ε(t).
(12)
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where wg(t) is a white noise process. These equations contain
the local gravitation direction as the state instead of the ori-
entation quaternions and therefore they are completely linear
in the state. Because the full quaternion no longer enters the
state, the previous rotation ambiguity is eliminated and the
above system is fully observable.

III. ADAPTIVE KALMAN FILTER AND SMOOTHER

A. Kalman Filter For Accelerations and Gyroscopes

To find the connection to state-space modeling and Kalman
filtering [8], [9], [15], let us introduce the following notation.
Note that in practice, we get measurements from the accelera-
tion sensors at certain discrete instants of time t1, t2, t3, . . .. We
assume that we are actually getting point-measurements of the
accelerations, plus some noise. For the purposes of modeling,
we also assume that the gyroscope signals are piece-wise
constant on the intervals [tk−1, tk) (called zeroth-order-hold,
ZOH)—which is an assumption that can be relaxed later, but
should work fine with moderately high sampling frequencies.
We will write

x(t) , gL(t),

Fk , −[ωM (tk)]×,

yk , aM (tk).

(13)

where [ω]× denotes the cross product matrix such that
[ω]× v = ω × v. We now model the noise process wg(t)
as a Gaussian white noise with a spectral density Qc = qc I
and the measurement noise as a white Gaussian noise sequence
εk ∼ N(0, σ2 I). Hence our model takes the form

dx

dt
= Fk x + w,

yk = x(tk) + εk,
(14)

which is a special case of a continuous-discrete Kalman
filtering problem [15]. We can now convert this model into
an equivalent discrete-time (Kalman filtering) model (see, e.g.,
[15]) as

xk = Ak xk−1 + qk−1,

yk = xk + εk,
(15)

where qk−1 ∼ N(0,Qk) and

∆tk = tk − tk−1,

Ak = eFk ∆tk ,

Qk =

∫ tk

tk−1

eFk (tk−s) Qc

(
eFk (tk−s)

)T
ds.

(16)

Using the Rodrigues’ rotation formula and recalling that ro-
tation matrices satisfy CCT = I, we now get the following
explicit expressions:

Ak = e−[ωL(tk) ∆tk]×

= I + sin(θk)
[−ωL(tk)]×
|ωL(tk)|

+ (1− cos(θk))
[−ωL(tk)]2×
|ωL(tk)|2

,

Qk = qc

∫ tk

tk−1

e−[ωL(tk) (tk−s)]×
(
e−[ωL(tk) (tk−s)]×

)T
ds

= qc ∆tk I,
(17)

where θk = |ωL(tk)|∆tk. Thus we can estimate the local
gravitation vectors gL(tk) , xk by running a Kalman filter
and possibly a smoother to the model (15) with the matrices
defined in (17).

B. Adaptive Gating of High Accelerations

The state-space formulation in the previous sections is
based on the assumption that the accelerometers measure
the gravitation plus possibly some small noise. In practice,
however, the accelerations of the device can be quite high
compared to gravitation. What happens is that when high
accelerations are present, the gravitation direction changes a
bit towards the external acceleration. Thus the device seems
to ”lean” towards the acceleration when moved rapidly.

One way to diminish the effect above is to assume that
the measurement noise of the model is much higher when
there are other accelerations affecting the measurements. What
happens is that during periods of high external accelerations,
we trust gyro much more (or even completely). The problem
then reduces to determining the periods of high acceleration
and deciding on a stable logic for increasing the measurement
noise.

In the mechanism used here we base the logic onto the
following principles:

1) The high accelerations occur as ”peaks” which cor-
respond to a Gaussian noise with high variances.

2) Given that there have been no peaks recently, a single
peak occurs according to a Poisson process with a
certain mean/variance parameter (which is implicit
here).

3) Given that there was a single peak, subsequent peaks
are likely to occur with a probability which vanishes
exponentially in time.

The above assumptions can be approximately mechanized with
the following principles.

1) We assume that the measurement noise has the form

Σ = (σ2 + α(t)) I, (18)

where σ2 is a fixed base-level noise and α(t) ≥ 0 is
the peak related part.

2) At each measurement, we do a test whether

νT
k S−1

k νk > γ, (19)

where νk is the innovation, Sk is the innovation
covariance and γ is a fixed parameter (we use γ = 4).
This is actually a statistical test to determine if the
measurement was an outlier, that is, a peak.

3) If it happens that the above test is positive, we set

α(tk)← α+, (20)

where α+ is some fixed value (e.g., 102).
4) The time-behavior of α(t) is assumed to follow the

differential equation

dα(t)

dt
= −(1/τ)α(t), (21)

where τ is a relaxation constant (e.g., 1/2).
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Input: Static parameters σ2, qc, α+, γ, τ , α0, m0, P0; times
and measurements tk,yk, k = 1, . . . , n.

Output: Filter means and covariances mk,Pk and model
matrices Ak,Qk for k = 1, . . . , n.

1: for k = 1, . . . , n do
2: Compute Ak and Qk via (17).

3: m−
k ← Ak mk−1 . Kalman filter prediction

4: P−
k ← Ak Pk−1 A

T
k + Qk

5: αk ← exp(−∆tk/τ)αk−1 . Noise relaxation

6: νk ← yk −m−
k . Innovation mean and covariance

7: Σk ← (σ2 + αk) I
8: Sk ← P−

k + Σk

9: if νT
k S−1

k νk > γ then . Outlier detection
10: αk ← α+ . Increased noise
11: Σk ← (σ2 + αk) I
12: Sk ← P−

k + Σk . New innovation covariance
13: end if

14: Kk ← P−
k S−1

k . Kalman filter update
15: mk ←m−

k + Kk νk

16: Pk ← P−
k −Kk Sk K

T
k

17: end for

Fig. 2. Pseudo-code for the adaptive Kalman filter (AKF) algorithm. Note
that a non-adaptive Kalman filter (KF) can be obtained by setting α0 = 0
and γ =∞.
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Fig. 3. Simple test of the effect of tapping the smartphone to the variance
adaptation. Each tap causes a noise peak which then triggers the adaptation
which increases the noise level. The noise returns to the original level
exponentially.

The resulting adaptive filtering algorithm is shown in
Fig. 2. Fig. 3 illustrates the operation of the adaptation al-
gorithm in a scenario, where we tapped the smartphone screen
such that it causes a significant acceleration peak.

Input: Filter means and covariances mk,Pk and model ma-
trices Ak,Qk for k = 1, . . . , n.

Output: Smoother means and covariances ms
k,P

s
k for k =

1, . . . , n.

1: ms
n ←mn . Initialize

2: Ps
n ← Pn

3: for k = n− 1, . . . , 1 do
4: m−

k+1 ← Ak+1 mk . RTS smoother recursion
5: P−

k+1 ← Ak+1 Pk A
T
k+1 + Qk+1

6: Gk ← Pk A
T
k+1 [P−

k+1]−1

7: ms
k ←mk + Gk [ms

k+1 −m−
k+1]

8: Ps
k ← Pk + Gk [Ps

k+1 −P−
k+1]GT

k
9: end for

Fig. 4. Pseudo-code for the Kalman smoother (both KS and AKS) algorithm.

C. Kalman Smoother

The adaptive Kalman filter algorithm introduced above has
the property that it only uses measurements up to current
time step for forming its estimate. This is indeed the only
possibility in real-time operation, but sometimes it is possible
to collect some data and then do the estimation using all
the data. The algorithms for conditioning the estimate on all
the data retrospectively are often called smoothing algorithms
(see, e.g., [9]). It is expected that conditioning on all the data
with a smoother leads to a better estimate than what the filter
produces.

A simple implementation of a smoothing algorithm is
shown in Fig. 4. The smoother is actually a Rauch–Tung–
Striebel (RTS) type of linear smoother which has the property
that the smoothing solution is independent of the measurement
noise covariances and hence in that sense independent of
the adaptation mechanism. Therefore the smoothing algorithm
is identical to a smoother for the case of no adaptation at
all. However, strictly speaking, the smoothing algorithm is
not optimal for the case with adaptation, because we should
actually condition the noise adaptation on the whole data as
well, whereas now it only uses the previous measurements in
the same way as the filter does. However, the approximate
smoother can still be expected to improve the filter estimates.

It would also be possible to replace the full smoothing
recursion with the fixed-lag smoother (see, e.g., [9]) which
uses only small horizon of future measurements to form its
estimate. The disadvantage is that this introduces a delay to
the estimates. However, if such a delay is tolerated, fixed-lag
smoothing can provide almost as good estimates as the full
smoothing solution in almost real time.

IV. EXTENSIONS AND DISCUSSION

A. Asyncronous Sensors

Although in the previous section the model was formulated
by assuming that the gyroscope and acceleration measurements
are obtained at same time instants, it is not actually required.
We can well think that for the most steps k, we only have
gyroscope measurement—then in the Kalman filter we only
do Kalman filter prediction, no update at all. When we
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have an acceleration sensor measurement, we should then do
Kalman filter prediction exactly to the time when we have
the measurement. This can be done by extending the previous
gyroscope measurement up to the measurement time and doing
Kalman filter prediction for that. On the next prediction step
we then need to recall to shorten the time span of the next
gyroscope measurement accordingly.

B. Acceleration Sensor Bias Estimation

It would also be possible to estimate the acceleration sensor
biases jointly with the gravitation. This can be implemented
by introducing an unknown bias vector into the measurement
model:

aM (t) = gL(t) + b(t) + ε(t). (22)

We can then augment the bias into the state together with the
local gravitation and assume that it has the dynamic model

db

dt
= wb(t), (23)

where wb(t) is a white noise process with a “small” (pos-
sibly zero) spectral density. The adaptive Kalman filters and
smoothers can be then implemented in an analogous manner
to Section III.

C. Low Gyroscope Sampling Rates

When the sampling rates of the sensors are small, the
zeroth-order-hold (ZOH) approximation used in the gyroscope
measurements can cause problems. Fortunately, it is possible
to derive the discretization equations for the first-order-hold
(FOH) or even higher order approximations which essentially
approximate the continuous gyroscope measurement signal
by using linear or polynomial interpolation. However, even
simpler approach is to simply oversample the gyroscope mea-
surements using a suitable interpolation method. This approach
requires no changes to the algorithms, only an additional
resampling step in front of them.

D. Algorithm Stability

One advantage of the present adaptive Kalman filter formu-
lation is that it can easily be proven to be asymptotically stable.
The intuition behind this is that if we fix the measurement
sequence, the measurement noises always remain uniformly
bounded from below and above. Furthermore, because the
model is uniformly controllable and observable, the Theo-
rem 7.4 of [7] shows that the filter is asymptotically stable.
Because the smoother is just the ordinary RTS smoother, the
classical results imply that it is asymptotically stable as well.

It is worth noting that this kind of general stability results
are not available for non-linear Kalman filters and generally
one cannot ensure stability of such a non-linear filter with any
practically sensible parameter values (see, e.g., [18]). However,
it is sometimes possible to prove the stability of specific non-
linear filters, but this needs to be done for each case separately.
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Fig. 5. Z-component of gravitation in the 90-degree rotation test.

V. EXPERIMENTAL RESULTS

We tested the proposed algorithms against the Madg-
wick’s algorithm [10], which is a well-known quaternion-based
algorithm for tracking the gravitation direction. The tested
algorithms are labeled as follows:

• MAD: The Madgwick’s algorithm.

• KF: Kalman filter on the proposed state-space model
without adaptive gating.

• AKF: Kalman filter on the proposed state-space model
with adaptive gating.

• KS: Kalman smoother on the proposed state-space
model without adaptive gating.

• AKS: Kalman smoother on the proposed state-space
model with adaptive gating.

A. 90-degree rotation test

In this experiment we first put the device on a table, then
we quickly rotated it 90 degrees around z-axis and 90-degrees
back. What we should see is that the measured gravitation
changes to another value for a while and then returns back to
its original value.

The Fig. 5 shows the estimates of the z-components of
gravitation for each method. It can be seen that the rotation
causes a huge discrepancy to the gravitation estimate for
Madgwick (MAD), and a significant discrepancy also for the
KF and KS. The adaptive algorithms in turn are able to track
the gravitation very well despite the fast turn.

Figs. 6 and 7 show the x- and y-components of the
gravitation estimate, which show that some of the gravitation
in MAD/KF/KS has “leaked” to these components. In practical
terms this means that there is a “leaning” effect in the estimates
meaning that the extra accelerations caused by the fast rotation
causes the gravitation to slightly turn sideways. This effect is
significantly smaller in AKF/AKS than in the other methods.

Fig. 8 shows the adaptive variance of the AKF and AKS
methods. Clearly the algorithm has identified the instants of
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the fast accelerations and reduced the effect of acceleration to
the estimates for a moment. As can be seen in the gravitation
estimates, this reduces the disturbance caused by the fast
rotations significantly.
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B. Multi-round rotation test

In this test we installed a smartphone to a balanced platform
which we could rotate while keeping the gravitation direction
constant. Fig. 9 shows the estimated gravitation direction from
each of the algorithms. It can be seen that the Madgwick
(MAD) algorithm has significant challenges in keeping up with
the gravitation as it has a significant bias. The Kalman filters
and smoothers do much better in this case—actually it might
be that the non-adaptive algorithms KF/KS do slightly better
than the adaptive algorithms AKF/AKS, because in this case
the adaptation might not actually be necessary. However, as
can be seen in Fig. 10 the rotation still triggers the adaptation.

VI. CONCLUSION

In this paper we have presented a convenient linear state-
space for Kalman and smoother based tracking of gravitation
direction in mobile devices such as smartphones. We have
also proposed an adaptation mechanism to cope with high
accelerations in the Kalman filtering. The experimental results
show that the Kalman filters and smoothers have a smaller
noise than the compared algorithm and the adaptation reduces
the leaning effect caused by accelerations during fast turns.
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[9] S. Särkkä, Bayesian filtering and smoothing. Cambridge University
Press, 2013.

[10] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of
IMU and MARG orientation using a gradient descent algorithm,” in
IEEE International Conference on Rehabilitation Robotics (ICORR),
2011, pp. 1–7.

[11] J. Hol, “Sensor fusion and calibration of inertial sensors, vision, ultra-
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[13] S. Särkkä and A. Nummenmaa, “Recursive noise adaptive Kalman
filtering by variational Bayesian approximations,” IEEE Transactions
on Automatic Control, vol. 54, no. 3, pp. 596–600, 2009.

[14] R. Piché, S. Särkkä, and J. Hartikainen, “Recursive outlier-robust
filtering and smoothing for nonlinear systems using the multivariate
Student-t distribution,” in Proceedings of IEEE International Workshop
on Machine Learning for Signal Processing (MLSP), 2012.
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