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Abstract

In this paper, we propose a multi-view stereo re-
construction method which creates a three-dimensional
point cloud of a scene from multiple calibrated im-
ages captured from different viewpoints. The method
is based on a prioritized match expansion technique,
which starts from a sparse set of seed points, and it-
eratively expands them into neighboring areas by us-
ing multiple expansion stages. Each seed point rep-
resents a surface patch and has a position and a sur-
face normal vector. The location and surface normal of
the seeds are optimized using a homography-based lo-
cal image alignment. The propagation of seeds is per-
formed in a prioritized order in which the most promis-
ing seeds are expanded first and removed from the list
of seeds. The first expansion stage proceeds until the
list of seeds is empty. In the following expansion stages,
the current reconstruction may be further expanded by
finding new seeds near the boundaries of the current
reconstruction. The prioritized expansion strategy al-
lows efficient generation of accurate point clouds and
our experiments show its benefits compared with non-
prioritized expansion. In addition, a comparison to
the widely used patch-based multi-view stereo software
(PMVS) shows that our method is significantly faster
and produces more accurate and complete reconstruc-
tions.

1 Introduction

Three-dimensional reconstruction of an object or a
scene from multiple photographs is a classical prob-
lem in computer vision. However, the problem is still
very topical and many approaches towards an auto-
mated model acquisition have been proposed by the re-
search community during recent years [1, 2, 3, 4]. Al-
though it is now possible to get accurate reconstructions
purely from images, the problem is still actively studied
and further improvements are being continuously pro-
posed [5, 6, 7].

To date, there are several approaches to scene model-
ing. For example, Microsoft Kinect provides depth im-
ages at a video frame rate by utilizing structured light
patters from infrared light source. However, Kinect
has limited range and can be used only indoors. Also,
one can make very accurate reconstructions using ad-
vanced laser scanner technology but such devices are
still quite expensive. Hence, passive image-based meth-
ods, which reconstruct objects and scenes from multiple
photographs using multi-view stereo techniques, have
retained their attractiveness. In particular, photographs
maintain the textures of surfaces and therefore results
of image-based modeling methods are suitable for ap-
plications such as virtual tourism and navigation, where
the color and texture are important parts of the model.

The development of image-based modeling and
multi-view stereo reconstruction methods [8, 9] has
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been intensive during the recent years. The methods
can be roughly categorized to three groups: (a) global
approaches which represent shapes on a dense volu-
metric grid [10, 11, 12, 13, 14], (b) depth map based
approaches, which generate a surface model by fusing
multiple depth maps [15, 16, 17, 18, 19, 20, 21, 22],
and (c) surface expansion methods [23, 24, 3, 25, 26]
which build a quasi-dense point cloud from a dense set
of matches. The global approaches based on a volu-
metric grid usually minimize a global cost function for
shapes, e.g. by finding a minimum cut on a graph which
represents a grid of voxels. The accuracy of models de-
pends on the density of the grid, and therefore, the com-
putational and memory costs of volumetric grids are
very high and they are not suitable for modeling large-
scale scenes, like cities. Instead, the depth map based
approaches and surface expansion methods are suitable
for modeling a wide variety of scenes. The depth map
based approaches first generate multiple depth maps
from a set of images and then fuse them into a com-
plete surface model. The methods based on surface ex-
pansion iteratively expand a sparse set of matches into
a point cloud. Both of these approaches can produce
good results [27, 4]. In fact, often the final model pro-
duced from a point cloud or depth maps is represented
using a triangle mesh, and there are specific methods
for converting point clouds and depth maps into meshes
[28, 29] and for refining the resulting meshes [27, 30, 4].

In this paper, we propose a multi-view stereo recon-
struction method based on surface expansion which it-
eratively expands a sparse set of initial matches into
a quasi-dense point cloud representing the surfaces of
the scene. Our work is inspired by the methods in
[31, 25, 3] and builds upon the techniques presented in
[32, 26]. While the algorithms in [31, 25, 32] use the
match propagation between two views, the method in
[26] utilizes three views. Adding more views makes the
matching more robust for repeating textures, and there-
fore, in this work, we do not constrain the number of
views that are matched simultaneously. A preliminary
conference version of our method was published in [33].
In this paper we give a detailed description of the algo-
rithm and a new experimental comparison between pri-
oritized and non-prioritized match expansion strategies.
In addition, we propose two extensions which were not
used in [33]: refinement of reconstructed points and
multi-stage expansion. Our experiments show that both
of these extensions are important as they improve both
the accuracy and completeness of reconstructions.

The input to our method is a set of images, the corre-
sponding camera projection matrices and a sparse set
of matched interest points called seeds. At first, the
seeds are ordered into a priority queue based on their

similarity score. Then the seeds are expanded from the
queue one by one so that the best seed is always ex-
panded first. In the expansion, the purpose is to find new
matches nearby the current seed and each new match
whose quality exceeds a threshold is put to the queue
and used as a seed in further iterations. The expansion
continues until the queue is empty. The vast majority of
the points of the final reconstruction are acquired during
the first expansion step. In order to fill the holes which
possibly remain after the first expansion step, we repeat
the propagation with a set of new seeds located near
holes or outer boundaries of the current reconstruction.
That is, we find matches which have unreconstructed
pixels nearby and use them as new seeds.

Compared to our preliminary conference version
[33], the two extensions, point refinement and multi-
stage expansion, have a significant positive impact on
results. That is, the refinement of points and the asso-
ciated surface normal vectors improves the accuracy of
reconstructions and makes the expansion less dependent
on the quality of seeds, and the multi-stage expansion is
able to fill unreconstructed areas that may remain after
the first expansion stage. Overall, we are able to make
more accurate and more complete reconstructions than
[33] but still maintain a good efficiency.

The rest of this paper is organized as follows: Sec-
tion 2 gives an overview of correspondence growing
methods. Section 3 describes the key elements of the
proposed algorithm. The experimental results are pre-
sented and discussed in Sections 4 and 5 and Section 6
concludes the paper.

2 Correspondence Growing

Correspondence growing, also known as match
propagation or match expansion, is a widely used ap-
proach for finding point correspondences between mul-
tiple images in multi-view stereo reconstruction meth-
ods [31, 25, 32, 23, 34, 3, 26]. In this work, we
use a similar greedy best-first match expansion as in
[31, 32, 26] but, instead of limiting to the case of two
[31, 25, 32, 35, 36] or three views [26], we extend the
method to the generic multi-view stereo setting with ar-
bitrary number of images. There are also other corre-
spondence growing methods that can process more than
three views simultaneously [23, 34, 3] but many of them
do not use prioritized expansion [23, 3]. Although the
principle of prioritized expansion has been used before
in [34], the apparently most successful and widely used
match expansion method [3] (PMVS) is non-prioritized.
According to the comparison in [34] the multi-view
stereo system based on [3] gave better performance with
standard benchmark datasets than [34]. However, this
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difference may be due to the expansion technique of
[34], which differs from ours and still contains repeated
expansion and filtering stages like [3], or other aspects
of the systems of [34] and [3] than matching (e.g. mesh-
ing). In fact, one of the key contributions of our work
is to show that with prioritized matching one can pro-
duce more accurate and complete point clouds than [3],
and also significantly faster. In addition, by compar-
ing prioritized and non-prioritized versions of the same
correspondence growing method we are able to verify
the impact and benefits of priority-ordered expansion.
To the best of our knowledge, our work is the first one
to show the significance of prioritized correspondence
growing in the generic multi-view stereo setting. Fur-
thermore, since the usefulness of [3] as a core algorithm
for large-scale reconstruction systems has been exten-
sively demonstrated, e.g.[27, 37], and is widely used,
also in recent work [38, 5], we believe that this finding
may have significant implications and our method has
potential to be widely useful as a more efficient alterna-
tive to [3].

The overall structure of our match expansion tech-
nique is somewhat similar to [31, 32, 26], but differ-
ent from [34], and therefore we briefly review the basic
propagation concept from [31, 32] in the following.

Generally, the propagation starts from a sparse set
of seeds between two images, Ia and Ib, and produces
a quasi-dense set of matches [31]. The seeds are a set
of (xa, xb) pairs, where xa and xb are corresponding
pixels in the two images. The seeds can be expanded
in arbitrary order or sequentially or in order which is
based on their quality measured by similarity of corre-
sponding image patches in the two images. The latter
approach, i.e. prioritized expansion based on quality,
performs often well because in that case inaccurate and
incorrect matches are less likely to prevent expansion
of correct matches, and therefore partial propagation is
usually not a problem. One commonly used similarity
measure is the Zero-Mean Normalized Cross Correla-
tion (ZNCC), which is calculated between two patches
of pixels around xa and xb. Also some consistency
measure is needed to prevent propagation into too uni-
form areas. Generally, the prioritized propagation pro-
ceeds by iterating the following steps [32]:

1. the seed (xa, xb) with the best ZNCC score is
taken from the list of seeds

2. new candidate matches are searched around the
spatial neighbourhood of the seed (xa, xb)

3. the candidate matches whose ZNCC score and
consistency measure exceed certain thresholds are
added to the final list of matches and to the list of
seeds.

Each pixel can be matched only once, and therefore, the
list of seeds becomes finally empty and the propagation
stops. Further, the resulting matches can be triangulated
to form a quasi-dense set of points in the 3-D space.

In two-view stereo case, the match expansion pro-
cess may often lead to incorrect correspondences hav-
ing high similarity due to repeating textures. Multi-view
stereo based approaches tackle these problems by calcu-
lating the similarity between several views [26, 33, 3].
In the following section we describe our multi-view
extension of the above two-view propagation strategy.
Since the details of the implementation have a signifi-
cant impact on both efficiency of the method and qual-
ity of reconstructions, the representation in the follow-
ing sections is relatively detailed including pseudocode
descriptions.

3 Algorithm

3.1 Overview

The proposed approach builds upon two-view and
three-view match propagation methods described in
[32, 26]. The method consists of two steps: an ini-
tial feature extraction and matching step and an iterative
match expansion step.

An overview of the method is presented in Figure
1 and in Algorithm 1. The additional lines, which de-
scribe extensions with respect to [33], have been under-
lined in Algorithm 1. The method first sets initial seeds
by matching points of interest between image pairs. The
seeds are represented as patches as is commonly done in
many stereo reconstruction methods. The data structure
for the seed points is shown in Table 1. After acquiring
the seeds, their quality is evaluated and they are stacked
into a priority queue Q according to their quality. The
quality is based on ZNCC score which is a relatively
fast measure and robust against illumination variations
[39]. The seeds are expanded from the queue to form a
quasi-dense point cloud that represents the surfaces of
the scene. The expansion proceeds in a prioritized man-
ner so that the most promising seed is expanded first.
Next, the method searches for unreconstructed areas in
the current reconstruction and generates a set of new
seeds which can be used to cover these regions. This
may help to fill some partially occluded regions. The
expansion step is iterated until all seeds are used and no
more empty regions are found.

3.2 Initial Seeds

The initial seeds are obtained by matching interest
points between each image pair of the dataset. In our
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Table 1. Data structure for multi-view seed
points

Variable Description

a, b Indices to the primary and secondary reference images

V
Vector of binary variables of the visibilities of the seed, i.e. if

Vi = 1 the seed is visible in view i

xa,xb Corresponding pixel coordinates in images Ia and Ib
X Coordinates of a point in 3D space

n Surface normal at X

s Total similarity score of a seed

sab Similarity score between between patches in images Ia and Ib

v
Minimun intensity variance of the patches around the seed in

all images where the seed is visible

vab Minimum intensity variance of patches in images Ia and Ib

experiments, we use Hessian-Affine regions [40] which
are matched using SIFT (Scale Invariant Feature Trans-
form) descriptors [41] but in general any affine covari-
ant region matching technique could be used. Hessian-
Affine detector is relatively fast and has been shown to
outperform several other region detectors [40]. How-
ever, e.g. ASIFT [42] could have been used as well.
The descriptor matching step (line 4 in Algorithm 1)
uses one-to-many matching method, i.e. a point in an
image may be matched with several points in another
image, which satisfy the epipolar constraint, i.e. whose
distance to the corresponding epipolar line is below a
certain threshold. In the following sections, the nota-
tion a.b points to the variable b in the structure a.

Now, given a pair of regions in views Ia and Ib and
local affine transformation between them, the region
centroids xa and xb are triangulated to get a point X in
3D space. The surface normal n at X can be computed
by triangulating two additional point correspondences
which can be easily synthesized given the correspond-

Initialize a priority 
queue Q with the 

seeds  

Propagate and 
remove the best 

seed from Q 

Add new 
matches to Q 

Is Q 
empty? 

no yes 

start 

stop 

Aqcuire 
initial seeds  

New seeds 
found? 

Get new 
seeds 

yes 

no 

Calculate 
similarity 
scores for 
the seeds 

Match expansion  
(function expand  in Alg.1) 

Figure 1. A simplified overview of the pro-
posed algorithm.

Table 2. Pseudocode description of the al-
gorithm illustrated in Figure 1. Function
expand at line 16 refers to Algorithm 2 in
Table 3.

Algorithm 1: Overview of the method

Input: images Ij , camera matrices Pj ,
thresholds εd, εe, t, tu, z, K

Output: list of pointsM, matching tables Jj
1 Initialize seed point list S = ∅
2 for each pair of views
3 Find affine covariant image regions
4 Match the regions using local image descriptors
5 Triangulate the matches and evaluate the surface normals
6 Append the triangulated matches to S
7 end for

8 InitializeM = ∅, Jj(p) = 0 for all j, p, where p means pixels
9 while S not empty
10 for each seed point s in S
11 for each view k where s is in the field of view
12 Compute pairwise similarity score sak and minimum

intensity variance vak between the reference view s.a and
the view k, i.e. [sak, vak]=sim(s, Is.a, Ik,Ps.a,Pk)

13 end for

14 Combine all pairwise scores sak to get the total score s.s

and set s.v = min(vak)

15 end for

16 Propagate the seeds in S, i.e
expand( S, εd, εe, t, tu, z, K,M, {Ij ,Pj ,Jj}∀j )

17 Get new seeds and initialize S with them
18 end while

ing local affine frames at xa and xb. These tentative
normal vectors are further refined during the propaga-
tion as described in Section 3.4. The local affine frames
are pixel patches around the seed matches. In the view
Ia the patch is a square and in the view Ib the patch
is an affine transformed version of that, depending on
the geometry between the views. The image pair from
which X is triangulated defines the reference views for
the seed (i.e. s.a and s.b for seed s). In addition, each
seed point s contains variables s, sab, v, vab, and V (cal-
culated at lines 10-15 in Algorithm 1). Here s is the total
quality score computed by combining pairwise similar-
ity scores between local image patches in the reference
view s.a and the other views, sab is the similarity score
between two image patches, v is the minimum intensity
variance of patches in all images where the seed is visi-
ble, vab is the minimum intensity variance of two image
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patches, and V is a vector of binary variables defining
the views where the seed is visible. The seed is marked
as visible in view k (i.e. Vk = 1) only if it is in the field
of view of view k and the pairwise correlation sak be-
tween the reference view a and the view k exceeds the
ZNCC threshold z. The seed is in the field of view if
s.X is in front of the camera and the angle between the
normal s.n and the ray between the camera centre and
s.X is less than 90◦. The variables are summarized in
Table 1. Seeds are represented globally as illustrated in
Figure 2.

The pairwise similarity score sak between the local
patches in the reference view s.a and view k is defined
with a similarity measure sim (line 12 in Algorithm 1),
which computes the ZNCC (Zero-mean Normalized
Cross Correlation) sak between the local patches in im-
ages Is.a and Ik as well as the minimum value vak of
intensity variances of the two patches. The patch P in
Is.a is a W pixels wide square, and the patch in Ik is
an affine transformed version of P . We use W = 7
in all our experiments. The affine transformation is de-
termined using camera matrices Pa,Pk and the surface
position and orientation at s, i.e. s.X and s.n. For get-
ting a total quality score for the seed, the 3-D point s.X
is projected to all other views where it is in the field
of view. Then, multiple pairwise correlations are cal-
culated between a patch in the reference view s.a and
patches in those views. The combination of the pair-
wise correlations sak is carried out with equation

s.s=
∑
k

max

(
0, 1− (sak − 1)2

(z − 1)2

)
, (1)

where z is a parameter with a given fixed value (the
same value is used also as a ZNCC threshold elsewhere
in Algorithms 1 and 2) [26]. That is, the total quality
of a seed depends on both the pairwise correlations and
the number of images where the correlations exceed the
threshold z.

Minimum intensity variance vab is used to prevent
the propagation from spreading in too uniform areas.
Using V , we are able to control the minimum number
of views where each match should be visible.

3.3 Match Expansion

An overview of the expansion process is illustrated
in Figure 2. Let s denote the current seed taken from the
priority queue of the initial seeds. First, the algorithm
finds a new candidate correspondence pair in the spatial
neighbourhood of the current seed in its reference views
(red crosses). Then the new match is triangulated to the
space to get the corresponding 3-D point (blue star) and
the surface normal. The normal is inherited from the

Table 3. Pseudocode algorithm of the
match expansion function called at line 16
in Algorithm 1 in Table 2.

Algorithm 2: Multi-view match expansion

Input:images Ij , camera matrices Pj , seed points S,
thresholds εd, εe, t, tu, z, K,
pointers to the list of pointsM and matching tables Jj

1 Initialize n = size(M)

2 Sort the seeds according to the scores s.s
3 Initialize priority queueQ with sorted seeds
4 whileQ not empty
5 Draw the seed q̂ ∈ Q with the best score q̂.s

6 Set a= q̂.a and b= q̂.b

7 if q̂.v > tu

8 Refine q̂.X and q̂.n, i.e. [q̂.X, q̂.n] = ref(q̂, Ia, Ib,Pa,Pb)

9 for each new match qi nearby q̂ which satisfies the
disparity limit εd and the epipolar constraint εe

10 Set qi.sab=−∞ and qi.Vj =0 for all j
11 if Ja(round(qi.xa))=0 & Jb(round(qi.xb))=0

12 [qi.sab,q
i.vab] = sim(qi, Ia, Ib,Pa,Pb)

13 end for

14 Sort matches qi according to the scores qi.sab

15 for each qi satisfying qi.sab≥z and qi.vab≥ t
16 Set n=n+ 1, qi.n= q̂.n, qi.a=a and qi.b=b

17 Set qi.Vj =1 for j={a, b}
18 Triangulate, qi.X=triang(qi.xa,qi.xb,Pa,Pb)

19 for each view k where qi.X is in the field of view
20 Project xk = Pk(q

i.X), set sak=−∞
21 if Jk(round(xk))=0

22 [sak, vak]=sim(qi, Ia, Ik,Pa,Pk)

23 if sak≥z
24 Set qi.Vk=1

25 end for

26 if sumj(qi.Vj)≥K
27 Combine pairwise scores sak to get qi.s and

set qi.v = min(qi.v, vak)

28 SetQ=Q∪{qi} andM=M∪{qi}
29 for views k such that qi.Vk=1

30 Set Jk(round(qi.xk))=n

31 end for

32 end for

33 end while

current seed. Finally, the point in the space is projected
to all other views where it can be visible (green plus
signs) and the quality of this new match is evaluated
among all those views including reference views. If the
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s.b 

s.n 

s.X 

s.x
a
 s.x

b
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a
 

C
b
 

Figure 2. Example of a seed and expan-
sion process in a set of views. A seed
consists of reference views s.a and s.b,
correspondence pair s.xa and s.xb, corre-
sponding point in 3D space s.X and sur-
face normal s.n. Ca and Cb are the view-
points of the reference views s.a and s.b,
respectively. The seed s is projected to
every dashed view where s.X is in the field
of view and its quality is evaluated among
all those views including reference views.
The expansion process is illustrated with
colored symbols (i.e. crosses, a star and
plus signs). See the text for details.

quality exceeds a threshold, the match is added to the
final reconstruction and to the priority queue to be used
as a seed in further iterations. The actual prioritized
match expansion phase begins at line 16 in Algorithm 1
with the function expand. The details of the expan-
sion function are presented in Algorithm 2 and they are
explained in the following.

As an input the function gets the images Ij and cor-
responding camera matrices Pj , the initial seeds S, the
thresholds εd, εe, t, tu, z and K and pointers to the list
of reconstructed points M and to the matching tables
Jj . The matching tables Jj are index matrices which
can be used to locate the particular 3-D point of a pixel
in the list of matches. The disparity threshold εd defines
an area of possible matches for a point inside the spa-
tial neighbourhood of the current seed [31]. Threshold
εe is the epipolar constraint, i.e. the maximum distance
between a point in one image and the epipolar line of a
corresponding point in another image, t is the threshold
for intensity variances preventing the propagation from
spreading in too uniform areas, tu is the threshold for
intensity variances for refinement, z limits the pairwise
ZNCC scores and K defines the minimum for the num-
ber of views where matches should be visible.

Starting from line 4 in Algorithm 2, the propagation
function expands the seeds in the priority queueQ. The
queue is initialized at line 3 and at the beginning of ev-
ery while loop iteration, the seed with the best score is
taken from the queue. At the end of each iteration, new
matches are added to the list of matchesM and to the
priority queue as seeds to be further expanded.

Every new match inherits the surface normal from
its parent seed. Therefore, before searching for new
candidate matches, the position and orientation of the
current seed in the 3D space are refined. The refine-
ment process is described in Section 3.4. Then, (lines
9-13) new candidate matches are searched in the spa-
tial neighbourhood of the current seed in the reference
views. The process is identical to [31, 32, 26, 33]. The
candidate matches whose similarity scores and mini-
mum variances exceed the thresholds z and t, respec-
tively, are then triangulated to 3D space and their simi-
larity is evaluated globally. In the global evaluation pro-
cess (lines 19-25), the triangulated 3D point is projected
to each view where it is in the field of view and the
pairwise similarity score between patches in the current
view and the reference view a is calculated. If the score
exceeds the threshold z, the seed is marked to s.V as
visible in that view. If a new seed is visible in at least
K views, the pairwise similarity scores, including the
score between reference views, are combined using (1)
and the seed is added to the list of pointsM and to the
priority queue Q and the matched pixels are marked as
reserved to Jj for those seeds where s is visible. The
expansion process continues as long as there are seeds
in the priority queue Q.

The vast majority of the reconstructed points is ac-
quired during the first expansion but, due to the fixed
reference views of seeds, some areas, which are not vis-
ible in the reference views due to occlusions, cannot be
reconstructed. However, in some cases these areas can
be visible in another pair of views. Therefore, at the
line 17 in Algorithm 1, new seeds are searched from the
current reconstruction and used as initial seeds S for
the next iteration. In the searching process, the match-
ing tables Jj are used to find matches which can be
further propagated. That is, if the ratio of empty pixels
in the pixel neighbourhood of a match is between 0.4
and 0.9 (value 1 means a totally empty region, which
do not contain possible seeds) in at least three images,
the match is added to the list of seeds so that the original
reference views of the match are replaced by new ones
from the set of views where the match is visible. The
while loop (lines 9-18 in Algorithm 1) is repeated until
no new seeds can be found at line 17. Figure 3 shows
how the point cloud evolves during the match expan-
sion phase. Surfaces which are seen in many images
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Figure 3. Evolution of the point cloud during the match expansion phase. From left to right:
first 50k points that were reconstructed, 200k points, 400k points and the final reconstruction
with 585785 points. Areas with highly varying texture are reconstructed first.

and which have rich texture are reconstructed first.

3.4 Match Refinement

Each seed drawn from the priority queue (line 5
in Algorithm 2) whose minimum variance exceeds the
threshold tu is refined (line 8 in Algorithm 2). The vari-
ance threshold for refining is necessary because seeds
inside too uniform areas, i.e. areas with low variance,
can not be refined very accurately. The function re-
fines the position and orientation of the seed point in
the 3D space. As illustrated in Figure 4, the refine-
ment is based on Lucas-Kanade image alignment pro-
cedure where a template patch, situated at q̂.xa in Ia,
is aligned into Ib so that the sum of squared difference
is minimized [43], i.e. we minimize E with respect to
∆p̂ =

(
∆p ∆λ1 ∆λ0

)T
:

E =
∑
x

[I(W(x;p+∆p))−(λ1+∆λ1)T(x)−(λ0+∆λ0)]2,

(2)
where T(x) is the template patch (see Fig. 4),
I(W(x;p+ ∆p)) is the image I warped onto the coor-
dinate frame of the template, W(x;p+∆p) denote the
set of parameterized warps, x contains the pixel coordi-
nates and p denotes the vector of warping parameters.
Variables λ0, λ1 are used to shift and scale the inten-
sity values of the template to minimize the influence of
intensity differences between the template and the im-
age. The algorithm assumes that an initial estimate of
p̂ =

(
p λ1 λ0

)T
is known and then solves the in-

crements ∆p̂ iteratively.
In our case, the warps are defined, as in [8], using the

homography

Hab = Kb(Rb − tbq̂.n
T /d)Ka

−1, (3)

which is parametrized by p = (q̂.nT , d)T , i.e. a world
plane situated at q̂.X and oriented perpendicular to q̂.n.

Figure 4. Match refinement based on im-
age alignment. The template patch (top
left) extracted from image a is aligned to
the image b (right) using a homography
Hab so that the sum of squared pixel val-
ues of the difference patch (bottom left) is
minimized.

That is, for the points X̂ on the plane q̂.nT X̂ + d = 0.
Other variables are camera internal and external pa-
rameters from camera matrices Pa = Ka[I|0] and
Pb = Kb[Rb|tb].

The expression in Eq. (2) can be approximated using
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Figure 5. Match refinement adjusts the
warping parameters p, which define a
plane in the space. After the refinement,
the position and the surface normal of
the seed q̂ are updated. The normal is
updated directly from the plane equation
and the new position is at the intersection
point between the ray r and the plane.

the first order Taylor expansion on I(W(x;p + ∆p)):

E ≈
∑

x[I(W(x;p)) +∇I∂W∂p ∆p

−λ1T(x)− λ0 −∆λ1T(x)−∆λ0]2

=
∑

x[I(W(x;p))− λ1T(x)− λ0

+
(
∇I∂W∂p −T(x) −1

)∆p
∆λ1
∆λ0

]2,

(4)
where ∇I is the gradient of image I evaluated at
W(x;p) and ∂W

∂p is the Jacobian of the warp. By mark-

ing
(
∇I∂W∂p −T(x) −1

)
= M(x) and setting the

derivative of E with respect to ∆p̂ to zero, we get the
increments for the next iteration, i.e.

∆p̂ = [−
∑

x M
T (x)M(x)]−1

×
∑

x M
T (x)[I(W(x;p))− λ1T(x)− λ0].

(5)
Then, before the next iteration, the parameters need

to be updated to p̂← p̂ + ∆p̂.
The number of needed refinement iterations may de-

pend on the quality of the initial estimate of p̂. How-
ever, in our experiments, the refinement was carried out
only once per match.

After refining, the position of the seed, i.e. q̂.X, is
updated so that new position is the intersection point of
the plane defined by p and the ray r defined by the cen-
ter of the reference camera q̂.a and the match position
q̂.xa in the corresponding image. The surface normal
q̂.n is updated directly from the normal of the refined
plane p. See the illustration in Figure 5.

4 Experiments

This section is divided into five subsections where
we (1) present an overview of the experiments, (2) test
the influence of the most critical parameters on accuracy
and exection time, (3) validate the importance of best-
first growing strategy, (4) compare the accuracy and (5)
computation time of our method with those of the pub-
licly available patch-based multi-view stereo software
(PMVS)1 [3].

4.1 Overview

The proposed method was tested against the publicly
available PMVS program [3] using publicly available
benchmark datasets Fountain-P11, Herz-Jesu-P8 and
Castle-P30 [2] and a simple dataset of a cube on a mo-
saic parquet floor. The datasets are presented in Table
4. The importance of the best-first growing strategy was
validated by comparing the results of two different ver-
sions of the proposed method: one using the best-first
expansion strategy and another using a non-prioritized
expansion strategy where seeds were expanded in the
order they were found.

Although the whole reconstruction pipeline from im-
ages to a watertight mesh is described in [3], only the
part which creates a point cloud from a set of images
is freely available online. Therefore, the comparisons
are made between point clouds instead of meshes. Fur-
ther, the evaluation in [2] is no longer available, and
therefore, the accuracy of the results were compared
by calculating depth maps both from the point clouds
and the ground truth meshes. The point clouds created
from castle-P30 dataset are evaluated only visually be-
cause the ground truth is not available 2. The relative
error tells how much the assigned depth of a pixel dif-
fers from the ground truth depth, i.e.:

error=
|dassigned − dgroundtruth|

dgroundtruth
. (6)

If multiple depth values were assigned to the same pixel
in the depth map, the depth with the smallest error was
chosen.

In addition to the quality of the reconstructions, we
also compared the execution times of the programs. All
experiments were carried out on the same computer
with Intel Xeon E5-2650 v2 @ 2.6GHz processor. The
processor has eight cores but programs used only a sin-
gle core.

All the parameters were fixed in the experiments.
The PMVS program was used with default parameters

1http://www.di.ens.fr/pmvs/
2The benchmark [2] is no longer available.
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Table 4. Datasets used in our experiments
Dataset Images Image size

Cube 17 644×429

Fountain-P11 11 3072×2048

Herz-Jesu-P8 8 3072×2048

Castle-P30 30 3072×2048

with the following exceptions: csize was fixed to value 1
so that the program tries to reconstruct a patch in every
pixel like our program does and CPU was fixed to value
1 to make the computation times comparable to our
approach. In our method, the parameters were W=7,
N=11, z=0.8, t=0.001, tu=0.05, εd=1, εe=1, K=3. In
addition, the size of the template patch in the refinement
stage was fixed to 29×29 pixels. The PMVS program
was also tested with the same ZNCC threshold (0.8) but
the default value (0.7) gave better results and was used
instead.

4.2 Parameter tests

Similarly to [3] and other patch-based matching
techniques, the main parameters affecting the resulting
point cloud are the ZNCC threshold z and the size of the
correlation window W . It is well-known that a higher
ZNCC threshold leads to less outliers but more sparse
point clouds and a larger window size may increase
density and robustness but also computational cost and
boundary artifacts at depth discontinuities. Other pa-
rameters of our method do not involve similar trade-offs
and can be easily set to fixed values that generally per-
form well. In order to find good default values for z and
W , we experimented with various choices. The results,
presented in Figure 6, were acquired by varying one pa-
rameter at a time and keeping the others constant. The
tests were carried out both with the proposed method
and PMVS [3] using the Herz-Jesu-P8 dataset. The
heights of the curves in the top subfigures show the pro-
portion of reconstructed pixels whose error with respect
to the ground truth depth map is less or equal than the
corresponding value on the x-axis [2]. The steeper the
curve is at the beginning, the more accurate the recon-
struction is. Further, the higher the value at the end, the
more pixels were reconstructed. Maximum occupancy
(100%) is the case where each pixel in every image has
been reconstructed, and therefore, it can not be reached
in practice. The jumps at the ends of the curves contain
all pixels whose error is greater than the largest value
on the x-axis.

The methods behave mostly similarly but with the
PMVS the execution time per point seems to decrease a

bit when using a bigger ZNCC threshold. In general, the
smaller the ZNCC threshold or bigger the ZNCC win-
dow the more points were reconstructed. On the other
hand, with smaller ZNCC thresholds the proportion of
inaccurate points is higher and with larger window sizes
the computation time per point increases. According to
these results, we decided to use values 0.8 and 7 as the
ZNCC threshold and the ZNCC window size, respec-
tively. Thus, all the parameters had the same fixed val-
ues in all of our experiments.

4.3 Best-first growing strategy

The importance of the prioritized matching principle
was tested by comparing the results of our method with
and without the best-first principle. The test was car-
ried out using the Cube dataset and, in addition to the
error measure described in Section 4.1, the accuracies
of the point clouds were also evaluated by calculating
the distances between the points and the nearest trian-
gles in the ground truth mesh. The results are presented
in Figure 7. In addition to [3] and the two versions of
the proposed method, the figure presents also the ac-
curacies of the point clouds produced by the baseline
method [33] and the baseline method with the multi-
stage expansion. Both subfigures show the importance
of the proposed extensions, and in addition, the impor-
tance of the best-first growing strategy. The curves in
the figure follow the same representation as the curves
in Figure 6 but the left subfigure uses absolute values
and errors are distances between points and the ground
truth mesh. Figure 8 illustrates the point clouds made
with the PMVS program and our program without and
with the prioritized matching. The execution times of
the different methods with the Cube dataset are listed in
Table 5.

The comparisons clearly show the importance of the
best-first strategy. Especially the left subfigure in Fig-
ure 7 shows that, compared with the point cloud created
with the proposed method, the point cloud produced
with non-prioritized expansion has somewhat less pre-
cise points and much more outliers i.e. points whose
error is equal or greater than 8 mm. Outliers can also be
observed from the point clouds in Figure 8. The inac-
curacies of the dot patterns are due to outliers above the
actual surface. From Table 5 we can see that the best-
first growing strategy also has an impact on the execu-
tions times. The method using the strategy is about 30%
faster with the cube dataset and 10% and 15% faster
with the Fountain and Herz-Jesu datasets, respectively.
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Figure 6. Influence of z (left) and W (right) on the accuracy of point clouds (top) and the per-
formance of the method (bottom) tested with Herz-Jesu-P8 dataset. The curves at top, marked
with additional � symbols, correspond to the chosen parameter values.

4.4 Evaluation of accuracy

The point clouds obtained from Fountain-P11 and
Herz-Jesu-P8 datasets by PMVS program [3], our base-
line method [33] and the proposed method are presented
in Figure 9. The comparisons of the point clouds are il-
lustrated in Figure 10. The curves follow the same rep-
resentation as the curves in the right subfigure in Figure
7. The point clouds obtained from Castle-P30 dataset
by PMSV and the proposed method are presented in
Figure 11.

As the results show, the point clouds produced by
the proposed method are denser than the PMVS point
clouds and cover more areas than our baseline method.
Further, compared with the PMVS and our baseline
point clouds, the point clouds produced by the proposed
method have better accuracy in all cases.

As Figure 10 shows, the multi-stage expansion has
significant impact on the amount of reconstructed points
(red vs green) whereas the refinement provides further
improvements on the accuracy (green vs purple).

4.5 Computational Cost

The computational efficiency, namely execution time
and number of reconstructed points, was also recorded
in our experiments. For our methods the seed matches
were acquired by matching Hessian-Affine regions [40]
using SIFT descriptors [41]. Both in Furukawa’s pro-
gram and in our methods, seed matches were detected
from every image pair of each dataset. The total exe-
cution times contain the initial seed extraction, match-
ing and expansion steps. Table 5 presents the results
achieved using Furukawa’s method [3], our baseline
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Figure 7. Accuracy of the Cube point clouds against ground truth mesh (left) and ground truth
depth maps (right).

Figure 8. Cube reconstructions build by the PMVS program [3] (left), the proposed method with
non-prioritized seed expansion (center) and the proposed method (right). In the middle, the
outliers due to non-prioritized expansion are clearly visible (red circles). Our reconstruction is
denser than that of PMVS (green circle).

method [33] and the proposed method. In addition,
the table shows the results achieved with the baseline
method together with the multi-stage extension and also
the results of our approach with non-prioritized seed ex-
pansion. The Castle reconstructions were made only by
the PMVS program and the proposed method.

As one can see from Table 5, the total execution time
of the PMVS method is even 7.3 times higher than the
execution time of our method. That difference is almost

doubled if the number of reconstructed points is also
taken into an account.

Note that while the provided extensions improve
quality of results they do not decrease the efficiency sig-
nificantly compared with the baseline method and with
the Cube dataset the proposed method is even faster
than the baseline method with the multi-stage expan-
sion.
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Figure 9. Fountain (top) and Herz-Jesu (bottom) reconstructions build by the PMVS program
[3], our baseline method [33] and the proposed method. Our reconstructions are denser than
those of PMVS (green circles) and the proposed method fills some holes that appear in the
baseline reconstructions (red circles).

5 Discussion

The results in Section 4.3 showed that the expansion
becomes more robust against the outlier seeds when
the seeds are expanded in the prioritized order. That
is, when the best seeds are expanded first, the outlier
seeds usually can not expand because the areas that they
cover have already been matched. The priorization of
the seeds also speeds up the method because less time
is wasted on expanding the outlier seeds.

Expanding the matches in the reference images may
cause our baseline method to end up in a situation where
the final reconstruction has holes. The multi-stage ex-
pansion in the proposed method was used to cover that
shortcoming with a different pair of reference images,
and therefore, it is clear that the proposed method pro-
duces more complete reconstructions.

The refinement in the proposed method is based on
the texture patches around the seed matches, and there-
fore, it works better on areas with high texture varia-
tions. Those areas can usually be reconstructed rela-
tively well in any case, so the improvement, provided
by the refinement, is quite moderate but consistent.

The difference in the computational efficiency be-

tween the PMVS program and the proposed method is
mainly due to the repeated expansion and filtering steps
of the PMVS method. Greedily expanded seeds may
produce bad matches which are later removed by the
filtering stage. However, this may lead to unnecessary
computations. In contrast, in our approach the best-first
strategy quarantees the quality of matches and makes
the filtering step unnecessary. Hence, a method using
the best-first strategy is robust to incorrect initial seeds
and reduces the amount of computation. Note that, the
initial seed extraction is not optimized in our program,
because it is partially a MATLAB implementation while
other parts are implemented with C++. Therefore, even
further speed-up could be achieved.

Finally, we would like to emphasize that in this
work we focus only on the point cloud generation
stage that is a core component in many recent best-
performing multi-view stereo systems [3, 4]. However,
besides point cloud generation, the state-of-the-art sys-
tems [3, 4] contain also other components, such as sur-
face mesh generation and refinement. These other com-
ponents have a large effect on the quality of the result
if it is measured using the final refined mesh, as is typi-
cally done in standard benchmarks [1, 2]. Nevertheless,
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Figure 10. Error distribution (top) and cumulative error distribution (bottom) of Fountain (left)
and Herz-Jesu (right) reconstructions. The proposed method produces both more accurate
and denser point clouds from these datasets.

because the mesh generation and refinement stages of
the state-of-the-art systems [3, 4] are not publicly avail-
able it is hard to evaluate the different components of
these systems using standard benchmarks3. This same
problem of fair evaluation was also discussed in [19]
and similar to their work we make comparisons between
depth maps that are obtained by projecting both the
reconstructed point clouds and the ground truth mesh
models onto the images.

Furthermore, in order to facilitate future research and
ensure the reproducibility of our results, we will publish

3Also, the benchmark [2] is no longer available and the ground
truth data has been released only for those two scenes which we used
in our evaluations.

an open source implementation of our software upon
the publication of the article. It is important to note
that the software of the recent methods [19] and [4] is
not freely available. In fact, the authors of these pa-
pers have established companies, Pix4D and Acute3D,
which develop closed commercial solutions for image-
based three-dimensional reconstruction. However, we
believe that in order to allow new researchers to con-
tribute to the field and to expedite the development,
it would be important to have open source implemen-
tations of recent methods publicly available for re-
searchers.
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Figure 11. Castle reconstructions build by the PMVS program [3] (left) and the proposed
method (right). Our reconstruction has lots of points on ground which is totally missing in
the PMVS reconstruction.

6 Conclusion

In this paper, we have proposed a multi-view stereo
reconstruction method based on prioritized matching.

Table 5. Comparison of efficiency

Method
Dataset

Cube
Fountain-

P11

Herz-

Jesu-P8
Castle-P30

Number
of
points

[3] 382 865 6 141 328 5 175 051 10 674 253

[33] 492 329 8 594 333 6 206 911 -
[33] + ms 599 413 9 766 125 7 009 032 -
Ours

(Arb.exp.)
793 444 11 149 988 8 000 098 -

Ours 585 785 9 842 320 7 148 507 17 493 563

Total
time
(min)

[3] 32.5 670.9 370.5 1270.8

[33] 6.0 69.6 46.1 -
[33] + ms 9.0 84.4 54.9 -
Ours

(Arb.exp.)
12.3 100.0 72.9 -

Ours 8.6 91.5 61.9 260.8

Time
per
point
(ms)

[3] 5.09 6.55 4.30 7.14

[33] 0.73 0.49 0.45 -
[33] + ms. 0.90 0.52 0.47 -
Ours

(Arb.exp.)
0.93 0.54 0.55 -

Ours 0.88 0.56 0.52 0.89

Generally, the method takes an arbitrary number of im-
ages and a sparse set of correspondences as input and it-
eratively expands them to neighboring regions in all im-
ages. The approach uses the best-first principle, where
the most promising seed is always expanded first. Dur-
ing the expansion the seeds are refined using image
alignment. After the first expansion, the reconstruction
is improved by expanding a set of new seeds near the
holes or outer boundaries of the current reconstruction.
The expansion is repeated until all possible areas have
been reconstructed.

The comparison to the widely used PMVS software
showed that the proposed method produces denser re-
constructions with better accuracy and is several times
faster. In some cases it is even more than 10 times faster
when the processing time is measured per reconstructed
point. The method also improves the reconstruction re-
sults achieved with our baseline method.

An open source implementation of our approach will
be released upon the publication of the article.
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