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Abstract. This paper presents a probabilistic approach for objedliation
which combines subspace clustering with the selection sdrohinative clus-
ters. Clustering is often a key step in object recognitiod Brpenalized by the
high dimensionality of the descriptors. Indeed, local desors, such as SIFT,
which have shown excellent results in recognition, aredighensional and live
in different low-dimensional subspaces. We therefore usebspace clustering
method called High-Dimensional Data Clustering (HDDC) ethdbvercomes the
curse of dimensionality. Furthermore, in many cases ongnedf the clusters are
useful to discriminate the object. We, thus, evaluate tkerinative capacity
of clusters and use it to compute the probability that a Ideakriptor belongs to
the object. Experimental results demonstrate the effentiss of our probabilis-
tic approach for object localization and show that subsphgstering gives better
results compared to standard clustering methods. Furtitesraur approach out-
performs existing results for the Pascal 2005 dataset.

1 Introduction

Object localization is one of the most challenging problémsomputer vision. Ear-
lier approaches characterize the objects by their globa¢amnce and are not robust
to occlusion, clutter and geometric transformations. Toicithese problems, recent
methods use local image descriptors. Many of these appesdohm clusters of local
descriptors as an initial step; in most cases clusteringhigesed with k-means or EM-
based clustering methods. Agarwal and Roth [1] determi@splatial relations between
clusters and use a Sparse Network of Windows classifier. anki Schmid [2] select
discriminant clusters based on the likelihood ratio andtheenost discriminative ones
for recognition. Leibe and Schiele [3] learn the spatiatriisition of the clusters and
use voting for recognition. Bag-of-keypoint methods [4&jresent an image by a his-
togram of cluster labels and learn a Support Vector Machiassdier. Sivicet al. [6]
combine a bag-of-keypoint representation with probaigliatent semantic analysis to
discover topics in an unlabeled dataset. Opiedl. [7] use AdaBoost to select the most
discriminant features.

However, visual descriptors used in object recognitionadten high-dimensional
and this penalizes classification methods and consequentignition. Indeed, cluster-
ing methods based on the Gaussian Mixture Model (GMM) [8nshalisappointing
behavior when the size of the training dataset is too smatipared to the number
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of parameters to estimate. To avoid overfitting, it is therefnecessary to find a bal-
ance between the number of parameters to estimate and teeafignof the model.
Many methods use global dimensionality reduction and thgslyaa standard clus-
tering method. Dimension reduction techniques are eithset) orfeature extraction

or feature selection. Feature extraction builds new variables which carry adargrt
of the global information. The most popular method is PpatiComponent Analysis
(PCA) [9], a linear technique. Recently, many non-lineathmds have been proposed,
such as Kernel PCA [10]. Feature selection, on the other hamik an appropriate
subset of the original variables to represent the data &lbal dimension reduction
is often advantageous in terms of performance, but losesnr#tion which could be
discriminant,.e, clusters often lie in different subspaces of the origiealtfire space
and a global approach cannot capture this. It is also pessiblise a parsimonious
model [12] which reduces the number of parameters to estitmafixing some param-
eters to be common within or between classes. These metboust dolve the problem
of high dimensionality because clusters usually lie inedight subspaces and many di-
mensions are irrelevant. Recent methods determine thpacksfor each cluster. Many
subspace clustering methods use heuristic search tedwigfind the subspaces. They
are usually based on grid search methods and find denserahistsubspaces [13]. The
approach “mixture of Probabilistic Principal Componengdyzers” [14] proposes a la-
tent variable model and derives an EM based method to clogferdimensional data.
A similar model is used in [15] in the supervised frameworkeTodel of these meth-
ods can be viewed as a mixture of constrained Gaussian @snsith class-specific
subspaces. An unified approach for subspace clustering iB#ussian mixture model
framework was proposed in [16]. This method, called High Birsional Data Cluster-
ing (HDDC), includes the previous approaches and involdefitimnal regularizations
as in parsimonious models.

In this paper, we propose a probabilistic framework for objecalization combin-
ing subspace clustering with the selection of the discratie clusters. The first step
of our approach is to cluster the local descriptors using I@0D6] which is not pe-
nalized by the high-dimensionality of the descriptors.cgionly a few of the learned
clusters are useful to discriminate the object, we therrdete the discriminative score
of each cluster with positive and negative examples of thegoay. This score is based
on a maximum likelihood formulation. By combining this imfoation with the pos-
terior probabilities of the clusters, we finally compute tigect probability for each
visual descriptor. These probabilities are then used fgeabtbocalization,i.e., local-
ization assumes that points with higher probabilities aoeemikely to belong to the
object. We evaluate our approach on two recently proposgatothatasets [7,17]. We
first compare HDDC to standard clustering methods withinprababilistic recogni-
tion framework. Experiments show that results with HDDC @asistently better than
with other clustering methods. We then compare our proistibibpproach to the state
of the art results and show that it outperforms existinglte$ar object localization.

This paper is organized as follows. Section 2 presents thebEséd clustering
method HDDC,i.e,, the estimation of the parameters and of the intrinsic dsitaTs
of the subspaces. In Section 3, we describe the probabitibiect localization frame-
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work. Experimental results for our approach are presemekition 4. We conclude
the paper in Section 5.

2 High-Dimensional Data Clustering

This section presents the clustering method HDDC [16]. @hirsg divides a given
datase{«x1, ..., z,} of n data points intdk homogeneous groups. Popular clustering
techniques use Gaussian Mixture Models (GMM). The data..., x,,} € R? are then
modeled with the density(x,0) = Zle md(x, 6;), whereg is a multi-variate nor-
mal density with parameteér, = {u;, X;} andr; are mixing proportions. This model
estimates the full covariance matrices and therefore tinebien of parameters is very
large in high dimensions. However, due to &mapty space phenomenon we can assume
that high-dimensional data live in subspaces with a dinoeradity lower than the di-
mensionality of the original space. We therefore propossdtk in low-dimensional
class-specific subspaces in order to adapt classificatibigtedimensional data and to
limit the number of parameters to estimate. Here, we wilspre: the parameterization
of GMM designed for high-dimensional data and then detailEM-based technique
HDDC.

2.1 Gaussian Mixture Models for High-Dimensional Data

We assume that class conditional densities are Gauséjan, >;) with means:; and
covariance matrice&’;, i = 1, ..., k. Let Q; be the orthogonal matrix of eigenvectors
of X, then4; = Q! X; Q; is a diagonal matrix containing the eigenvalueshf We
further assume thad; is divided into two blocks:

a1 0

b;
0 (p—di)
0 b;

o

wherea;; > b;,Vj =1, ..., d;. The class specific subspdggis generated by the, first
eigenvectors corresponding to the eigenvaluyesvith 1; € E;. Outside this subspace,
the variance is modeled by a single paraméterFinally, let P;(xz) = QiQit(a: -
ui) + w; be the projection of on E;, WhereQi is made of thel; first columns of@;
supplemented by zeros. Figure 1 summarizes these notations

The mixture model presented above will be in the followirfgreed to by{a;,;0;Q.d;].
By fixing some parameters to be common within or between etasge obtain partic-
ular models which correspond to different regularizatidisr example, if we fix the
first d; eigenvalues to be common within each class, we obtain the mestricted
model[a;b;Q;d;]. This model is in many cases more robust, the assumption that
the matrix A; contains only two eigenvalues andb; seems to be an efficient way
to regularize the estimation af;. In this paper, we focus on the modéds;b;Q;d;],
[awaldl], [aleQZdZ], [aleldl] and[abQZdZ]



4 C. Bouveyron, J. Kannala, C. Schmid and S. Girard

E'l
x
X
Pi(z) f ;
S (e E)
X x X/, : X /,'(Pi(w)
X ,’I X _- -7
x 1S -
x -7 d(pa, Pi(w)
x M «
X X
E; b :

Fig. 1. The specific subspadg, of theith mixture component.

2.2 EM Estimation of the Model Parameters

The parameters of a GMM are usually estimated by the EM dlgarivhich repeats
iteratively expectation (E) and maximization (M) stepsthis section, we present the
EM estimation of the parameters for the subspace GMM.

The E-step computes, at iteratioq, for each componernit= 1, - k and for each
data pointj = 1, ..., n, the conditional probab|llty(‘” = P(z; € C _1)|xj). Using
the Bayes formula and the parameterization of the maded; Q; 1] the probability

t(‘” can be expressed as follows (the proof of the following ttaswdvailable in [16]):

(¢g—1) (q—l)

, (x50,

R 9<q 5 =1/ Zexp( (2) ~ Krlay)).
S Vol

whereK;(z) = —2log(m;¢(x, 0;)) is called the cost function and is defined by:

Ki(z) = [|pi— Pi()|

—||1? Pi(x ||2+Zlog aij)+(p—di)log(bi) —2log(m),

where||.|| 4, is a norm onE; such that|z||% = z'A;z with A; = QiA;IQit. We
can observe thak(;(z) is mainly based on two distances: the distance between the
projection ofr onE; and the mean of the class and the distance between the diiserva
and the subspadeg;. This cost function favours the assignment of a new obsiervad
the class for which it is close to the subspace and for whgpribjection on the class
subspace is close to the mean of the class. The variance tgfraadb; balance the
importance of both distances. For example, if the data asenaisy,i.e., b; is large, it
is natural to weight the distandle — P;(z)||? by 1/b; in order to take into account the
large variance iff;-.

The M-step maximizes at iteratio the conditional likelihood and uses the fol-
lowing update formulas. The proportions, the means anddfiar@ance matrices of the
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mixture are classically estimated by:

n{® S Dy 1
~ ~ =1" J = ~ ~
(q) - HEQ) _ & (q)] 7 Ei(q) _ @ E :tEQ) (z; — (Q))(xj _ Nz('q))t-

wherengq) = tqu) The ML estimators of model parameters are in closed form
for the models considered in this paper. Proofs of the fallgwesults are given in [16].

— Subspacé;: thed; first columns ofQ); are estimated by the eigenvectors associated
with thed; largest eigenvalues;; of 3.

— Model{a;;b;Q;d;]: the estimator of;; is a;; = A\;; and the estimator df; is:

d;

(p— ot
— Model[a;;bQ;d;]: the estimator of;; is a;; = A;; and the estimator dfis:

i

. 1 . ko

i=1 j=1

where¢ = Zle #id; andW = Zle #;3; is the estimated within-covariance matrix.
— Model[a;b;Q;d;]: the estimator ob; is given by (1) and the estimator of is:

d;

y—diz )

— Modella;bQ;d;]: the estimators of; andb are respectively given by (3) and (2).
— Model[abQ;d;]: the estimator ob is given by (2) and the estimator ofis:

1 k
d:gZﬁi Nij- (4)

2.3 Intrinsic Dimension Estimation

Within the M step, we also have to estimate the intrinsic disien of each class-
specific subspace. This is a difficult problem with no exaattian. Our approach is
based on the eigenvalues of the class conditional covariaratrix 2; of the clas<;.
The jth eigenvalue of’; corresponds to the fraction of the full variance carriedhsy t
jth eigenvector of;. We estimate the class specific dimensin: = 1, ..., k, with
the empirical method scree-test of Cattell [18] which amadythe differences between
successive eigenvalues in order to find a break in the scleesé&lected dimension
is the one for which the subsequent differences are smdléar & threshold. In our
experiments the value used for this threshold was 0.2 timesntaximum difference.
The resulting average value for dimensiahsvas approximately 10 in the experiments
presented in Section 4.
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3 A Probabilistic Framework for Object Localization

In this section, we present a probabilistic framework fojeeblocalization which com-
putes for each local descripter of an image the probability’(z; € O|z;) thatz;
belongs to a given obje@. It is then easy to precisely locate the object by considerin
only the local descriptors with high probabilitiéyz; € Olx;). We first extract a set
of local invariant descriptors using the Harris-Laplaceedtor [19] and the SIFT de-
scriptor [20]. The dimension of the obtained SIFT featusesd8. An interest point and
its corresponding descriptor are in the following refert@tly z ;.

3.1 Training

During training we determine the discriminative clustefsogal descriptors. We first
cluster local features and then identify discriminativestérs. Training can be either su-
pervised or weakly supervised. In the weakly supervisedaie the positive descrip-
tors include descriptors from the background, as only thegiens labeled as positive.

Clustering. Descriptors of the training images are organized igroups using the
clustering method HDDC. From a theoretical point of viewe tfescriptorsc; of an
image are realizations of a random variallec R? with the following densityf () =
S mié(x,0;) = TfO(x) + (1 — 7)fB(x), wheref© and f2 are respectively the
densities of descriptors of the object and of the backgramdtr denotes the prior
probability P(O). The parameter is equal tto:1 R;m;, whereR, = P(C; € O).
The densityf can thus be rewritten as follows:

k

k
flz) = Z Rimig(x, 0;) + Z(l — Ri)mid(x, 0;) .

i=1

Object Background

The clustering method HDDC provides the estimators of patarsm; andd;, Vi =
1,..., k and it thus remains to estimate paramefeysvi = 1, ..., k.

Identification of discriminative clusters. This step aims to identify discriminative
clusters by computing estimators of parameifeysPositive descriptors are denoted by
P and negative ones hy. The conditional ML estimate a8 = { Ry, ..., Ry } satisfies:

R = argmax H P(z; € Olzy) H P(z; € B|z;)
R r;eEP r;EN
The expression of the gradient is:

v v,

Vp — Y% Y%

B Z<R,wj> Z1—<R,w,->’
IjEP - IjEN -

where¥; = {¥;;}i—1,. , and¥;; = P(z; € Cj|z;) which are provided by HDDC.
The ML estimate of? does not have an explicit formulation and it requires arattee
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optimization method to find?. We observed that the classical gradient method con-
verges towards a solution very close to the least squareastif, s = (!PtW)fl Ui,
where®; = P(z; € O|z;). In our experiments, we use this least square estimator of
R in order to reduce computation time. We assume for this esiim thatvz; € P,
P(z; € Olzj) = 1andVz; € N, P(z; € O|z;) = 0. Thus,R; is a measure for the
discriminative capacity of the clags for the objeciO.

3.2 Object Localization

During recognition we compute the probability for each latescriptor of a test image
to belong to the object. Using these probabilities, it isithessible to locate the object
in a test imagei.e,, the descriptors of an image with a high probability to bgltmthe
object give a strong indication for the presence of an objésing the Bayes formula
we obtain the posterior probability of an descripigrto belongs to the objec?:

k
P(z; € Ol;) = Y RiP(x; € Cilz;), (5)

i=1

where the posterior probability (z,; € C;|z;) is given by HDDC. The object can then
be located in a test image by using the points with the highestabilitiesP(z; €
Olxz;). For comparison with existing methods we determine the imgnbox with a
very simple technique. We compute the mean and varianceeopdint coordinates
weighted by their posterior probabilities given by (5). Tihean is then the center of
the box and a default bounding box is scaled by the variance.

4 Experiments and Comparisons

In this section, we first compare HDDC to standard clustet@apniques within our
probabilistic localization framework on théraz dataset [7]. We then compare our ap-
proach to the results on thiascal 2005 dataset [17].

4.1 Evaluation of the Clustering Approach

In the following, we compare HDDC to the several standardtelting methods within
our probabilistic localization framework: diagonal Gaassmixture model (Diagonal
GMM), spherical Gaussian mixture model (Spherical GMM)] aiata reduction with
PCA combined with a diagonal Gaussian mixture model (PCAagdGMM). The
diagonal GMM has a covariance matrix defined By = diag(oy1, ..., 04p) and the
spherical GMM is characterized hy; = o;Id. In all cases, the parameters are esti-
mated with the EM algorithm. The initialization of the EM iesation was obtained
using k-means and was exactly the same for both HDDC anddhdatd methods. For
this evaluation, we use the bicycle category of@raz dataset which is consists of 200
training images and 100 test images. We determined 40 ctusith each clustering
method in a weakly supervised setting.
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Clustering HDDC [* * Q;d;] Classical GMM  |Resul
method |[a;;b;] [ai;b] [aibi] [a:b] [ab] |PCA+diag Diag. Spheof [2]
Precision 0.85 0.83 0.92 0.89 0.8 0.63 0.70 0.7 0.62

Table 1. Object localization orsraz. comparison between HDDC and other methods. Precision
is computed on segmented images with on average 10 detegiorimagei(e., detections such
thatP(z; € O|z;) > 0.9).

o [=alal @ g e
& “$h
s B o
a
All detections HDDC PCA+diag. GMM Diag. GMM

Fig. 2. Object localization orGraz: localization results displayed on groundtruth segméoriat
We display the points with highest probabiliti#§z; € O|z;). The same number of points is
displayed for all models (5% of all detections which is edoal2 detections per image).

The localization performance was evaluated using segrdemages [7]. Table 1
summarizes localization performance of the compared ndsths well as results pre-
sented in [2]. Precision is the number of points within thgeobregion with respect to
the total number of selected points. We can observe that BieGmodels give better
localization results than the other methods. In particule modela;b;Q;d;] obtains
bestresults,e., a precision of 92% when considering points witt:; € O|z;) > 0.9.
We also observe that a global dimension reduction with PCésdwt improve the re-
sults compared to diagonal GMM. This confirms our initiallamption that data of dif-
ferent clusters live in different low-dimensional subspmand that a global dimension
reduction technique is not able to take this into accourguié 2 shows localization
results on segmented test images with the different metiddsleft image shows all
interest points detected on the test images. The boundixeslkare computed with the
displayed pointsi.e,, the points with the highest probabilities in the case ofttiree
right most images. It appears that our localization metledtifies precisely the points
belonging to the object and consequently is able to locatalsvbjects in different
positions, poses and scales whereas other methods do aargefficient localization.

4.2 Comparison to the State of the Art

For this second experiment, we compare our approach toshé#sen the Pascal visual
object class 2005 dataset [17]. It contains four categomesorbikes, bicycles, people
and cars. Itis made of 684 training images and two test st &ind test2. We chose
to evaluate our method on the set test2, which is the moreudiffone and contains
956 images. Since the bounding boxes of the objects areblaflor all categories we
evaluate our method with supervised as well as a weakly sigeer training data. In
the supervised case only the descriptors located insideaheding boxes are labeled
as positive during training. Here we use 50 clusters for edithe four categories. We
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Clustering Supervised Weakly-supervised
method Moto Bike People CarAver.|Moto Bike People CarAver.
HDDC 0.3150.172 0.0910.1550.1830.3110.161 0.0460.0490.142
Best 0f [17]0.3410.113 0.0210.3040.112| / / / / /

Table 2. Average precision (AP) for supervised and weakly-supediikcalization orPascal
test2. The result in italic is the average result of the best metifatie Pascal challenge [17].

(a) motorbike (b) car (c) two cars

Fig. 3. Supervised localization dPascal test2: predicted bounding boxes are in magenta and true
boxes in yellow.

use the modela;b;Q;d;] for HDDC, since the previous experiment has shown that it
is the most efficient model. To compare with the results otBl€hallenge [17], we
use the localization measure “average precision” (AP) Wisahe arithmetic mean of
11 values on the precision-recall curves computed with ggetmuth bounding boxes
(see [17] for more details).

The localization results oRascal test2 are presented in Table 2 for supervised and
weakly supervised training data. In the supervised cadde Tashows that our proba-
bilistic recognition approach performs well compared te tbsults in the Pascal com-
petition. In particular, our approach wins two “competitsd (bicycle and people) and
is on average more efficient than the methods of the Pasdédiepe. This is despite the
fact that our approach detects only one bounding box perenfageach category and
this reduces the performance when multiple objects areepteas shown in the right
part of Figure 3. Notice that our approach has the best dymrdbrmance although we
do not have any model for the spatial relationships of thallteatures.

We can also observe that our weakly-supervised localizatisults are only slightly
lower than the ones in the supervised case and on averagetheth the Pascal results
in the supervised case. This means that our approach efficigentifies discriminative
clusters of each object category and this even in the caseal supervision. There are
no corresponding results for the Pascal Challenge, sinamaipeting methods used
supervised data. It is promising that the weakly supervaggatoach obtains good lo-
calization results because the manual annotation of hgiinhages is time consuming.
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5 Conclusion

The main contribution of this paper is the introduction of ralabilistic approach
for object localization which combines subspace clusteriith the selection of dis-
criminative clusters. This approach has the advantageinjymsterior probabilities
to weight interest points. We proposed to use the subspastedhg method called
HDDC designed for high-dimensional data. Experimentallteshow that HDDC per-
forms better than other Gaussian models for locating abjiechatural images. This
is due to the fact that HDDC correctly models the groups irir thebspaces and thus
forms more homogeneous groups. In addition, our methodped well also in the
weakly-supervised framework which is promising. Finatlyy approach provides bet-
ter results than the state of the art methods and that usiggaoe type of detector and
descriptor (Harris-Laplace+Sift). We believe that theultsscould be further improved
using a combination of descriptors as in [2,5]. Also, thealaation results presented
here are based on a very simple spatial model which can bg eaproved to further
increase the performance of our approach.
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