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Abstract. This paper presents a probabilistic approach for object localization
which combines subspace clustering with the selection of discriminative clus-
ters. Clustering is often a key step in object recognition and is penalized by the
high dimensionality of the descriptors. Indeed, local descriptors, such as SIFT,
which have shown excellent results in recognition, are high-dimensional and live
in different low-dimensional subspaces. We therefore use asubspace clustering
method called High-Dimensional Data Clustering (HDDC) which overcomes the
curse of dimensionality. Furthermore, in many cases only a few of the clusters are
useful to discriminate the object. We, thus, evaluate the discriminative capacity
of clusters and use it to compute the probability that a localdescriptor belongs to
the object. Experimental results demonstrate the effectiveness of our probabilis-
tic approach for object localization and show that subspaceclustering gives better
results compared to standard clustering methods. Furthermore, our approach out-
performs existing results for the Pascal 2005 dataset.

1 Introduction

Object localization is one of the most challenging problemsin computer vision. Ear-
lier approaches characterize the objects by their global appearance and are not robust
to occlusion, clutter and geometric transformations. To avoid these problems, recent
methods use local image descriptors. Many of these approaches form clusters of local
descriptors as an initial step; in most cases clustering is achieved with k-means or EM-
based clustering methods. Agarwal and Roth [1] determine the spatial relations between
clusters and use a Sparse Network of Windows classifier. Dorko and Schmid [2] select
discriminant clusters based on the likelihood ratio and usethe most discriminative ones
for recognition. Leibe and Schiele [3] learn the spatial distribution of the clusters and
use voting for recognition. Bag-of-keypoint methods [4,5]represent an image by a his-
togram of cluster labels and learn a Support Vector Machine classifier. Sivicet al. [6]
combine a bag-of-keypoint representation with probabilistic latent semantic analysis to
discover topics in an unlabeled dataset. Opeltet al. [7] use AdaBoost to select the most
discriminant features.

However, visual descriptors used in object recognition areoften high-dimensional
and this penalizes classification methods and consequentlyrecognition. Indeed, cluster-
ing methods based on the Gaussian Mixture Model (GMM) [8] show a disappointing
behavior when the size of the training dataset is too small compared to the number
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of parameters to estimate. To avoid overfitting, it is therefore necessary to find a bal-
ance between the number of parameters to estimate and the generality of the model.
Many methods use global dimensionality reduction and then apply a standard clus-
tering method. Dimension reduction techniques are either based onfeature extraction
or feature selection. Feature extraction builds new variables which carry a large part
of the global information. The most popular method is Principal Component Analysis
(PCA) [9], a linear technique. Recently, many non-linear methods have been proposed,
such as Kernel PCA [10]. Feature selection, on the other hand, finds an appropriate
subset of the original variables to represent the data [11].Global dimension reduction
is often advantageous in terms of performance, but loses information which could be
discriminant,i.e., clusters often lie in different subspaces of the original feature space
and a global approach cannot capture this. It is also possible to use a parsimonious
model [12] which reduces the number of parameters to estimate by fixing some param-
eters to be common within or between classes. These methods do not solve the problem
of high dimensionality because clusters usually lie in different subspaces and many di-
mensions are irrelevant. Recent methods determine the subspaces for each cluster. Many
subspace clustering methods use heuristic search techniques to find the subspaces. They
are usually based on grid search methods and find dense clusterable subspaces [13]. The
approach “mixture of Probabilistic Principal Component Analyzers” [14] proposes a la-
tent variable model and derives an EM based method to clusterhigh-dimensional data.
A similar model is used in [15] in the supervised framework. The model of these meth-
ods can be viewed as a mixture of constrained Gaussian densities with class-specific
subspaces. An unified approach for subspace clustering in the Gaussian mixture model
framework was proposed in [16]. This method, called High Dimensional Data Cluster-
ing (HDDC), includes the previous approaches and involves additional regularizations
as in parsimonious models.

In this paper, we propose a probabilistic framework for object localization combin-
ing subspace clustering with the selection of the discriminative clusters. The first step
of our approach is to cluster the local descriptors using HDDC [16] which is not pe-
nalized by the high-dimensionality of the descriptors. Since only a few of the learned
clusters are useful to discriminate the object, we then determine the discriminative score
of each cluster with positive and negative examples of the category. This score is based
on a maximum likelihood formulation. By combining this information with the pos-
terior probabilities of the clusters, we finally compute theobject probability for each
visual descriptor. These probabilities are then used for object localization,i.e., local-
ization assumes that points with higher probabilities are more likely to belong to the
object. We evaluate our approach on two recently proposed object datasets [7,17]. We
first compare HDDC to standard clustering methods within ourprobabilistic recogni-
tion framework. Experiments show that results with HDDC areconsistently better than
with other clustering methods. We then compare our probabilistic approach to the state
of the art results and show that it outperforms existing results for object localization.

This paper is organized as follows. Section 2 presents the EM-based clustering
method HDDC,i.e., the estimation of the parameters and of the intrinsic dimensions
of the subspaces. In Section 3, we describe the probabilistic object localization frame-
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work. Experimental results for our approach are presented in Section 4. We conclude
the paper in Section 5.

2 High-Dimensional Data Clustering

This section presents the clustering method HDDC [16]. Clustering divides a given
dataset{x1, ..., xn} of n data points intok homogeneous groups. Popular clustering
techniques use Gaussian Mixture Models (GMM). The data{x1, ..., xn} ∈ R

p are then
modeled with the densityf(x, θ) =

∑k

i=1 πiφ(x, θi), whereφ is a multi-variate nor-
mal density with parameterθi = {µi, Σi} andπi are mixing proportions. This model
estimates the full covariance matrices and therefore the number of parameters is very
large in high dimensions. However, due to theempty space phenomenon we can assume
that high-dimensional data live in subspaces with a dimensionality lower than the di-
mensionality of the original space. We therefore propose towork in low-dimensional
class-specific subspaces in order to adapt classification tohigh-dimensional data and to
limit the number of parameters to estimate. Here, we will present the parameterization
of GMM designed for high-dimensional data and then detail the EM-based technique
HDDC.

2.1 Gaussian Mixture Models for High-Dimensional Data

We assume that class conditional densities are GaussianN (µi, Σi) with meansµi and
covariance matricesΣi, i = 1, ..., k. Let Qi be the orthogonal matrix of eigenvectors
of Σi, then∆i = Qt

i Σi Qi is a diagonal matrix containing the eigenvalues ofΣi. We
further assume that∆i is divided into two blocks:
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whereaij > bi, ∀j = 1, ..., di. The class specific subspaceEi is generated by thedi first
eigenvectors corresponding to the eigenvaluesaij with µi ∈ Ei. Outside this subspace,

the variance is modeled by a single parameterbi. Finally, let Pi(x) = Q̃iQ̃i

t
(x −

µi) + µi be the projection ofx on Ei, whereQ̃i is made of thedi first columns ofQi

supplemented by zeros. Figure 1 summarizes these notations.
The mixture model presented above will be in the following referred to by[aijbiQidi].

By fixing some parameters to be common within or between classes, we obtain partic-
ular models which correspond to different regularizations. For example, if we fix the
first di eigenvalues to be common within each class, we obtain the more restricted
model [aibiQidi]. This model is in many cases more robust,i.e., the assumption that
the matrix∆i contains only two eigenvaluesai and bi seems to be an efficient way
to regularize the estimation of∆i. In this paper, we focus on the models[aijbiQidi],
[aijbQidi], [aibiQidi], [aibQidi] and[abQidi].
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Fig. 1. The specific subspaceEi of theith mixture component.

2.2 EM Estimation of the Model Parameters

The parameters of a GMM are usually estimated by the EM algorithm which repeats
iteratively expectation (E) and maximization (M) steps. Inthis section, we present the
EM estimation of the parameters for the subspace GMM.

TheE-stepcomputes, at iterationq, for each componenti = 1, ..., k and for each
data pointj = 1, ..., n, the conditional probabilityt(q)ij = P (xj ∈ C

(q−1)
i |xj). Using

the Bayes formula and the parameterization of the model[aijbiQidi], the probability

t
(q)
ij can be expressed as follows (the proof of the following result is available in [16]):

t
(q)
ij =

π
(q−1)
i φ(xj , θ

(q−1)
i )

∑k

ℓ=1 π
(q−1)
ℓ φ(xj , θ

(q−1)
ℓ )

= 1/

k∑

ℓ=1

exp

(
1

2
(Ki(xj) − Kℓ(xj))

)

,

whereKi(x) = −2 log(πiφ(x, θi)) is called the cost function and is defined by:

Ki(x) = ‖µi−Pi(x)‖2
Ai

+
1

bi

‖x−Pi(x)‖2+

di∑

j=1

log(aij)+(p−di) log(bi)−2 log(πi),

where‖.‖Ai
is a norm onEi such that‖x‖2

Ai
= xtAix with Ai = Q̃i∆

−1
i Q̃i

t
. We

can observe thatKi(x) is mainly based on two distances: the distance between the
projection ofx onEi and the mean of the class and the distance between the observation
and the subspaceEi. This cost function favours the assignment of a new observation to
the class for which it is close to the subspace and for which its projection on the class
subspace is close to the mean of the class. The variance termsaij andbi balance the
importance of both distances. For example, if the data are very noisy,i.e., bi is large, it
is natural to weight the distance‖x − Pi(x)‖2 by 1/bi in order to take into account the
large variance inE⊥

i .
The M-step maximizes at iterationq the conditional likelihood and uses the fol-

lowing update formulas. The proportions, the means and the covariance matrices of the



Lecture Notes in Computer Science 5

mixture are classically estimated by:

π̂
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wheren
(q)
i =

∑n

j=1 t
(q)
ij . The ML estimators of model parameters are in closed form

for the models considered in this paper. Proofs of the following results are given in [16].
– SubspaceEi: thedi first columns ofQi are estimated by the eigenvectors associated
with thedi largest eigenvaluesλij of Σ̂i.
– Model[aijbiQidi]: the estimator ofaij is âij = λij and the estimator ofbi is:

b̂i =
1

(p − di)



Tr(Σ̂i) −
di∑

j=1

λij



 . (1)

– Model[aijbQidi]: the estimator ofaij is âij = λij and the estimator ofb is:

b̂ =
1

(p − ξ)



Tr(Ŵ ) −
k∑

i=1

π̂i

di∑

j=1

λij



 , (2)

whereξ =
∑k

i=1 π̂idi andŴ =
∑k

i=1 π̂iΣ̂i is the estimated within-covariance matrix.
– Model[aibiQidi]: the estimator ofbi is given by (1) and the estimator ofai is:

âi =
1

di

di∑

j=1

λij . (3)

– Model[aibQidi]: the estimators ofai andb are respectively given by (3) and (2).
– Model[abQidi]: the estimator ofb is given by (2) and the estimator ofa is:

â =
1

ξ

k∑

i=1

π̂i

di∑

j=1

λij . (4)

2.3 Intrinsic Dimension Estimation

Within the M step, we also have to estimate the intrinsic dimension of each class-
specific subspace. This is a difficult problem with no exact solution. Our approach is
based on the eigenvalues of the class conditional covariance matrixΣi of the classCi.
Thejth eigenvalue ofΣi corresponds to the fraction of the full variance carried by the
jth eigenvector ofΣi. We estimate the class specific dimensiondi, i = 1, ..., k, with
the empirical method scree-test of Cattell [18] which analyzes the differences between
successive eigenvalues in order to find a break in the scree. The selected dimension
is the one for which the subsequent differences are smaller than a threshold. In our
experiments the value used for this threshold was 0.2 times the maximum difference.
The resulting average value for dimensionsdi was approximately 10 in the experiments
presented in Section 4.
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3 A Probabilistic Framework for Object Localization

In this section, we present a probabilistic framework for object localization which com-
putes for each local descriptorxj of an image the probabilityP (xj ∈ O|xj) thatxj

belongs to a given objectO. It is then easy to precisely locate the object by considering
only the local descriptors with high probabilitiesP (xj ∈ O|xj). We first extract a set
of local invariant descriptors using the Harris-Laplace detector [19] and the SIFT de-
scriptor [20]. The dimension of the obtained SIFT features is 128. An interest point and
its corresponding descriptor are in the following referredto byxj .

3.1 Training

During training we determine the discriminative clusters of local descriptors. We first
cluster local features and then identify discriminative clusters. Training can be either su-
pervised or weakly supervised. In the weakly supervised scenario the positive descrip-
tors include descriptors from the background, as only the image is labeled as positive.

Clustering. Descriptors of the training images are organized ink groups using the
clustering method HDDC. From a theoretical point of view, the descriptorsxj of an
image are realizations of a random variableX ∈ R

p with the following densityf(x) =
∑k

i=1 πiφ(x, θi) = τfO(x) + (1 − τ)fB(x), wherefO andfB are respectively the
densities of descriptors of the object and of the backgroundandτ denotes the prior
probabilityP (O). The parameterτ is equal to

∑k

i=1 Riπi, whereRi = P (Ci ∈ O).
The densityf can thus be rewritten as follows:

f(x) =

k∑

i=1

Riπiφ(x, θi)

︸ ︷︷ ︸

Object

+

k∑

i=1

(1 − Ri)πiφ(x, θi)

︸ ︷︷ ︸

Background

.

The clustering method HDDC provides the estimators of parametersπi andθi, ∀i =
1, ..., k and it thus remains to estimate parametersRi, ∀i = 1, ..., k.

Identification of discriminative clusters. This step aims to identify discriminative
clusters by computing estimators of parametersRi. Positive descriptors are denoted by
P and negative ones byN . The conditional ML estimate ofR = {R1, ..., Rk} satisfies:

R̂ = argmax
R







∏

xj∈P

P (xj ∈ O|xj)
∏

xj∈N

P (xj ∈ B|xj)






.

The expression of the gradient is:

∇R =
∑

xj∈P

Ψj

< R, Ψj >
−

∑

xj∈N

Ψj

1− < R, Ψj >
,

whereΨj = {Ψji}i=1,...,k andΨji = P (xj ∈ Ci|xj) which are provided by HDDC.
The ML estimate ofR does not have an explicit formulation and it requires an iterative
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optimization method to find̂R. We observed that the classical gradient method con-
verges towards a solution very close to the least square estimatorR̂LS = (Ψ tΨ)

−1
Ψ tΦ,

whereΦj = P (xj ∈ O|xj). In our experiments, we use this least square estimator of
R in order to reduce computation time. We assume for this estimation that∀xj ∈ P ,
P (xj ∈ O|xj) = 1 and∀xj ∈ N , P (xj ∈ O|xj) = 0. Thus,Ri is a measure for the
discriminative capacity of the classCi for the objectO.

3.2 Object Localization

During recognition we compute the probability for each local descriptor of a test image
to belong to the object. Using these probabilities, it is then possible to locate the object
in a test image,i.e., the descriptors of an image with a high probability to belong to the
object give a strong indication for the presence of an object. Using the Bayes formula
we obtain the posterior probability of an descriptorxj to belongs to the objectO:

P (xj ∈ O|xj) =

k∑

i=1

RiP (xj ∈ Ci|xj), (5)

where the posterior probabilityP (xj ∈ Ci|xj) is given by HDDC. The object can then
be located in a test image by using the points with the highestprobabilitiesP (xj ∈
O|xj). For comparison with existing methods we determine the bounding box with a
very simple technique. We compute the mean and variance of the point coordinates
weighted by their posterior probabilities given by (5). Themean is then the center of
the box and a default bounding box is scaled by the variance.

4 Experiments and Comparisons

In this section, we first compare HDDC to standard clusteringtechniques within our
probabilistic localization framework on theGraz dataset [7]. We then compare our ap-
proach to the results on thePascal 2005 dataset [17].

4.1 Evaluation of the Clustering Approach

In the following, we compare HDDC to the several standard clustering methods within
our probabilistic localization framework: diagonal Gaussian mixture model (Diagonal
GMM), spherical Gaussian mixture model (Spherical GMM), and data reduction with
PCA combined with a diagonal Gaussian mixture model (PCA + diag. GMM). The
diagonal GMM has a covariance matrix defined byΣi = diag(σi1, ..., σip) and the
spherical GMM is characterized byΣi = σiId. In all cases, the parameters are esti-
mated with the EM algorithm. The initialization of the EM estimation was obtained
using k-means and was exactly the same for both HDDC and the standard methods. For
this evaluation, we use the bicycle category of theGraz dataset which is consists of 200
training images and 100 test images. We determined 40 clusters with each clustering
method in a weakly supervised setting.
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Clustering HDDC [∗ ∗ Qidi] Classical GMM Result
method [aijbi] [aijb] [aibi] [aib] [ab] PCA+diag Diag. Sphe.of [2]

Precision 0.85 0.83 0.92 0.89 0.88 0.63 0.70 0.76 0.62

Table 1.Object localization onGraz: comparison between HDDC and other methods. Precision
is computed on segmented images with on average 10 detections per image (i.e., detections such
thatP (xj ∈ O|xj) > 0.9).

All detections HDDC PCA+diag. GMM Diag. GMM

Fig. 2. Object localization onGraz: localization results displayed on groundtruth segmentations.
We display the points with highest probabilitiesP (xj ∈ O|xj). The same number of points is
displayed for all models (5% of all detections which is equalto 12 detections per image).

The localization performance was evaluated using segmented images [7]. Table 1
summarizes localization performance of the compared methods as well as results pre-
sented in [2]. Precision is the number of points within the object region with respect to
the total number of selected points. We can observe that the HDDC models give better
localization results than the other methods. In particular, the model[aibiQidi] obtains
best results,i.e., a precision of 92% when considering points withP (xj ∈ O|xj) > 0.9.
We also observe that a global dimension reduction with PCA does not improve the re-
sults compared to diagonal GMM. This confirms our initial assumption that data of dif-
ferent clusters live in different low-dimensional subspaces and that a global dimension
reduction technique is not able to take this into account. Figure 2 shows localization
results on segmented test images with the different methods. The left image shows all
interest points detected on the test images. The bounding boxes are computed with the
displayed points,i.e., the points with the highest probabilities in the case of thethree
right most images. It appears that our localization method identifies precisely the points
belonging to the object and consequently is able to locate small objects in different
positions, poses and scales whereas other methods do not give an efficient localization.

4.2 Comparison to the State of the Art

For this second experiment, we compare our approach to the results on the Pascal visual
object class 2005 dataset [17]. It contains four categories: motorbikes, bicycles, people
and cars. It is made of 684 training images and two test sets: test1 and test2. We chose
to evaluate our method on the set test2, which is the more difficult one and contains
956 images. Since the bounding boxes of the objects are available for all categories we
evaluate our method with supervised as well as a weakly supervised training data. In
the supervised case only the descriptors located inside thebounding boxes are labeled
as positive during training. Here we use 50 clusters for eachof the four categories. We
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Clustering Supervised Weakly-supervised
method Moto Bike People CarAver. Moto Bike People CarAver.
HDDC 0.3150.172 0.0910.1550.1830.3110.161 0.0460.0490.142
Best of [17]0.3410.113 0.0210.3040.112 / / / / /

Table 2. Average precision (AP) for supervised and weakly-supervised localization onPascal
test2. The result in italic is the average result of the best methodof the Pascal challenge [17].

(a) motorbike (b) car (c) two cars

Fig. 3.Supervised localization onPascal test2: predicted bounding boxes are in magenta and true
boxes in yellow.

use the model[aibiQidi] for HDDC, since the previous experiment has shown that it
is the most efficient model. To compare with the results of Pascal Challenge [17], we
use the localization measure “average precision” (AP) which is the arithmetic mean of
11 values on the precision-recall curves computed with ground-truth bounding boxes
(see [17] for more details).

The localization results onPascal test2 are presented in Table 2 for supervised and
weakly supervised training data. In the supervised case, Table 2 shows that our proba-
bilistic recognition approach performs well compared to the results in the Pascal com-
petition. In particular, our approach wins two “competitions” (bicycle and people) and
is on average more efficient than the methods of the Pascal challenge. This is despite the
fact that our approach detects only one bounding box per image for each category and
this reduces the performance when multiple objects are present, as shown in the right
part of Figure 3. Notice that our approach has the best overall performance although we
do not have any model for the spatial relationships of the local features.

We can also observe that our weakly-supervised localization results are only slightly
lower than the ones in the supervised case and on average better than the Pascal results
in the supervised case. This means that our approach efficiently identifies discriminative
clusters of each object category and this even in the case of weak supervision. There are
no corresponding results for the Pascal Challenge, since all competing methods used
supervised data. It is promising that the weakly supervisedapproach obtains good lo-
calization results because the manual annotation of training images is time consuming.
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5 Conclusion

The main contribution of this paper is the introduction of a probabilistic approach
for object localization which combines subspace clustering with the selection of dis-
criminative clusters. This approach has the advantage of using posterior probabilities
to weight interest points. We proposed to use the subspace clustering method called
HDDC designed for high-dimensional data. Experimental results show that HDDC per-
forms better than other Gaussian models for locating objects in natural images. This
is due to the fact that HDDC correctly models the groups in their subspaces and thus
forms more homogeneous groups. In addition, our method performs well also in the
weakly-supervised framework which is promising. Finally,our approach provides bet-
ter results than the state of the art methods and that using only one type of detector and
descriptor (Harris-Laplace+Sift). We believe that the results could be further improved
using a combination of descriptors as in [2,5]. Also, the localization results presented
here are based on a very simple spatial model which can be easily improved to further
increase the performance of our approach.
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