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Abstract—Automated image analysis is demanded in cell
biology and drug development research. The type of microscopy is
one of the considerations in the trade-offs between experimental
setup, image acquisition speed, molecular labelling, resolution
and quality of images. In many cases, phase contrast imaging
gets higher weights in this optimization. And it comes at the
price of reduced image quality in imaging 3D cell cultures. For
such data, the existing state-of-the-art computer vision methods
perform poorly in segmenting specific cell type. Low SNR,
clutter and occlusions are basic challenges for blind segmentation
approaches.

In this study we propose an automated method, based on a
learning framework, for detecting particular cell type in cluttered
2D phase contrast images of 3D cell cultures that overcomes those
challenges. It depends on local features defined over superpixels.
The method learns appearance based features, statistical features,
textural features and their combinations. Also, the importance of
each feature is measured by employing Random Forest classifier.
Experiments show that our approach does not depend on training
data and the parameters.

I. INTRODUCTION

Cell segmentation is a fundamental and a critical problem
in microscopic image analysis. Compared to other domains,
microscopic image segmentation has its own requirements and
challenges such as handling deformable models and dynamic
appearance in noisy images. Therefore, it is not applicable
to utilize a general segmentation framework to address those
challenges and needs. In addition, differences in cell imaging
techniques as well as varieties in cell types and experiments
increase the problem diversity in microscopic image segmenta-
tion research. In this work, we propose a method for detecting
tumour cell spheroids in phase contrast (PC) images of co-
cultures of fibroblasts and tumor cells in an experimental 3D
model.

A. Phase contrast microscopy & motivation

Phase contrast imaging is the most commonly used [1],
label free microscopic method for visualising cells. The prin-
ciple of PC imaging is based on the phase difference between
a transmitted light and the received wave that passes through
objects. PC imaging has been shown to work very well for thin

and transparent objects. Compared to bright field imaging, it
exposes more fine details and time consuming cell labelling,
and phototoxic effects of high energy light, necessary for
fluorescence microscopy are omitted.

Most often previous studies utilizing PC images are from
thin monolayer (2D) samples. However, monolayer screening
is not suitable for every application. For example, for cancer
research and drug discovery, 3D model systems mimic the
complexity of the human tumour environment more accurately
than monolayer cell cultures [4]. Although PC is not ideal for
acquiring high quality in-focus images from 3D cultures, it is
very convenient technique for long term living cell imaging
due to the ease of use, and lack toxic effect to the cells. In
this work we aim to develop computer vision based methods
for analysis of PC images from 3D cultures and to distinguish
different cell types in co-cultures of fibroblasts and tumor cells.

B. Dynamic cell morphology

The relationship between cancer progress, i.e. cell ability
to sense its environment and adapt to it, and its morphologic
appearance are crucial elements in the tumor progression [2].
These morphology changes in three-dimensional environments
compared to two dimensional models resembles more closely
tumor environment. Therefore, 3D models in cancer investi-
gations are useful as an intermediate step between primary
drug screening and animal experimentation [4]. To monitor
and quantify the cell dynamics in cancer biology in live cell
microscopy which is comprised of long image sequences,
automated image analysis solutions are needed. The first step
in analysing morphological cell changes and other higher level
processing tasks is to detect cells.

Fig. 1. Growth of a tumor cell spheroid over time. At day 1 few cells form
a small cluster. Cell number increase over time. Images are not in scale.

The shape of cell spheroids vary in time due to proliferation



Fig. 2. Sample images from our database. (Left) Phase contrast image of a 3D culture containing tumor (roundish) and fibroblast cells (elongated). (Middle Left)
Fluorescent image of the same culture. Green Fluorescent Protein (GFP) is used to label fibroblast cells. (Middle Right) Phase contrast and fluorescent images
are superimposed and making the interpretation of PC image easier. (Right) Our learning based probabilistic detection result. Colormap indicates confidence
level. Best viewed in color.

of cancers cells and changes in their extracellular environment
(Figure 1). Such variety in shapes prevent image analysis meth-
ods to utilize prior information about cell shape. In addition,
depending on the intervals between imaging times, cancer cells
within the spheroids can change their shapes thoroughly and/or
change their positions relative to the previous time step.

II. PREVIOUS WORK

Because of its simplicity the most commonly used method
in cell detection applications is thresholding (i.e. Otsu’s
method [6]). However, it works only for high quality images
in which cells have significantly different intensities from the
background. Dynamic (adaptive) thresholding [7] provides
better results compared to global thresholding but its power
does not go beyond compensating uneven image illumination
and some noise.

The watershed method is one of the most popular approach
among region based segmentation methods [5]. The method
is highly sensitive to local minima (false edges) or requires
high precision markers which is hard to obtain automatically.
Although watershed segmentation has a widespread usage in
medical image analysis with many variants, high noise levels
greatly effect the segmentation result. Besides, if there is non-
uniform intensity profile within cell or cell clusters and also
along the background as in our situation, watershed method
results over segmentation.

Deformable models such as active contours (Snakes [15]
and Level Sets [18]) are well-know methods for extracting the
boundaries of objects in biomedical images. The basic idea is
to evolve a curve in a constrained way for detecting objects.
The segmentation task is formulated as an energy minimization
problem based on several functions such as gradient flow, edge,
intensity, and curvature information. The major disadvantage
of Snakes is the necessity of initializing a contour nearby the
objects edges. Moreover, it is sensitive to local minima and
sensitive to parameter selection. Although many improvements
on active contours approaches are introduced [16], [17] such
methods are always suffering from missing open contours or
sticking at false edges.

Since phase contrast images of 3D cultures are extremely
degraded, image gradient, even after filtering, does not provide
useful information for segmenting objects. This is demon-
strated in Figure 3. In this particular image patch, tumour
cells (outlined with red) and fibroblast cells (outlined with
green) are residing with some occlusions (outlined with blue).
Like in most of our cases, gradient magnitude cannot resolve

cell boundaries clearly (Figure 3, right). In addition to image
degradation, edges that are belonging to other cell types
(fibroblasts) are inevitably contributing to the gradient image.
Therefore, sole gradient/edge based segmentation approaches
are not suitable in such circumstances. Fibroblast cells and cell
interactions in our cell culture can be observed better in Figure
2. For a detailed information on significant past efforts in cell
segmentation research, the reader can refer to a recent review
given in [3].

Fig. 3. Markings in mean filtered image are as follows. Red: tumour cells,
green: fibroblast cells, blue: fibroblast cells and tumour cells are heavily
occluded.

While simple intensity thresholding mechanisms are
enough to segment and detect cells in some cell research the
state-of-the-art segmentation methods produce unsatisfactory
results for complex experiments such as in our case. Apart
from the segmentation performance, segmentation frameworks
are not capable of discriminating different cell types in mixed
populations. Therefore, in such situations, instead of utilizing
blind segmentation schemes learning based schemes are more
appropriate. By this way, image features that are specific to
particular cell type that we want to detect could be extracted.
Yin et al. [20] adopt pixel-based classification scheme em-
ploying local histograms with a sliding window and train
a set of Bayesian classifiers to segment cells in monolayer
PC images containing one cell type. Arteta et al. [19] use
features over Maximally stable extremal regions (MSER) [23]
with Support Vector Machines (SVM) classifier to detect cells
in cultures consisting of single cell type. Features basically
consist of several concatenated histograms of intensities in
various contexts. MSER initialization in [19] reduces the
computational complexity of the sliding window approach
adopted in [20]. Another related technique [21] uses prob-
abilistic SVM classification results of superpixel features as
an input to graph-cut algorithm to segment cells. In [21] Ray
descriptors for capturing object shape features are incorporated
with texture based rotation invariant features. Ray features
are first employed in another learning based work [22] for
detecting mitochondria and neuron nuclei.

In this study, we employed PC images taken from 3D
models in which tumor cells reside and interact dynamically



Fig. 4. Flowchart of the proposed method. PC images are first filtered to remove noise. Superpixel segmentation is performed to reduce complexity and to
work on compact regions that follow image boundaries. A Random Forest classifier is trained on features that are extracted from both positive and negative
samples. During test time similar process is followed and superpixels are assigned to probabilistic outputs based on the average decision generated by the trees.
Final decision is made by simple thresholding.

with the surrounding matrix and fibroblast cells (Figure 2) and
we propose a supervised learning framework to detect tumour
cells. Although fluorescent images of the experiments which
can be used to distinguish fibroblast cells are available, we
utilize only PC images for reasons mentioned above. In con-
trast to previous studies, our data contains different cell types
that can change their appearance and shape significantly over
time. Besides, the images have poorer qualities, lower Signal
to Noise Ratio (SNR) due to underlying imaging technique
(PC) and the cell culture thickness. Moreover, we employ
both appearance and texture based descriptors together with
statistical measures to extract as many distinctive features
as possible. We measure the importance of each feature by
training random forest classifier and obtain probabilistic detec-
tion results. The method comprises four main steps: filtering,
superpixel segmentation, feature extraction, and classification
(Figure 4). Working on PC images of thick samples comes at
the price of reduced image quality. To increase the SNR we
apply Gaussian filtering at the beginning of the training and
the testing process.

III. SUPERPIXEL SEGMENTATION

Superpixel labelling is an over segmentation strategy for
partitioning images into smaller patches that are spatially con-
tiguous and similar in intensity. It is a common preprocessing
step to work on superpixels as the basic unit instead of working
on the pixel level. This greatly reduces the computational
complexity of following image processing tasks. Superpixel
clusters are convenient as they produce compact regions that
follow image boundaries.

In this study we adopt simple linear iterative clustering
(SLIC) [24] method because of its simplicity and flexibility in
the compactness and number of the superpixels it generates.
The algorithm adopts k-means clustering in intensity and spa-
tial domain. Starting from k regularly spaced cluster centers,
each pixel in the image is associated with the nearest cluster
center. The process of associating pixels with the nearest
cluster center and recomputing the cluster center is repeated

iteratively until convergence. At each iteration, superpixels are
reassigned to the average color and position of the associated
input pixels. The distance measure (D) in computing the dis-
tance between a pixel and cluster center is a simple Euclidean
norm in the five-dimensional space (color(CIELAB) +spatial).

D =

√
dc

2 +
ds
S

2

m2, (1)

where dc is the color distance, ds is the spatial distance, m
is a parameter that weighs the relative importance between
color similarity and spatial proximity, and S is a parameter
indicating the size of superpixels. Compactness, C, (i.e.more
compact superpixels have lower area to perimeter ratio) can
be controlled by m.

IV. FEATURE EXTRACTION

We utilize well known local image descriptor scale invari-
ant feature transform SIFT [25] to extract appearance based
features. It has been shown to be successful in various image
processing applications for detecting and describing interest
points (keypoints) locally. SIFT descriptors are normally com-
puted at local maxima and minima of difference-of-Gaussian
(DoG) images. In this study we compute SIFT descriptors
(fsift) at points specified by superpixel centers at fixed scale.
SIFT descriptor in this context are similar to Histograms
of Oriented Gradients (HOG) descriptor. However, rotation
invariance is ensured as it is done in [25] such that a gradient
orientation histogram is computed in the neighbourhood of
the keypoint in a weighted manner. The highest peak of
the histogram is regarded as the “dominant” orientation and
finally descriptor is evaluated relative to the orientation of the
keypoint.

Secondly, histograms of intensity values are employed.
Such intuitive features are already used in many learning based
applications but their performances could significantly vary
depending on the input characteristics. Therefore, this feature
could also be interpreted as a baseline method for comparison



purposes. In this work, intensity values from pixels contained
in superpixel k are extracted and represented with an n-bin
histogram fintensity.

Lastly, we employ Center Symmetric Local Binary Patterns
(CS-LBP) [8] which is developed for region description based
on the Local Binary Pattern (LBP) [9]. It has been shown
to be quite successful in many computer vision problems
particularly in face analysis research [10]. CS-LBP produces
smaller number of labels than LBP thus results shorter his-
tograms which are better suited for region description. Intensity
values of opposing pixels are compared and the differences are
thresholded. For N equally spaced pixels on a circle of radius
R centered at point pi the (CS-LBP) operator is defined as :

CS-LBPpi =

N/2−1∑
i=0

s(Ii − Ii+N/2)2
i, s(x) =

{
1 x > 0
0 x < 0

(2)
where Ii is the intensity at point pi. We start with extracting
rotation invariant CS-LBP signature for each pixel in the input
image. Then m-bin histograms (fcslbp) of CS-LBP labels over
superpixels are constructed. CS-LBP features provide low level
intensity and texture cues.

Finally, each superpixel is associated with a set of features
fsift, fintensity, and fcslbp. To cover all these features at a
time, for each superpixel k, we make a composite feature
vector fk combining SIFT descriptors, intensity histograms,
and CS-LBP features: fk = [fsift fintensity fcslbp].

V. CLASSIFICATION

Random Forests (RF) is an ensemble of tree predictors
introduced by Ho [13] in 1995 and later studied in depth by
Breiman [11] in 2001. It is shown to be a fast and effective
classification and regression method for many applications
[12], [14]. Simply, RF classifier bring together weak learners
to form a strong learner. Each tree in the forest consists of split
and leaf nodes. Features at each node are selected randomly
and nodes are split into two (binary partitioning) by calculating
the best split based on these randomly selected features. Best
split is evaluated by maximizing the information gain of the
split. Leaf nodes are created when the maximum tree depth is
reached or the number of training samples at the node is less
than the predefined threshold. During the training each leaf
node may store the empirical class distributions associated to
the subset of training data that has reached that leaf node [12].
During the test time, the query is sent down starting from the
root node to the leaves through all trees in the forest. Finally,
an ensemble class posterior is obtained by averaging all tree
posteriors. Final decisions for superpixels’ class ids are made
by simply thresholding the probabilistic output. Precision-
Recall Curves are obtained by varying the threshold from 0
to 1. Detailed information on decision forests can be found in
[12].

VI. EXPERIMENTS AND RESULTS

In this study three image sequences are employed. Each
sequence has different experimental conditions and their de-
tails are beyond the scope of this work. However, due to
varying conditions cell number, size, shape in time, cellular
dynamics, and morphology may differ in each experiment.

TABLE I. IMAGE SEQUENCES

Sequence Name Number of Images
(Original / Annotated)

Train / Test

Collagen 330 / 185 19 / 166

Matrigel 331 / 27 0 / 27

Matrigel-Collagen 330 / 27 0 / 27

This is the only important information regarding the effects
of experimental set-up. Sequences contain 330 images on the
average with one image per hour frequency; i.e. two weeks of
observations. For training and evaluation purposes we utilize
only a subset of the whole dataset by sampling uniformly.
Because, obtaining ground truth requires marking tumour re-
gions manually which is a laborious process. Sequence names
representing culture matrices (Collagen, Matrigel, Matrigel-
Collagen) and corresponding number of images that have
ground truth information are given in Table I. Number of
images in training and testing sequence are shown in the
last column of the table. To investigate the limitations of our
methods we utilize images only from Collagen sequence for
training. The other two sequences are used only for testing
purposes. Collagen sequence is divided into two parts: one for
training (19 images), other for testing (166 images). Images
have sizes of 300×400 (height×width) pixels.

For training Random Forest Classifier 1000 trees are em-
ployed. We test trees with 25 as the maximum depth level. At
each node 5 features are randomly used for splitting. It has
been found that the procedure is not overly sensitive to the
number of features used to split at each node [14]. During
the training time, 79 positive samples (number of superpixels)
per image and 668 negative samples per image on the average
are used. These numbers are given for an image segmentation
of appropriately 1200 superpixels. During the test time class
posterior of a superpixel feature (output of the RF classifier) is
applied for each pixel belonging to that particular superpixel.

For SIFT features we employ similar parameters as it is
originally proposed in [25]. Image patches centered on key-
points with keypoint size of 16 in the OpenCV implementation
are used. Patches are divided into into 4×4 pixel tiles and for
each such tile a histogram of gradient orientations (relative to
the dominant orientation) are computed with 8 bins resulting
a 128 dimensional feature descriptor. Intensity histograms and
CS-LBP histograms are calculated for 16 bins (n = m = 16).
Finally, combined feature vector fk for superpixel k becomes
a vector of length 160.

Fig. 6. Images are from the initial stages of the experiment. Fibroblast cells
and tumour cells have very similar shapes and appearances in phase contrast
images (left). It is almost impossible to distinguish tumour and fibroblast cells
without the help of fluorescence images (middle). Classifier (right) in that
stage results with both low precision and recall values when the probability
threshold for making decision is set to a high value. Best viewed in color.

For evaluating performances we adopt Precision-Recall
(PR) Curves where precision = tp/(tp + fp) and recall =
tp/(tp + fn), tp: true positives, fp: false positives, and fn:



Fig. 5. Precision Recall curves. (First Column) Collagen experiments. (Second Column) Matrigel experiments. (Third Column) Matrigel-Collagen experiments.
(First Row) SIFT features for varying segmentation parameters. (Second Row) Histogram of intensity features for varying segmentation parameters. (Third Row)
CS-LBP features for varying segmentation parameters. (Last Row) Comparison of detection performance of combined features, SIFT features, histogram of
intensity features, CS-LBP features and adaptive thresholding method. SIFT features yield higher precision especially at high recall values. Slight improvement
is obtained by introducing the combined features. Varying parameters in superpixel segmentation process yield similar performance in classifying individual
superpixels. Although training data is obtained only from Collagen sequence, our approach performs much better than the baseline method in other sequences
as well. Best viewed in color.



false negatives. Evaluation is performed on the pixel level.
Since there is no standard baseline method for comparing
learning frameworks, we compare our method with adaptive
thresholding which is one of the most widely used approach
in biomedical image processing applications. Figure 5 presents
PR curves for various test settings. Each column is dedicated to
one image sequence (Collagen, Matrigel, Matigel-Collagen).
In the first row, PR Curves for only SIFT features are shown
for varying parameters of superpixel segmentation. Similarly
histogram of intensity feature performance is shown in the
second column and PR curves for CS-LBP features are given
in the third row. In the last row, in addition to the best
performances of single features, PR curves of combined feature
vector and adaptive thresholding are shown. Shapes of PR
curves of our proposals especially at low recall values are
different than accustomed PR curves (i.e. rising from low
precision value instead of lowering from a higher value). The
reason for that is explained with an example in Figure 6.

Three values for size (S) and compactness (C) param-
eters are tested: (S,C) = {(100, 50), (250, 40), (500, 30)}.
Smaller region with less compact choice slightly improves
performances for low recall values but does not have significant
effects. Among three features, SIFT features performed better
on the average. Combined features have higher PR values than
SIFT’s values for some operating regions. On the other hand,
worst performance belongs to the adaptive thresholding for
support region of a 15 × 15 window. In this method some
regions in the PR curve cannot be reached. The most significant
result in this study is to observe similar detection performances
for two sequences (Matrigel and Matrigel-Collagen) which did
not contribute to the training phase. Based on this, it can be
concluded that the proposed method has no heavy dependency
on the training data and the segmentation parameters, as long
as the images have similar local features. Such similarity
doesn’t put constraints on global features like appearance,
shape or size since our three sequences already have different
cell dynamics.

VII. CONCLUSION

Learning based detection approaches are better suited than
blind segmentation methods for cluttered and noisy micro-
scopic image analysis. Learned features from single image
sequence could be utilized to detect similar structures in other
sequences that might have different dynamics. In addition,
detection performance does not suffer from parameter tuning.
Proposed method can be employed in different applications
in biomedical image analysis where obtaining approximate
regions with high precision and recall is more important than
extracting exact cell boundaries.
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