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Abstract—Automatic face recognition in unconstrained con-
ditions is a difficult task which has recently attained increasing
attention. In this domain, face verification methods have signifi-
cantly improved since the release of the Labeled Faces in the Wild
database, but the related problem of face identification, is still
lacking considerations, which is partly because of the shortage of
representative databases. Only recently, two new datasets called
Remote Face and Point-and-Shoot Challenge were published
providing appropriate benchmarks for the research community to
investigate the problem of face recognition in challenging imaging
conditions, in both, verification and identification modes. In this
paper we provide an in-depth examination of three local binary
description methods in unconstrained face recognition evaluating
them on these two recently published datasets. In detail, we
investigate three well established methods separately and fusing
them at rank- and score-levels. We are using a well-defined
evaluation protocol allowing a fair comparison of our results
for future examinations.

I. INTRODUCTION

Face recognition has been among the major topics in com-
puter vision research for decades. In biometrics, processing
with faces has to offer qualities such as acceptability and
effortless collection, which is not the case, for example, with
iris or fingerprints. Besides, among the general population,
expectations from common consumer electronic devices (like
Google glasses) and web services (like automatic face tag-
ging in Facebook) have been rising all the time. In general,
face recognition has applications in content-based image re-
trieval [1], security and surveillance [2], and human computer
interaction [3], to name but a few.

The earliest work on automatic face recognition can be
traced back to the 1970’s, and since then, numerous algorithms
have been developed including the classical Eigenfaces and
Fisherfaces methods. An extensive review of face recognition
from its early phase until the beginning of 2000’s can be
found in [4]. Currently, a hot subtopic is unconstrained face
recognition, where the verification (one-to-one matching) or
identification (one-to-many matching) process is often severely
affected by resolution, blurring, noise, not forgetting the varia-
tions in pose, illumination, and expression. The major source of
these issues is the fact that users can be situated pretty far away
from the camera sensor during the image capture, the problem
also known as remote face recognition. Another reason for
these complications can be the photographer him/herself or
the quality of the camera [5]. The key insight is that in
unconstrained face recognition one moves further away from
cooperative subjects. Moreover, in [6], a face identification sce-
nario, presented by the investigation of the Boston Marathon

bombings, was simulated and two state-of-the-art commercial
face recognition systems were gauged in matching low quality
face images of uncooperative subjects. Although, one rank-one
hit for the suspect was presented, it was concluded that the
common obstacles continue to confound matchers, and thus,
it can be argued that unconstrained face recognition remains
highly topical problem. For clarity, from this point onwards, by
unconstrained face recognition it is meant any of the following
four scenarios commonly discussed in the literature, namely
remote face recognition, face recognition at a distance, face
recognition from low-resolution images, or any other face
recognition scenario where controlled imaging conditions or
cooperative subjects (either both or only one) are absent.

One of the milestones in unconstrained face recognition
is the release of the Labeled Faces in the Wild (LFW) [7]
database, which was designed to promote development of face
verification methods in unconstrained scenarios. The utilization
of the database has been a big success, and currently, it is
regarded as the de-facto evaluation benchmark for face veri-
fication. In the latest discussion, however, it has been argued
whether LFW truly reflects the conditions often confronted in
real-life-like scenarios [8]. For unconstrained face identifica-
tion, things are not better as most of the investigations consider
only constrained scenarios, where studio lights and cooperative
subjects are used to control variations in pose, illumination
and expression, representative evaluation benchmarks being,
for example, FERET [9] and FRGC [10]. Only recently, two
new benchmarks designed for studying unconstrained face
recognition were published, namely the Remote Face [20]
and the Point-and-Shoot Challenge [5] datasets. The release
of these two datasets finally enables the research community
to benchmark existing and novel methods for unconstrained
face identification in more plausible conditions.

In this paper, we provide an in-depth examination of three
off-the-shelf local binary description methods to tackle the
problem of unconstrained face recognition. Our main focus
is on closed-set face identification where a one-to-many com-
parison is made to establish an identity, and where the yet
unidentified individual is known to lie as a template in the
biometric database. We use two recently published databases
particularly designed for studying this problem. Besides this,
we investigate how the given description methods perform
in face verification contributing the recently announced chal-
lenge related to the Point-and-Shoot dataset. The considered
description methods are Local Binary Patterns (LBP) [12],
Local Phase Quantization (LPQ) [13], and Binarized Statistical
Image Features (BSIF) [14]. The main contribution is to



benchmark a subset of recent powerful local binary description
methods on the problem of unconstrained face recognition
using new and challenging databases. To the best of our knowl-
edge, this is the first examination of these two new datasets
using well established local binary description methods that
usually work as a baseline for many face recognition studies.
The description methods chosen to this study are state-of-the-
art especially in texture recognition and are among the top
local image description methods in many other problems. The
second contribution is to provide a comparison on the given
three methods, namely LBP, LPQ, and BSIF, and to examine
the potential of fusing them in face identification. Our work
provides a valuable reference point for future work.

The outline of the paper is as follows: We first describe the
local binary descriptors and fusion methods used throughout
the study. Then, in the experimental section we provide eval-
uations on the two new benchmarks gauging the capability of
the methods. Finally, we provide some discussion about the
results in overall, compare them to the previous works in the
literature, and make the concluding remarks.

II. LOCAL BINARY DESCRIPTIONS FOR FACIAL
REPRESENTATION

One of the focus areas in face recognition is how to repre-
sent faces to the automatic recognizer. An ongoing success
story has been the use of methods based on local image
description, the notable ones including Gabor features, gradient
based SIFT and HOG, and Local Binary Patterns (LBP).
Especially binarized local image descriptors, like LBP, have
gained a great favour in a wide spectrum of face analysis
studies. An updated reference of the LBP methods for face
representation can be found from [11]. Besides LBP, we next
review LPQ and BSIF which were not evaluated in [11].

One of the pioneering works in local image description
is Local Binary Patterns (LBP) [12]. The LBP method is
based on a texture operator which works in a rectangular pixel
neighborhood. In one LBP operation, the center value of the
neighborhood is used as a threshold to label a set of surround-
ing pixels by zeros and ones to form a binary string which
characterizes texture properties within this region. Usually, the
sampling pattern of the operator follows a certain topology,
for example a circle, using interpolation to sample at sub-
pixel coordinates. The efficiency of the LBP method can be
largely explained by the thresholding operation which makes
the descriptor invariant to monotonic gray-scale changes. Fig.
1 depicts three neighborhood examples used to define a texture
and calculate a local binary pattern.

Fig. 1. An example of an LBP calculation using three different neighbor-
hoods.

A blur invariant Local Phase Quantization (LPQ) was
proposed for texture description in [13]. The LPQ method is
based on an operator that examines the phase component of
the Fourier transform in local neighborhoods. The fundamental
idea is based on the assumption that the phase component

at low frequencies is a blur invariant property under certain
commonly fulfilled conditions saying the spatial blurring in an
image should be close to a convolution between the image and
a centrally symmetric point spread function like a Gaussian
or a sinc-function. In LPQ, a short-term Fourier transform
is first applied following the calculation of four frequency
points. The phase information in the Fourier coefficients is
recorded by taking the signs of the real and imaginary parts
by using a simple scalar quantizer. Furthermore, in [13], it
is said that decorrelating the samples before quantization can
further improve the descriptor’s performance. The overall LPQ
calculation in a given neighborhood yields an eight-bit binary
string. The steps of LPQ calculation are described in Fig. 2.

Fig. 2. An example of an LPQ pattern computation for a gray pixel using
5-by-5 neighborhood.

A rather new local binary description method is called
Binarized Statistical Image Features (BSIF) [14]. BSIF is
a data-driven method, where a filter bank is learnt from a
set of natural image patches by maximizing the statistical
independence of the filters’ responses to those. One of the
underlying ideas is to form a justified base for the independent
binary quantization of the output coordinates of the filter bank.
Indeed, by maximising statistical independence one is able to
learn the most optimal set of filters with respect to the follow-
ing independent quantization of response vector coordinates,
which is the fundamental part of all local binary descriptor
methods. Also, maximising the statistical independence results
in an entropy growth between those individual coordinates
leading to an efficient description process in overall. An
example filter bank learnt using a set of natural images using
a particular set of parameters is shown in Fig. 3.

Fig. 3. A bank of 7-by-7 BSIF filters learnt from natural images.

As seen, the common factor of the presented descriptor
methods is that they finally output a binary string for each
pixel in the given image. What follows then is to decide how
these binary strings are used in the recognition. The original
procedure with the LBP description, as well as with LPQ
and BSIF, is to collect the resulting binary descriptors in the
image or its regions into a histogram which acts as an image
description as a whole. In general, using histograms over a
discrete vocabulary of local texture features is an effective way
of image description. However, it has also been shown that the
encoded image can be used as such [15], [16].

III. FUSION IN FACE IDENTIFICATION

Fusion is among the key methods when it comes to
boosting the performance of a recognition system. In general,



it can be applied in any level of the system covering sensor,
feature, score, rank, and decision levels [17]. Among the most
widely used fusion methods are the ones operating on rank
and score levels. On the rank level, the consensus decision is
made by using the rankings produced by different recognizers.
On the score level, similarity scores or measures are combined
in order to arrive at a final recognition decision. Score-level
fusion is essentially based on score normalization, which
is needed as score distributions vary as a function of the
recognition algorithm. The idea behind fusing or combining
pattern classifiers is to benefit from their non-overlapping
classifications and the potential that these classifications retain
some complementary information [18]. Next we describe two
fusion methods that we are using in this study, namely the
highest rank and the w-score method [19].

The highest rank method operates on a rank level. In
the method each matched candidate is assigned the highest
rank of the set of rankings computed by different recognition
algorithms. The updated rank for user k is

r′
k = min

j
rk,j , (1)

where rk,j is the rank assigned to user k by the algorithm j.
In the method, ties are solved randomly. The method is said
to be useful only when the number of enrolled users is large
compared to the number of matching algorithms. If this is not
the case, the probability of having a tie increases raising the
risk of the re-ranking to be uninformative [17]. In practical
biometric systems, as well as in our work, the number of
enrolled users is much bigger than the number of algorithms
making the highest rank a potential solution for fusion.

To meet the requirements of robust fusion, a method called
w-score normalization technique was introduced in [19]. The
method is based on modelling a non-match distribution, in
other words, it measures a probability that a particular score
is not drawn from the non-match distribution. Among the
key insights of w-score is that analysis is often done for a
single input sample at a time, which is not, indeed, based on
the overall match or non-match distributions. For example,
in face identification, an input face produces at most one
match score mixed in with a larger set of non-match scores,
assuming the gallery contains only one template per subject.
The idea is to model the tail of the non-match distribution,
which is achieved by fitting a Weibull distribution to the top
n matches. Given that, it does not matter what the underlying
non-match distribution truly is, the only requirement is that
the match scores are bounded, which is the case for most
recognition systems. The details of the algorithm can be found
from the original article [19]. Once the fitting has taken place
the normalization can be completed. The w-score fusion can
be defined as

s′
i =

∑
j

si,j , (2)

where si,j is the normalized score for gallery class i using the
algorithm j. In [19], robust fusion was defined to be a process
that is insensitive to errors in its distributional assumptions on
the data, has simple parameter estimation, and a high input
failure tolerance.

IV. EXPERIMENTAL ANALYSIS

We conduct our descriptor examinations on unconstrained
face identification by first evaluating the description methods
separately and then by combining them using two fusion
methods operating on different system levels. In this work,
we utilize the Remote Face (Remote) [20] and the Point-and-
Shoot Challenge (PaSC) [5] datasets. The evaluation protocol
for both benchmarks is based on testing several separate
query sets under different imaging conditions on a target
frontal face set with varied number of templates per individual.
The evaluation protocol for Remote follows the guidelines
of the dataset package distributed by the authors in [20].
However, the protocol used in the related paper [20] is not
the same than in the official distribution. As there are not
any official specifications for how the PaSC dataset should
be used in face identification experiments, we define our own
protocol which is easily reproducible. Finally, we evaluate the
given description methods on face verification using the PaSC
dataset contributing to the recently announced face recognition
challenge [5].

A. Setup

Remote contains 17 different individuals and 2,102 face
images in total. The dataset is collected in challenging con-
ditions covering images taken from long distances in an
unconstrained outdoor maritime environment [20]. The face
images of the database are organized into seven folders
which are listed in Table I with detailed description and the
number of images. The images are organized so that the
folders low reso, pose frontal, and pose nonfrontal are non-
overlapping, whereas the rest are subsets of pose frontal and
pose nonfrontal folders. Using the given sets, one is able to
examine how the image descriptors perform under specific
imaging conditions.

PaSC contains 293 different individuals and 9,376 faces
in total. The dataset is organized into two folders referred as
query and target, which both have equal number of samples.
Both of these folders contain 16 images per an individual
so that there are four samples taken in four conditions re-
ferred as close frontal, close nonfrontal, distant frontal, and
distant nonfrontal explaining the distance and pose conditions.
PaSC images were taken in nine different locations, both in-
and outdoors.

TABLE I. THE FACE IMAGE FOLDERS IN THE REMOTE DATABASE.

folder description no. of images
gallery 5 clear and frontal with good illumination 85
low reso Very low resolution 90
blur Frontal and blurred 75
illum Frontal with varying illumination 561
illum blur Frontal with blur and varying illumination 128
pose frontal All frontal 1,081
pose nonfrontal All non-frontal 846

For evaluating the local description methods and their
fusion in face identification on these two benchmarks we adopt
the following procedure: For both datasets we take a gallery
set which contains only frontal face images. For query sets, we
then take several sets that exhibit certain imaging conditions.
For Remote, we use the gallery folder for the gallery, and



for query sets we use the remaining six folders. With this
kind of setting, the gallery images in this experiment are
composed of clear and well illuminated faces. For PaSC, we
use the close frontal subset of the target folder as a gallery
set, and for query sets we use all four subsets of the query
folder. Unlike in the Remote experiment, gallery images in
this experiment contain also blurred and poorly illuminated
faces. In both experiments, the number of faces per subject in
the gallery set is gradually increased, and each time the faces
are chosen randomly. The experiments are repeated 20 times
and the final recognition result is reported using the average of
these permutations. For the face verification part we use only
the PaSC dataset and follow the guidelines given by the recent
face recognition challenge [5]. The problem is divided into two
parts where (i) only all frontal query faces are matched against
all frontal target faces and (ii) all query faces are compared
against all target faces. The corresponding results are presented
at FAR=1% like it was proposed in [5].

We first align each face with respect to eye coordinates
provided by the databases. After that we resize each face into
66×66 pixels and apply the illumination normalization method
proposed in [15]. The aligned face is then processed using the
given local binary descriptor, and then, divided into 6×6 non-
overlapping cells from which the descriptor labels are collected
into histograms which are finally concatenated forming the
overall description of the face. The classification is performed
using nearest neighbor classifier with χ2 distance metric. Fig.
4 depicts some geometrically normalized face samples from
the used face datasets.

(a) (b)

Fig. 4. A random set of normalized face samples from (a) Remote
and (b) PaSC databases. Each row represents images taken from the same
individual. The images demonstrate some of the major challenges (such as
lighting, motion blur and poor focus) that are common in unconstrained face
recognition.

All of the local descriptors used here are parametric with
respect to the spatial support (neighborhood size) and to
the number of quantizations (or filterings) to be performed.
We found 7×7 neighborhoods with eight-bit binary coding
to perform consistently well for all methods for the given
face size. For LBP, we used circular topology with eight
sampling points using a radius of 3. For LPQ, we used the
common four-frequency-point coding of the phase information
in the 7-by-7 neighborhood, and for BSIF, a bank of eight
7×7 size of filters. With these settings, the length of the
concatenated histogram representation of the face using any
of these methods yields 9216 (6×6×256) elements. For LPQ,
we also used the decorrelation scheme as described in [13].
For fitting Weibull distributions in score-level fusion used in
face identification, we found that the tail size of 5 performs
consistently well for all descriptors.

B. Results

In the Remote experiment, we first evaluate each descriptor
separately performing rank-1 analysis by gradually increasing
the number of gallery samples per individual. The idea of this
experiment is to examine how well these descriptors perform
in exact recognition and how well one is able to alleviate the
task by simply increasing the number of gallery samples per
individual. The results, shown in Table II, point out that there is
no great difference between the methods in their performance.
While having only one gallery sample per individual, BSIF
seems to be superior compared with others. Moreover, except
with low resolution images, BSIF seems to be slightly the best
on all folders. It can be seen that the performance generally
increases as a function of the number of gallery samples per
individual.

TABLE II. RANK-1 ANALYSIS ON THE REMOTE DATABASE USING
LBP, LPQ, AND BSIF DESCRIPTORS (EACH COLUMN IS FOR DIFFERENT

NUMBER OF GALLERY SAMPLES PER INDIVIDUAL).

method 1 2 3 4 5
low reso

LBP 9.0 12.2 11.2 11.7 12.4
LPQ 9.0 10.1 11.9 13.1 13.5
BSIF 10.3 11.0 10.3 11.4 11.2

blur
LBP 40.3 42.3 45.4 45.9 45.9
LPQ 41.2 44.9 51.1 55.4 58.1
BSIF 42.8 46.0 53.9 59.3 62.2

illum
LBP 57.5 67.2 74.1 76.8 78.4
LPQ 58.6 66.8 73.7 76.9 79.5
BSIF 60.0 68.7 75.0 77.6 79.3

illum blur
LBP 46.2 54.6 64.8 69.1 73.2
LPQ 49.9 59.6 67.5 71.7 75.6
BSIF 52.3 61.5 69.2 72.2 74.8

pose frontal
LBP 49.4 57.5 63.5 66.1 67.9
LPQ 50.1 57.4 64.6 67.9 70.6
BSIF 51.5 59.0 65.4 68.2 70.1

pose nonfrontal
LBP 33.1 39.8 44.0 47.0 49.9
LPQ 35.8 40.6 44.1 45.9 47.5
BSIF 35.9 41.8 45.3 47.5 49.2

To have a deeper view of the performance we further
performed rank-k analysis. The idea of this step is to examine
how well the descriptors perform in rank-k recognition, which
measures the recognition rate when it is enough that the
correct match is among the first k candidates returned by
the algorithm. The methods are evaluated in such a way
that the gallery set contains only one sample per individual,
which is because the fusion methods tested here are originally
designed only to that kind of operation mode. We run the 20
permutations and report the average rates up to rank-5. The
results on pose frontal and pose nonfrontal folders are shown
in Table III. According to the table, LPQ and BSIF outperfom
LBP, and BSIF seems to perform better compared with LPQ.
Fusing all three descriptors or only BSIF and LPQ on the score
level using w-score seems to give the best results.

In the PaSC examination we proceed like in the previous
experiment. We first perform rank-1 analysis by gradually
increasing the number of gallery images per individual. The re-
sults, shown in Table IV, resemble the results obtained from the
previous experiment for the most part. First, the performance
of each method improves when the number of gallery samples
per individual increases. Moreover, BSIF seems to outperform



TABLE III. RANK-k ANALYSIS OF LBP, LPQ, AND BSIF METHODS
WITH AND WITHOUT FUSION, WHERE H STANDS FOR h-rank AND W FOR

w-score.

method rank-1 rank-2 rank-3 rank-4 rank-5
pose frontal

LBP 49.4 60.6 68.4 74.4 79.1
LPQ 50.1 61.5 69.4 75.7 80.5
BSIF 51.5 62.2 69.9 75.8 80.7
LBP+LPQ

H

49.6 61.7 69.6 75.5 80.4
BSIF+LBP 50.5 62.1 69.7 75.6 80.3
BSIF+LPQ 50.9 62.6 70.3 76.2 81.2
ALL 3 49.6 62.3 70.0 76.1 80.7
LBP+LPQ

W

51.2 62.0 70.0 75.9 80.7
BSIF+LBP 51.9 62.8 70.4 76.4 80.7
BSIF+LPQ 51.7 62.9 70.6 76.6 81.7
ALL 3 52.4 63.0 71.0 76.8 81.4

pose nonfrontal
LBP 33.1 43.8 51.4 57.5 63.0
LPQ 35.8 47.3 55.3 61.2 66.7
BSIF 35.9 47.8 55.9 61.9 67.0
LBP+LPQ

H

34.7 46.2 54.0 60.1 65.1
BSIF+LBP 34.3 46.3 54.3 60.4 65.3
BSIF+LPQ 35.8 48.2 56.4 62.4 67.3
ALL 3 33.7 47.0 54.9 61.1 66.1
LBP+LPQ

W

36.0 47.1 54.5 60.3 65.4
BSIF+LBP 36.0 47.1 54.8 60.8 65.7
BSIF+LPQ 36.7 48.8 56.9 62.8 67.6
ALL 3 37.0 48.5 55.8 61.8 66.8

other methods with frontal and nonfronal face images captured
from closer distances. It is noteworthy, however, to see the
deteriorated performance of BSIF with respect to LBP and
LPQ with face images captured at a distance.

TABLE IV. RANK-1 ANALYSIS ON THE PASC DATASET USING LBP,
LPQ, AND BSIF DESCRIPTORS.

method 1 2 3 4
close frontal

LBP 25.1 35.3 43.4 49.4
LPQ 26.4 36.7 44.3 49.1
BSIF 27.0 37.4 45.6 51.0

close nonfrontal
LBP 6.5 9.3 11.6 13.7
LPQ 6.5 9.3 11.4 12.7
BSIF 6.9 9.8 12.7 14.9

distant frontal
LBP 21.9 30.5 37.0 41.2
LPQ 23.4 32.3 38.8 42.9
BSIF 21.8 29.7 36.6 41.1

distant nonfrontal
LBP 12.9 18.9 23.3 26.6
LPQ 13.6 19.5 24.6 28.9
BSIF 13.1 18.8 23.2 26.0

In the rank-k analysis we compare all methods in the
same manner like in the Remote experiment, but now in the
four scenarios defined by the PaSC database. The results are
shown in Table V. Evaluating on PaSC, the problem turns
out be more difficult compared with the Remote experiment,
which is because of the increased number of individuals (17
vs. 293), but also, because the gallery set in PaSC contains
blurred and poorly illuminated faces. It seems that all methods
are quite invariant to imaging distance on frontal faces, but
nonfrontal faces from close are harder to recognize than
nonfrontal faces at a distance, which may be due to the inherent
characteristics of the database. Finally, score-level fusion of
all three descriptors using w-score seems to offer the highest
accuracy throughout the folders.

In the end, we make our contribution to the recent face
recognition challenge using the PaSC dataset by evaluating
the given descriptors on a face verification mode. The results,

TABLE V. RANK-k ANALYSIS OF LBP, LPQ, AND BSIF METHODS
WITH AND WITHOUT FUSION.

method rank-1 rank-2 rank-3 rank-4 rank-5
close frontal

LBP 25.1 31.1 34.8 37.5 39.3
LPQ 26.4 32.2 35.8 38.3 40.6
BSIF 27.0 33.1 37.1 39.9 42.3
LBP+LPQ

H

25.7 32.7 36.5 39.4 41.7
BSIF+LBP 26.0 33.2 37.1 40.3 42.4
BSIF+LPQ 26.6 33.7 37.5 40.2 42.5
ALL 3 25.7 33.4 37.6 40.4 42.9
LBP+LPQ

W

26.0 32.2 36.4 39.4 41.8
BSIF+LBP 26.6 33.0 37.3 40.3 42.5
BSIF+LPQ 27.4 33.7 37.7 40.5 42.7
ALL 3 27.1 33.5 37.5 40.5 42.9

close nonfrontal
LBP 6.5 9.0 10.8 12.2 13.5
LPQ 6.5 8.9 10.7 12.1 13.5
BSIF 6.9 9.7 11.9 13.7 15.2
LBP+LPQ

H

6.5 9.1 11.0 12.6 13.8
BSIF+LBP 6.7 9.6 11.8 13.5 15.0
BSIF+LPQ 6.7 9.6 11.6 13.2 14.8
ALL 3 6.4 9.6 11.5 13.3 14.6
LBP+LPQ

W

6.8 9.3 11.3 12.7 14.0
BSIF+LBP 7.1 9.8 12.0 13.7 15.1
BSIF+LPQ 7.1 9.7 11.8 13.6 14.9
ALL 3 7.1 9.9 12.0 13.6 15.0

distant frontal
LBP 21.9 27.2 31.1 33.9 36.1
LPQ 23.4 29.1 32.8 35.4 37.6
BSIF 21.8 27.1 30.7 33.3 35.6
LBP+LPQ

H

22.6 29.3 33.1 36.1 38.4
BSIF+LBP 21.9 28.0 31.8 35.0 37.5
BSIF+LPQ 22.5 29.4 33.3 36.2 38.5
ALL 3 21.6 29.0 33.2 36.4 38.8
LBP+LPQ

W

24.1 29.8 33.6 36.5 38.7
BSIF+LBP 23.1 28.3 32.1 35.3 37.8
BSIF+LPQ 23.7 29.5 33.4 36.6 38.9
ALL 3 24.1 30.0 34.0 37.0 39.4

distant nonfrontal
LBP 12.9 16.9 19.5 21.8 23.7
LPQ 13.6 17.9 20.7 23.1 25.0
BSIF 13.1 17.2 19.9 22.1 24.4
LBP+LPQ

H

13.1 18.0 20.9 23.3 25.2
BSIF+LBP 13.0 17.5 20.5 22.9 24.9
BSIF+LPQ 13.5 18.2 21.2 23.5 25.5
ALL 3 12.7 17.9 21.0 23.6 25.5
LBP+LPQ

W

14.0 18.3 21.2 23.7 25.4
BSIF+LBP 13.6 17.8 20.8 23.2 25.2
BSIF+LPQ 14.2 18.7 21.6 24.0 26.0
ALL 3 14.2 18.7 21.9 24.3 26.3

shown in Table VI, indicate that any of the descriptors per-
forms better than the given baselines, CohortLDA and LRPCA.
However, it can be seen that the margin between the algorithm
developed by Pittsburgh Pattern Recognition (PittPatt) and the
rest of the methods remains quite huge.

TABLE VI. FACE VERIFICATION EXPERIMENT ON THE PASC DATASET
USING LBP, LPQ, AND BSIF DESCRIPTORS. FOR EACH METHOD IN THE

TABLE, VERIFICATION RATE IS REPORTED AT FAR=1%.

method frontal all
PittPatt [5] 55.0 41.0
CohortLDA [5] 22.0 8.0
LRPCA [5] 19.0 10.0

LBP 24.3 9.5
LPQ 23.1 13.2
BSIF 24.9 14.3

C. Discussion

Based on the face identification results, BSIF is the most
efficient individual descriptor when matching faces containing
enough resolution and sharpness. However, recognizing very
low resolution faces of Remote and distant faces of PaSC,
LPQ seems to be the most efficient. It is noteworthy, however,



that the used BSIF filters are learnt using natural images that
seemingly do not contain any inherent blur which may finally
explain the deteriorated perfomance. Thus, for future work, it
is of interest to see whether learning BSIF filters using blurred
images could offer some improvement. Also, it is of interest to
see whether it is possible to learn even more powerful filters
using face images instead of natural ones.

Based on the results of fusing descriptors in face identifi-
cation, score-level fusion works better than rank-level fusion.
This may be because by analysing scores one takes into better
consideration the relation of the ranked matches produced by
each individual matcher. Either way, one evidently is able to
gain benefit from fusion. We also saw that unconstrained face
identification can be alleviated by using several gallery images
per individual. However, it is highly expected that the overall
perfomance could improve even more by introducing more
sophisticated classifiers compared to nearest neighbor one, for
example, by taking simply the k-nearest neighbor classifier. In
that case, however, one must consider fusion methods that are
suitable for processing with multi-sample galleries.

Comparing our achieved results to the ones in [20] on
Remote it seems that by our methods one is able to obtain
at least as good rank-1 rates on the different folders. However,
because the evaluation protocol used here is slightly different
from the one in [20], stronger conclusions are harder to make.
Concerning the face identification experiments on PaSC, to the
best of our knowledge, our work is the very first. What comes
to the face verification, all of our methods outperformed the
baseline methods, but still do not reach the best result that was
reported for this particular dataset in [5].

V. CONCLUSION

In this work we investigated face recognition in chal-
lenging conditions using three local binary description meth-
ods evaluating them on two recently published benchmarks
called the Remote Face and the Point-and-Shoot Challenge.
The local binary descriptors evaluated here are Local binary
pattern, Local phase quantization, and Binarized statistical
image features. With each of them, we applied the widely
used concatenated histogram based face representation and
measured their performance using standard histogram distance
metrics combined with simple nearest neighbor classifier. We
also investigated the fusion of the descriptors on rank- and
score-levels using the highest rank and the recent w-score
method with promising results.

The motivation of our work is partly to offer face iden-
tification benchmark results on these new challenging face
datasets, but also to evaluate the efficiency of recent local
binary descriptor method (BSIF), and in general, to investi-
gate the potential of fusing local image descriptors. We also
discussed some potential means to further improve the results
on unconstrained face identification. It can be seen that the
obtained results are far from perfect, but as there are hardly
any works examining the problem using the given new datasets
we believe that our study works as a valuable reference point
for future research.

Finally, we made our contribution to the recent Point-
and-Shoot face recognition challenge by evaluating the given
description methods on unconstrained face verification. We

showed outperforming results compared to the announced
baseline methods, but also observed that they are still inferior
to commercial solutions.
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