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Abstract
This paper proposes a prioritized matching ap-

proach for finding corresponding points in multiple
calibrated images for multi-view stereo reconstruction.
The approach takes a sparse set of seed matches be-
tween pairs of views as input and then propagates
the seeds to neighboring regions by using a priori-
tized matching method which expands the most promis-
ing seeds first. The output of the method is a three-
dimensional point cloud. Unlike previous correspon-
dence growing approaches our method allows to use the
best-first matching principle in the generic multi-view
stereo setting with arbitrary number of input images.
Our experiments show that matching the most promis-
ing seeds first provides very robust point cloud recon-
structions efficiently with just a single expansion step.
A comparison to the current state-of-the-art shows that
our method produces reconstructions of similar quality
but significantly faster.

1 Introduction

Multi-view stereo reconstruction is a classical re-
search area in computer vision which has rapidly devel-
oped during the recent years [12, 15]. A wide variety
of different approaches have been proposed. They can
be roughly categorized into three main groups based on
the properties of the reconstruction algorithm and the
underlying scene representation method: (a) global ap-
proaches which globally optimize a cost function for
shapes defined on a dense volumetric grid [13, 1, 6],
(b) depth map based approaches which first generate
multiple depth maps from subsets of input views and
then fuse the depth maps into a single surface model
[10, 16, 15], and (c) surface expansion approaches
which iteratively expand a sparse set of matched interest
points into a quasi-dense point cloud [8, 3, 7].

The global approaches are robust since they are not
sensitive to bad initialization. However, most such
global optimization approaches are not suitable for
large-scale scenes because they use a volumetric voxel

representation whose computational and memory costs
are high [1, 6]. In contrast, surface expansion methods
and depth map based approaches usually have a wider
applicability and are suitable also for large scenes. In
fact, impressive results have been recently obtained us-
ing both of these approaches [2, 15].

In this paper, we concentrate on surface expansion
techniques for multi-view reconstruction. That is, we
propose a multi-view matching method which itera-
tively expands a sparse set of tentative matches into a
quasi-dense point cloud that represents the surfaces of
the scene. Our approach is inspired by the method of [3]
and it builds upon the techniques introduced in [5, 7].
However, instead of the heuristic match expansion strat-
egy of [3], we use a justified prioritized matching ap-
proach which expands the most promising seeds first.
Further, we generalize the match expansion algorithm
of [7] for more than three views. In fact, to the best of
our knowledge, the proposed algorithm is the first one
which successfully applies prioritized matching in the
generic multi-view stereo setting.

The main motivation for the prioritized matching al-
gorithm is to improve the efficiency of match expansion
methods while maintaining their robustness. Indeed,
our results show that the proposed algorithm allows us
to obtain accurate and outlier-free point clouds substan-
tially faster than [3]. Further, the resulting point clouds
have typically less noise and outliers than the point
clouds obtained by the fast and parallel plane-sweep
stereo method used in [15]. Thus, if a surface mesh
model is the required output instead of a point cloud, it
could be particularly useful to combine the high-quality
point clouds produced by our algorithm with the robust
surface mesh generation approach of [15]. This might
help to avoid erroneous surface meshes caused by out-
liers of the point cloud [4].

2. Algorithm

Our algorithm builds upon the two-view and three-
view matching methods [5, 7]. In this paper we extend
the approach to the generic multi-view stereo problem.



Overview The outline of our approach is as follows.
First, we obtain a set of initial seed points by detecting
corresponding affine covariant regions in several pairs
of input views and then reconstructing (i.e. triangulat-
ing) the regions in 3D space [11]. The pair of views
from which each seed point (s) is triangulated defines
the reference views for the seed (s.a and s.b). The seed
points are sorted according to their matching scores
(s.s) which are obtained by combining pairwise simi-
larity scores of local image patches computed between
the first reference view (s.a) and other views. Next, the
seed points are iteratively expanded in the score order.
That is, at each iteration the seed point with the high-
est score value is chosen as the current seed and new
candidate matches are searched nearby the current seed
in the reference views. Promising candidate matches
with a high pairwise similarity score are triangulated
and projected to other views. If the number of views
for which the pairwise score exceeds a certain threshold
is sufficient, the new point is accepted (i.e. added to the
point cloudM) and the pixels in corresponding views
are marked reserved. Also, the pairwise scores of the
new point are combined to its total score and the point
is added to the priority queue of seeds. In this way, the
accepted surface points are seeds too and the surfaces
may expand until the queue of seeds becomes empty.

Details The details are shown in Alg. 1 and the data
structure for the seed points is given in Def. 1.

In order to get the input seed points S, one may use
any method for finding corresponding affine covariant
regions from view pairs [11]. Given a pair of regions in
views a and b, their centroids xa and xb can be triangu-
lated to get a 3D point X. Local affine frames defined
at xa and xb allow to estimate the surface normal n at
X. In addition to a, b, xa, xb, X, and n, each seed point
contains variables s, sab, vab, and V . Here s is the to-
tal matching score (defined below), sab is the pairwise
similarity score of local image patches in views a and b,
vab is the minimum intensity variance of the two image
patches, and V is a table of binary variables indicating
the views in which the seed is visible. However, the lat-
ter four variables (s, sab, vab, V ) are not needed for the
initial seeds as they are computed in Alg. 1.

The total matching score s.s for a given seed s is ob-
tained by combining several pairwise similarity scores.
One first computes the pairwise score sk between the
reference view s.a and each view k where s may be vis-
ible. That is, we define similarity measure sim,

[sk, vk]=sim(s, Is.a, Ik,Pa,Pk), (1)

which computes the normalized cross-correlation sk of
local patches in images Is.a and Ik as well as the mini-

Definition 1: Data structure for multi-view seed points

struct seedpoint{ int a, b; int[] V ;
double xa, xb, X, n, s, sab, vab; };

Algorithm 1: Multi-view match propagation

Input: images Ij , camera matrices Pj , seed points S,
thresholds εd, εe, t, z, K

Output: list of pointsM, matching tables Jj
1 Initialize n=0,M=∅, Jj(p)=0 for all j, p
2 for each seed point s
3 for each view k where s is in the field of view
4 Compute pairwise similarity score sk between view k and

the reference view s.a, i.e. sk=sim(s, Is.a, Ik,Pa,Pk)

5 end for

6 Combine all pairwise scores sk to get the total score s.s

7 end for

8 Sort the seeds according to the scores s.s
9 Initialize priority queueQ with sorted seeds
10 whileQ not empty
11 Draw the seed q̂ ∈ Q with the best score q̂.s

12 Set a= q̂.a and b= q̂.b

13 for each new match qi nearby q̂ which satisfies the
disparity gradient limit εd and the epipolar constraint εe

14 Set qi.sab=−∞ and qi.Vj =0 for all j
15 if Ja(round(qi.xa))=0 & Jb(round(qi.xb))=0

16 [qi.sab,q
i.vab] = sim(qi, Ia, Ib,Pa,Pb)

17 end for

18 Sort matches qi according to the scores qi.sab

19 for each qi satisfying qi.sab≥z and qi.vab≥ t
20 Set n=n+ 1 and qi.n= q̂.n

21 Set qi.Vj =1 for j={a, b}
22 Triangulate, qi.X=triang(qi.xa,qi.xb,Pa,Pb)

23 for each view k where qi is in the field of view
24 Project xk = Pk(q

i.X), set sk=−∞
25 if Jk(round(xk))=0

26 sk=sim(qi, Ia, Ik,Pa,Pk)

27 if sk≥z
28 Set qi.Vk=1

29 end for

30 if sumj(qi.Vj)≥K
31 Combine pairwise scores sk to get qi.s

32 SetQ=Q∪{qi} andM=M∪{qi}
33 for views k such that qi.Vk=1

34 Set Jk(round(qi.xk))=n

35 end for

36 end for

37 end while

mum value vk of intensity variances of the two patches.
A square patch P , centered to the projection of s, is used
in Is.a, and the patch in Ik is an affine transformed ver-
sion of P , where the affine transformation is determined



using camera matrices Pa,Pb and the surface position
and orientation at s. Then the pairwise scores sk are
combined to get the total score s.s defined by

s.s=
∑
k

max

(
0, 1− (sk − 1)2

(z − 1)2

)
, (2)

where parameter z ∈ [0, 1] acts as a threshold [7].
The prioritized match expansion algorithm first sorts

the initial seeds to a priority queueQ according to their
scores (lines 1-9 in Alg. 1). Then it starts processing
seed points in the score order, adding obtained new sur-
face points as seeds into the priority queue (lines 10-
37). At each iteration, the seed with the highest score
is chosen and new candidate matches are searched in
its surroundings in the reference views. The search of
candidate matches is similar to [5, 7]. Good candidate
matches, whose similarity scores between the reference
views exceed the threshold z, are triangulated and pro-
jected to other views. The new point is considered to be
visible in such views where the local similarity to the
primary reference view a exceeds the threshold z. If
the number of views where the point is visible is greater
than equal to K, the point is added to the point cloudM
and to the priority queue Q. The expansion process is
tracked by matching tables Jj which have the same size
as input images and in which the pixels corresponding
to already reconstructed surface points contain a pointer
to the respective point in the point cloudM. The expan-
sion continues as long as there are seeds in Q.

3 Experiments

Evaluation of accuracy. We did experiments with
five datasets: Fountain-P11 and Herz-Jesu-P8 datasets
of [14], Dino and Temple sparse ring datasets of [17],
and our own dataset of 17 images of a calibration object.
We had ground truth triangle meshes for three datasets:
Fountain-P11, Herz-Jesu-P8 and our own dataset. The
meshes were projected to images to get ground truth
depth maps for each camera. Then, by using the ground
truth depth maps, we compared the completeness and
accuracy of point cloud reconstructions obtained by our
method and the method of Furukawa and Ponce [3].

In order to perform the comparison with [3], we used
the PMVS program provided by Furukawa. The out-
put of this program is a point cloud. As both [3] and
our method use zero-mean normalized cross-correlation
(ZNCC) as a similarity measure for image patches, we
used the same values of ZNCC thresholds and patch
sizes for both methods. The Middlebury College eval-
uation [17] was not used for Temple and Dino datasets
because it requires triangle mesh models but the outputs
of the compared methods are point clouds.

Figure 1. Our point cloud (left) and its
comparison to Furukawa’s (right).

Furukawa’s program contains a built-in seed gen-
eration (i.e. initial feature matching) whereas for our
method we extracted the seed matches by matching
Hessian-Affine regions [11] using SIFT descriptors [9].
In both cases, seed matches were detected from every
image pair of each dataset.

The point cloud obtained from our dataset by the
proposed method is shown in Fig. 1. Furukawa’s point
cloud was visually similar but is not shown here due
to lack of space. The comparison of point clouds is
shown on the right in Fig. 1 (as in [14]), where the y-
axis (i.e. the height of the curves) shows the proportion
of pixels which are reconstructed and whose reconstruc-
tion error with respect to the ground truth depth map
is less or equal than the corresponding value on the x-
axis. The reconstructions and performance curves for
Fountain-P11 and Herz-Jesu-P8 datasets are shown in
Figs. 2 and 3, respectively. The bumps in the right end
of the curves are due to the fact that the last point on
each curve contains all pixels whose errors are greater
than the limit (i.e. the highest value on the x-axis).

Overall, it can be seen that Furukawa’s point clouds
appear to be slightly more accurate whereas our point
clouds are more dense. However, the minor differences
in accuracy are not significant in practice because, in
most multi-view stereo systems, point clouds are finally
transformed to triangle meshes which are iteratively re-
fined in any case [3, 15]. Hence, it can be concluded that
the quality of results is approximately similar with both
methods. Figures 2 and 4 allow to verify this visually.

Computational efficiency. Table 1 shows the execu-
tion times and the number of points in the point clouds.
For both methods the reported values are the total exe-

Table 1. Comparison of efficiency.

Dataset
Number of points Execution time (s)

[3] Our [3] Our

Temple 228 053 394 090 3892 489

Dino 301 486 463 443 4548 328

Calibration Cube 398 546 681 490 3535 392

Fountain-P11 426 587 803 912 5176 529

Herz-Jesu-P8 368 323 590 637 3687 611



Figure 2. Fountain and Herz-Jesu re-
constructions produced by Furukawa’s
method [3] (left) and our method (right).

Figure 3. Comparison of Fountain (left)
and Herz-Jesu (right) reconstructions.

cution times including seed extraction and expansion.
However, the seed extraction stage is not optimized
in our program and, hence, further speed-up could be
achieved by improving its efficiency. Nevertheless, as
one can see from Table 1 and Figs. 2 and 4, already the
current implementation of our method produces denser
point clouds than [3] and substantially faster.

4. Conclusion

In this paper, we have proposed a prioritized match-
ing approach for multi-view stereo reconstruction. The
proposed approach takes a sparse set of seed matches
as input and propagates the seeds to neighboring re-
gions. The approach allows using the best-first match-
ing principle, where the most promising seed is propa-
gated first, in the generic multi-view stereo setting with
an arbitrary number of input images and with a single
expansion step. The comparison to the current state-of-
the-art showed that our method produces denser recon-
structions with similar accuracy but significantly faster.
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