
Quasi-Dense Wide Baseline Matching for Three Views

Pekka Koskenkorva, Juho Kannala, and Sami S. Brandt

Machine Vision Group, University of Oulu, Finland

{pkoskenk,jkannala,sbrandt}@ee.oulu.fi

Abstract

This paper proposes a method for computing a

quasi-dense set of matching points between three views

of a scene. The method takes a sparse set of seed

matches between pairs of views as input and then prop-

agates the seeds to neighboring regions. The proposed

method is based on the best-first match propagation

strategy, which is here extended from two-view match-

ing to the case of three views. The results show that

utilizing the three-view constraint during the correspon-

dence growing improves the accuracy of matching and

reduces the occurrence of outliers. In particular, com-

pared with two-view stereo, our method is more robust

for repeating texture. Since the proposed approach is

able to produce high quality depth maps from only three

images, it could be used in multi-view stereo systems

that fuse depth maps from multiple views.

1. Introduction

Multi-view reconstruction [6] is a classical, but still

topical problem in computer vision [15, 4]. Much of the

early research on stereo was concentrated on the small

baseline case [13], whereas the more recent works have

focused on matching widely separated views [8, 15].

Further, it is known that increasing the number of views

can notably improve the quality of reconstruction [1],

though many recent multi-view reconstruction systems

are based on two-view matching [10, 14].

Many of the most successful multi-view stereo meth-

ods have been based on depth map fusion [9, 2, 14, 12].

That is, they divide the reconstruction process into two

stages, where the first stage estimates depth maps from

several subsets of neighboring input views and the sec-

ond stage combines the different depth maps into a

global surface estimate. Various methods have been

proposed for both stages. For example, the individual

depth maps could be computed by matching pairs of

neighboring views with two-view stereo methods [14]

or by using plane sweep matching for sets of several

views [5, 12]. On the other hand, there are also sev-

eral methods for combining multiple depth maps into a

single surface estimate [14, 9, 2, 12].

In this paper, we deal with the problem of depth map

estimation. We propose a three-view matching algo-

rithm for wide baseline images which can readily re-

place the two-view match propagation methods used for

example in [8, 15] if the trifocal tensor is known. The

output of the algorithm is a set of sub-pixel matches

which can be transformed to a depth map or to a quasi-

dense 3D point cloud by triangulation [6].

Our approach for three-view matching is based on

the best-first match propagation principle [10]. In [8],

this principle was used for matching two wide baseline

images and, in this paper, it is extended to the case of

three views. Our work is motivated by the recent suc-

cess of correspondence growing methods in two-view

[8, 3] and multi-view matching [4]. The proposed im-

plementation is build on [8] but the three-view con-

straint is used for scoring and sorting of seed matches

during growing. Hence, our approach can be directly

applied in wide baseline conditions and no rectifica-

tion is needed [16]. The results show that the third

view usually removes the ambiguities caused by peri-

odic structures and, hence, greedy best-first matching,

as proposed, is often sufficient. However, if robustness

is preferred over efficiency, it would be straightforward

to allow multiple match hypotheses per pixel as in [3].

Thereafter, the multiple hypotheses could be resolved

by using some global approach as in [3] or [2].

The main difference between our method and the

multi-view approach of [4], one of the top perform-

ers in [17], is the fact that [4] does not use the best-

first growing strategy as we do. This strategy allows us

to acquire the result with a single growth stage and to

avoid the time-consuming, repeated expansion and fil-

tering stages of [4].

2. Algorithm

Background. Given two views I1, I2 and the asso-

ciated fundamental matrix, the method in [8] produces

a quasi-dense set of point correspondences by growing

a sparse set of seed matches, which are determined by

matching affine covariant regions [8, 11].

Definition 1: Data structures for seed matches

struct twoviewseed{ int a, b;

double xa, xb, Aab, sab, v; };

struct threeviewseed{ int a, b, c;

double xa, xb, xc, Aab, Aac, sab, sac, s, v; };

Hence, the method in [8] contains two stages: the

initial matching stage and the growth stage. The out-

put of the initial matching stage is a set of seed matches

{si}i, where each seed contains image coordinates xa

and xb, which denote the centroids of the matched re-

gions [11], and an affine transformation matrix Aab,

which approximates the local geometric transformation

between the views. For each seed, the index a ∈ {1, 2}
indicates the reference view, and b is the other view. The

reference view is determined so that the affine transfor-

mationAab from a to b is magnifying, i.e. |detAab|≥1
[8]. Further, each seed is associated with a texture simi-

larity score sab and intensity variance score v. The zero-

mean normalized cross-correlation (ZNCC) of geomet-

rically normalized image patches is used as the similar-

ity measure, and the score v is set equal to the minimum

intensity variance of the two patches. The data structure

for the two-view seeds is summarized in Def. 1. The

same structure is used also for the grown matches.

In the growth stage, the seeds are sorted into a pri-

ority queue Q according to their similarity scores and

then propagated by iterating the following steps:

(i) The seed s with the best score is removed from Q.

(ii) New candidate matches are searched nearby s by

using s.Aab for the normalization of local patches.

(iii) The candidates, which satisfy the disparity gradi-

ent limit and the epipolar constraint and have a suf-

ficiently high similarity, are added to Q and to the

list of matches after updating their affine transfor-

mation estimates. The corresponding pixels in the

matching tables are marked as reserved.

The geometric normalization of patches and the update

of the affine transformations are detailed in [8]. Further,

for a grown match, the indices a and b are determined

from the updated transformation matrix.

The result of two-view match propagation is a list

of grown matches M and two matching tables J1 and

J2, which have the same size as images I1 and I2, re-

spectively. The nonzero values in J1 and J2 indicate

the pixels which are nearby to the sub-pixel matches of

M. That is, the closest pixel to a given coordinate vec-

tor x is p = round(x), and a nonzero value Jk(p) is
an index to the corresponding item in M. The value

Jk(p)=0 indicates that pixel p is not matched.

Three-view matching. This paper proposes modifi-

cations to the method in [8] in order to improve the ro-

Algorithm 1: Three-view match propagation

Input: images I1, I2, I3, seeds S12, S13, S23,

thresholds z, t, ǫ, trifocal tensor T 23

1

Output: list of matches M, matching tables J1, J2, J3

1 Initialize n=0,M=∅, Jk(p)=0 for all k, p

2 Compute pairwise similarity scores s.sab and variance

scores s.v for all seeds s,[s.sab, s.v]=sim(s, Is.a, I
s.b)

3 Extend the two-view seeds to three views by trifocal

transfer: [s.xc, s.Aac]=transfer(s, T 23

1
)

4 Compute pairwise similarity scores s.sac for all seeds s

5 Combine similarity scores, s.s=score(s.sab, s.sac, z)

6 Sort the seeds according to their total scores s.s

7 Initialize priority queueQ with sorted seeds

8 whileQ not empty

9 Draw the seed q̂ ∈ Q with the best score q̂.s

10 Set a= q̂.a and b= q̂.b

(In the following, Ia and Ib define new seeds)

11 for each new match qi nearby q̂ which satisfies the

disparity gradient limit ǫ and the epipolar constraint

12 Set qi.sab = −∞

13 if Ja(round(qi.xa))=0 & Jb(round(qi.xb))=0

14 [qi.sab,q
i.v] = sim(qi, Ia, Ib)

15 end for

16 Sort matches qi according to the scores qi.sab

17 for each qi satisfying qi.sab≥z and qi.v≥ t

18 Set n=n + 1 and update qi.Aab

19 Do trifocal transfer for qi and compute qi.sac, q
i.s

20 Set Q=Q∪{qi} andM=M∪{qi}

21 Set Ja(round(qi.xa))=n, Jb(round(qi.xb))=n

22 if Jc(round(qi.xc))=0 & qi.sac≥z

23 Set Jc(round(qi.xc))=n

24 end for

25 end while

bustness of matching for view triplets when the trifocal

tensor is known. The main difference to [8] is that the

ordering of seeds in the priority queue Q is based on

a total score s which combines two pairwise similarity

scores, sab and sac, between the reference view a and

the other two views. Hence, at each propagation step,

the seed with the best total score is grown.

The proposed algorithm is shown in pseudo-code in

Alg. 1. It mainly follows the method proposed in [8] but

there are certain additional steps (i.e. lines 3, 4, 5, 19,

22, and 23), which are detailed in the following. The

data structure for three-view matches is given in Def. 1.

First, since the input to Alg. 1 is a set of two-view

seeds, as in [8], the seeds have to be transformed to

three-view seeds by using trifocal transfer [6]. That is,

we define a function called transfer, which trans-

forms a match (xa,xb) to the third view, indexed by c,

and also computes the local affine transformation Aac

between the reference view a and the view c (line 3 in

Alg. 1). The function is implemented so that it uses xa,

xb and Aab to define three corresponding points in the

views a and b and then transforms this local affine basis

to the third view by trifocal transfer [6]. Thereafter,Aac

may be solved from the three point correspondences be-

tween a and c. Finally, given xc and Aac, one may also

evaluate the local similarity sac between views a and c.
Given a three-view seed s, the total score s.s, on

which the ordering in Q is based, combines the pair-
wise similarities between a and the other two views.
This allows the three-view method to perform better
than a combination of pairwise propagations. The scor-
ing function is defined by

score(sab, sac, z)=
X

j∈b,c

max

„

0, 1−
(saj − 1)2

(z − 1)2

«

, (1)

which is a positive function on [−1, 1]3. It is nonzero if
either sab or sac exceed z ≤ 1, and it obtains the largest
values when they both exceed z and are close to 1.

Most of the computation time of Alg. 1 is spent in

the while loop. The first for loop is the same as in [8].

Thus, most of the bad candidate matches are rejected

already on the basis of the pairwise score sab and the

trifocal transfer and the evaluation of the total score are

not necessary for them. In fact, only a fraction of the

candidates survive to the second for loop, and hence,

the three-view method is only slightly slower than [8].

Finally, the last modification to [8] is the update of

the matching table for the third view. A match is ac-

cepted if the similarity sab ≥ z. However, as shown

on lines 22 and 23 in Alg. 1, the match is added to the

matching table of the third view only if also sac ≥ z

and the corresponding pixel is not already reserved.

As described in Alg. 1, our current implementation

is restricted to three views. However, this is not a major

limitation since there are several methods for combin-

ing multiple depth maps, e.g. [9]. Moreover, due to effi-

ciency and scalability requirements [7], it might be even

advantageous to limit the number of images that are pro-

cessed concurrently and use triplets of nearby views for

depth map estimation. Alternatively, one may also ex-

tend Alg. 1 for more than three views. In fact, given the

camera matrices, it would be straightforward to transfer

the two-view matches to arbitrary number of views by

the trifocal transfer (lines 3 and 19 in Alg. 1) and define

the score (1) as the sum of several pairwise terms.

3. Experiments

Planar scene with repeated texture. In the first ex-

periment we compared our approach with [8] by using

several view triplets of a planar calibration pattern. That

is, we selected a triplet of views, extracted seed matches

from two of them [11], and performed both the two-

view growing [8] and the three-view growing with the

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

Figure 1: Two-view and three-view matching of a plane

with repeated texture. Top: The three views and the

seed regions for the first pair in yellow. The rays are

plotted between the centers of the regions, and green

rays indicate correct correspondences. Down: The

grown matches for the algorithm in [8] (left) and our

new algorithm (right) are colored with the Euclidean

distance to the correct correspondences (in pixels).

same seeds. This was repeated for 100 triplets. Usually

there were many incorrect seeds because the epipolar

constraint was not effective in removing them due to re-

peated texture. This is illustrated in Fig. 1 where only

four seeds are correct. However, also in this case, the

three-view method produced almost errorless matching

whereas the method in [8] made many errors. The re-

sults for all 100 triplets are in Table 1, where the total

number of matches is approximately the same for both

methods. However, as the quartiles of the error distri-

bution indicate, the matches by [8] have a larger error.

Thus, the method in [8] failed in many cases whereas

our method was able to produce accurate matches for

most of the cases. The running time of the proposed

method was about 1.2 times the time of [8]. Hence, the

three-view result is usually better than the result of two

pairwise propagations and can be computed faster.

Comparison with the state of the art. Our second

experiment was done with the Middlebury Temple and

Dino datasets [17]. As shown in Fig. 2, we took one

triplet of views from both datasets and compared our

method to the state-of-the-art multi-view stereo system

[4], which has currently the best overall results in accu-

racy and completeness on the Middlebury data [17].

The method in [4] solves the multi-view stereo prob-

lem by growing and filtering 3D patches. In order to

make the methods comparable, we set the density pa-

Table 1: The results for the calibration pattern.

Method No. points 1st quartile Median 3rd quartile

[8] 5664285 0.33 0.74 11

Ours 5676160 0.079 0.27 0.65

Figure 2: Experiments with view triplets from Temple and Dino datasets. Top: The seed matches S12, S13 and S23 are

illustrated with different colors. Bottom: The depth maps produced by our method (left) and the method in [4] (right).

rameter in [4] so that the program tries to reconstruct a

patch in every pixel. In addition, the window sizes for

computing the ZNCC:s and the ZNCC thresholds were

the same for both methods. Further, we let the method

in [4] to detect seed features in every pixel in the first

stage of the algorithm. The seed matches used in our

method were obtained by [11] and are shown in Fig. 2.

The depth maps produced by the methods are illus-

trated in Fig. 2, which shows that our algorithm pro-

duces a denser point cloud. This is expected because

our algorithm accepts also two-view matches whereas

for [4] we required the 3D patches to be visible in all

three images, as recommended by the authors. We tried

the method in [4] also so that it accepted patches visible

in only two images but in this case the reconstructions

were worse than those in Fig. 2. This might be due to

the fact that the best-first strategy is not used in [4].

The results in Fig. 2 also suggest that accurate grow-

ing is possible without expensive iterative optimization

for the pose of matched patches. Hence, although itera-

tive surface refinement is probably necessary at the final

stage for the best reconstruction results [4], it might be

unnecessary at the depth map estimation stage in ap-

proaches that are based on depth map fusion.

4. Conclusion

In this paper, we have proposed a three-view match-

ing method which can be used for depth map estimation

in multi-view stereo. The proposed approach employs

the best-first matching strategy, is easily expandable to

multiple views and provides results that are comparable

to the state of the art within correspondence growing

methods. Importantly, the matching result is achieved

with a single growth stage and without iterative refine-

ment for the matched patches during growing.

References

[1] N. Ayache and F. Lustman. Trinocular stereo vision for

robotics. TPAMI, 13(1):73–85, 1991.
[2] N. D. F. Campbell et al. Using multiple hypotheses to

improve depth-maps for multi-view stereo. In ECCV,

2008.
[3] J. Čech and R. Sára. Efficient sampling of disparity

space for fast and accurate matching. In CVPR, 2007.
[4] Y. Furukawa and J. Ponce. Accurate, dense, and robust

multi-view stereopsis. TPAMI, 2009.
[5] D. Gallup et al. Real-time plane-sweeping stereo with

multiple sweeping directions. In CVPR, 2007.
[6] R. Hartley and A. Zisserman. Multiple view geometry

in computer vision. Cambridge, 2000.
[7] M. Jancosek et al. Scalable multi-view stereo. In 3DIM,

2009.
[8] J. Kannala and S. S. Brandt. Quasi-dense wide baseline

matching using match propagation. In CVPR, 2007.
[9] P. Labatut et al. Efficient multi-view reconstruction of

large-scale scenes using interest points, Delaunay trian-

gulation and graph cuts. In ICCV, 2007.
[10] M. Lhuillier and L. Quan. A quasi-dense approach

to surface reconstruction from uncalibrated images.

TPAMI, 27(3):418–433, 2005.
[11] K. Mikolajczyk et al. A comparison of affine region

detectors. IJCV, 65:43–72, 2005.
[12] M. Pollefeys et al. Detailed real-time urban 3D recon-

struction from video. IJCV, 78(2-3):143–167, 2008.
[13] D. Scharstein and R. Szeliski. A taxonomy and eval-

uation of dense two-frame stereo correspondence algo-

rithms. IJCV, 47(1-3):7–42, 2002.
[14] R. Tyleček and R. Sára. Depth map fusion with camera

position refinement. In CVWW, 2009.
[15] J. Xiao et al. Learning two-view stereo matching. In

ECCV, 2008.
[16] H. Zhang et al. A linear method for trinocular rectifica-

tion. In BMVC, 2003.
[17] http://vision.middlebury.edu/mview/.

