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Abstract

Fish-eye lenses are convenient in such computer vision
applications where a very wide angle of view is needed.
However, their use for measurement purposes is limited by
the lack of an accurate, generic, and easy-to-use calibra-
tion procedure. We hence propose a generic camera model
for cameras equipped with fish-eye lenses and a method for
calibration of such cameras. The calibration is possible by
using only one view of a planar calibration object but more
views should be used for better results. The proposed cali-
bration method was evaluated with real images and the ob-
tained results are promising. The calibration software will
become commonly available at the author’s Web page.

1. Introduction
Cameras with a narrow-angle lens can be modelled with the
pinhole camera model which is just a perspective projec-
tion followed by an affine transformation in the image plane
[5]. The fish-eye lens instead is designed to cover the whole
hemispherical field in front of the camera, hence, the angle
of view is very large, about ������� . Because it is impossible
to project the hemispherical field of view on a finite image
plane by a perspective projection, fish-eye lenses are de-
signed to obey some other projection model. Therefore the
inherent distortion of a fish-eye lens should not be consid-
ered only as a deviation from the pinhole model [7].

There have been some efforts to model the radially sym-
metric distortion of fish-eye lenses with different models
[2, 4, 3]. The idea of these approaches is to transform the
original fish-eye image to follow the pinhole model. In [4]
and [3], the parameters of the distortion model are estimated
by forcing that straight lines are straight after the transfor-
mation but the problem is that the methods do not give the
full calibration. They can be used to “correct” the images
to follow the pinhole model but their applicability is limited
when one needs to know the direction of a back-projected
ray corresponding to an image point. The calibration pro-
cedures by Shah and Aggarwal [8] and Bakstein and Pa-

jdla [1] instead aim at calibrating fish-eye lenses generally.
However, their methods are slightly cumbersome in prac-
tise because a laser beam or a cylindrical calibration object
is required.

In this paper, we propose a new general calibration
method that requires that the camera observes a planar cal-
ibration pattern. More precisely, in Section 2, we describe
the camera model that we have used for fish-eye lens cam-
eras. In Section 3, we propose a procedure for estimating
the parameters of the model, and the results are presented
and discussed in Sections 4 and 5.

2. Camera model
2.1 Generic model for a fish-eye lens camera
The perspective projection of a pinhole camera can be de-
scribed by the following formula�	��
������� (perspective projection) � (1)

where � is the angle between the optical axis and the in-
coming ray, � is the distance between the image point and
the principal point and 
 is the focal length. Fish-eye lenses
instead are usually designed to obey one of the following
projections:�	����
���������������� (stereographic projection) � (2)�	��
�� (equidistance projection) � (3)�	����
 �!"���#������� (equisolid angle projection) � (4)�	��
$ �!%��� (orthogonal projection) & (5)

Perhaps the most common model is the equidistance projec-
tion. The behaviour of the different projections is illustrated
in Fig. 1(a) and the difference between a pinhole camera and
a fish-eye camera is shown in Fig. 1(b).

The real lenses do not exactly follow the designed pro-
jection model. From the viewpoint of automatic calibration,
it would also be useful if we had only one model for differ-
ent types of fish-eye lenses. Therefore we consider projec-
tions in the general form���#���'��(*)��+,(�-.��/'+,( / ��01+2(�34��5'+ &4&6&7� (6)
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Figure 1: (a) Curves of projections (1)-(5) with Z\[^] . (b) Fish-
eye camera model. The image of the point _ is ` whereas it would
be `�a by a pinhole camera.

where, without any loss of generality, even powers have
been dropped. This is due that we may extend � onto the
negative side as an odd function while the odd powers span
the set of continuous odd functions.

For computations we need to fix the number of terms in
(6). An important property for a projection model is that it
can be analytically inverted. Therefore we choose�������b�^( ) �+2( - ��/ (7)
as the basic model. When modelling real lenses, the values
of parameters ( ) and ( - will be such that ���#��� is monotoni-
cally increasing on the interval c � �Gd ���Ye . Therefore we may
solve � from (7) if � is given: from the three possible roots to
a cubic equation we choose a real root that is between � andd ��� . Although the model (7) contains only two parameters,
it can approximate all the projections (2)-(5) with a moder-
ate level of accuracy. The difference would be hardly dis-
tinguishable if the approximation nearest in f - -norm would
be plotted to Fig. 1(a) for each projection.

We additionally need to transform the camera coordi-
nates �#gih ��j h �Qk h.�ml�n�#o ��p'� ��� into the image pixel coordi-
nates. As an intermediate step we compute the normalised
image coordinates (see Fig. 1(b))qsr t*u �v������� q�w.x  p y!"� p u � (8)

where ������� is obtained from (7). By assuming that the pixel
coordinate system is orthogonal we get the pixel coordi-
nates �#z �y{ � fromq z { u �}|�~�� �� ~���� q r t u + q z��{ � u � (9)

where ��z � �y{ � � is the principal point and ~ � and ~ � give
the number of pixels per unit distance in horizontal and ver-
tical directions, respectively.

2.2 Extended model with distortion
The lens elements of a real fish-eye lens may deviate from
precise radial symmetry and they may be inaccurately po-

sitioned causing that the projection is not exactly radially
symmetric. We hence propose adding two distortion terms:
one acting in the radial direction��� �#� ��p ��������)��+���-6� / +2� / � 0 �Q���G) w.x  p +�A-� y!"� p +�� / w.x  �� p +���3� �!"��� p � � (10)

and the other in the tangential direction��� ��� ��p �b�n� ~ ) �+ ~ - ��/'+ ~ / ��0��.�%� ) w6x  p +� -  �!"� p +�� / w.x  �� p +�� 3  �!%��� p � & (11)

The distortion functions are thus separable in the variables� and p . Because the Fourier series of any � d -periodic con-
tinuous function converges in f - -norm and any continuous
odd function can be represented by a series of odd polyno-
mials we can, in principle, model any kind of continuous
distortion by simply adding more terms to (10) and (11).

With the distortion parameters we get the following for-
mula for the normalised image coordinatesq�r tsu ���#���#����+ � � �#� ��p �y�D� � � p ��+ ��� ��� ��p �D����� p � � (12)

where � � � p � and ����� p � are the unit vectors in the radial
and tangential directions. Since the analytical invertibility
of the model (8) is anyway lost in (12), we may also take
more parameters to the radially symmetric part ������� . Using
the model (6) with terms up to the ninth order increases the
total number of parameters to 23.

3. Calibration method
The basic model introduced in Section 2.1 contains the six
internal camera parameters ( ) � ( - � ~�� � ~�� � z�� and { � . We
determine the parameter values by viewing a calibration
plane which contains control points in known positions. In
Section 3.1, we propose a four step procedure for the cali-
bration when � control points are observed in � views. In
Section �*& � , we suggest a modification to the method when
the control points are circular.

3.1 Four step procedure
For each view, there is a rotation matrix  ¢¡ and a translation
vector £Q¡ describing the position of the camera with respect
to the calibration plane such that¤ ¡ h �   ¡ ¤ + £ ¡ � �n� � �4&6&4&.�y�¥& (13)
We choose the calibration plane to lie in the g j -plane
and denote the coordinates of control point � with

¤�¦ ��§g ¦ �yj ¦ � � �G¨ . The corresponding homogeneous coordi-
nates in the calibration plane are denoted by ©�ª¦ ��§g ¦ �yj ¦ � � �G¨ and the observed coordinates in view � by« ¡ ¦ �¬�#z ¡ ¦ �y{ ¡¦ � � �y¨ . For the internal parameters we use a
short-hand notation  �®�¯( ) � ( - � ~�� � ~�� � zm� ��{ ��� .



Step 1: Initialisation of internal parameters
The initial guesses for ( ) and ( - are obtained by fitting (7)
to the desired projection (2)-(5) with the manufacturer’s val-
ues for the nominal focal length 
 � and the angle of view��°²±G³ . Then we also obtain the radius of the image on the
sensor plane by �4°²±G³	�^(*)���°²±D³�+2(�-4� /°²±G³ .

With a circular image fish-eye lens, the actual image fills
only a circular area inside the image frames. In pixel coor-
dinates, this circle is an ellipseq z¢´7z �µ u - + q { ´ { �¶ u - � � �
whose parameters can be estimated. Consequently, we ob-
tain initial guesses for the remaining unknowns ~ � , ~ � ,z � , and { � in  , where ~ � �·µ*���6°²±G³ and ~ � � ¶ �Y�4°²±D³ .
With a full-frame fish-eye lens, the best thing is probably to
place the principal point to the image centre and use the re-
ported values of the pixel dimensions to obtain initial values
for ~�� and ~�� .
Step 2: Refinement of the internal parameters
With the internal parameters  , we transform the observed
points « ¡ ¦ to points ©V¸ ¡ ¦ that approximately follow the per-
spective projection for each � (in Fig. 1(b), this corre-
sponds to transforming the point ¹ to ¹�¸ ). Under perspec-
tive imaging, the mapping between the calibration plane and
the image plane is a planar homography for which holds©V¸ ¡ ¦ �»º ¡.©Vª¦ . The aim of this step is to iteratively search
such parameter values that the mapping between ©�ª¦ :s and©V¸ ¡ ¦ :s is as close to a homography as possible.

In practise, we suggest the following scheme for com-
puting the error vector ¼ �¾½�  � , where ½,¿�À²Á�Â}ÀÄÃÆÅ .

(i) Back-project the control points by first computing the
normalised image coordinatesqsr ¡ ¦t ¡¦ u � | � � ~�� �� � � ~�� � q z ¡ ¦ ´Çz��{ ¡¦ ´ { � u �
transforming them to the polar coordinates�#� ¡ ¦ ��p ¡ ¦ ��l�n� r ¡ ¦ � t ¡¦ � , and finally computing � ¡¦ from
(7).

(ii) Re-project the rays �#� ¡ ¦ ��p ¡ ¦ � using (1) with 
�� � to
obtain the points ©�¸ ¡ ¦ .

(iii) Compute the homography estimates Èº ¡ from the cor-
respondences © ¸ ¡ ¦¢É ©Vª¦ by the linear algorithm with
data normalisation [5]. Define È© ¡ ¦ as the exact image
of ©Vª¦ under Èº ¡ such that È© ¡ ¦ � Èº ¡6©Vª¦ .

(iv) Compute the distances Ê ¡ ¦ �vË�� ©V¸ ¡ ¦ � È© ¡ ¦ � , combine them
to vectors ¼4¡ �Ì� Ê ¡ ) �6&6&4&6��Ê ¡ Å � and further to a single
vector ¼ �Í� ¼ ) �4&6&6&4�y¼ Ã � .

We then use the Levenberg–Marquardt algorithm to min-
imise Î"Î ¼�Î%Î with respect to  .

Step 3: Initialisation of external parameters
First we refine the homographies º ¡ by minimising the er-
rors Î"Î ¼4¡�Î"Î while keeping  fixed. Then, perspective imaging
of the calibration plane, with 
�� � , gives

Ï�ÐÑ r ¸ ¡ ¦t ¸ ¡ ¦�\ÒÓ �ÕÔ  i¡Ö£Q¡6× ÐØØÑ g ¦j ¦� � Ò.ÙÙÓ �ÚÔCÛ ¡ ) Û ¡ - £ ¡ × ÐÑ g ¦j ¦� ÒÓ
which implies º ¡ � c Û ¡ ) Û ¡ - £.¡ e , up to scale. FurthermoreÛ ¡ ) �¾Ü ¡�Ý ¡ ) � Û ¡ - �¾Ü ¡�Ý ¡ - � Û ¡ / � Û ¡ )Þ Û ¡ - �£ ¡ �vÜ ¡ Ý ¡ / �
where Ü ¡ �Õ �!@ß��V��à ¡ /6á / �G� Î%Î Ý ¡ ) Î"Î . Because of estimation er-
rors, the obtained rotation matrices are not orthogonal. Thus
we use the singular value decomposition to compute the
closest orthogonal matrices in the sense of Frobenius norm
[9] and use them as initial guess for each  ¢¡ .
Step 4: Minimisation of projection error
As we have the estimates for the internal and external cam-
era parameters, we use (13), (8) or (12), and (9) to compute
the imaging function â�¡ for each camera, where a control
point is projected to È« ¡ ¦ � â�¡ � ¤ ¦ � . The camera parameters
are refined by minimising the sum of squared distances be-
tween the measured and modelled control point projectionsÃã¡�ä ) Åã ¦ ä ) Ëm��« ¡ ¦ � È« ¡ ¦ � - (14)

using the Levenberg–Marquardt algorithm. If (12) is used
instead, the additional parameters may be initialised to zero.

3.2 Modification for circular control points
In order to achieve an accurate calibration, we used a cali-
bration plane with white circles on black background since
the centroids of the projected circles can be detected with a
sub-pixel level of accuracy [6]. In this setting, however, the
problem is that the centroid of the projected circle is not the
image of the centre of the original circle. Therefore, since« ¡ ¦ in (14) is the measured centroid, we should not project
the centres as points È« ¡ ¦ .

To avoid the problem above, we propose solving the
centroids of the projected circles numerically. We param-
eterise the interior of the circle at ( g¢� �yj � ) with radius å by¤ �Dæ ��ç ���·�§g\�1+�æÄ y!"�V� ç � �yj ��+�æ w.x  6� ç � � � �y¨ . Given the
camera parameters, we get the centroid È« for the circle by
numerically evaluatingÈ«è�êé²ë� é -Gì� È«í�Dæ ��ç � Î îsï ��ð²�Dæ ��ç � Î Ë ç Ë�æéÄë� é -Dì� Î î*ï ��ðÄ�Dæ ��ç � Î Ë ç Ësæ � (15)

where È«,�Aæ �yç �	� â � ¤ �Dæ ��ç �y� and ðÄ�Dæ ��ç � is the Jacobian
of the composite function âòñ ¤ . The analytical solving of
the Jacobian is rather a tedious task but it can be computed
by mathematical software such as Maple.



(a) (b)
Figure 2: Fish-eye lens calibration using only one view. (a) Orig-
inal image where the ellipse depicts the field of view of ]Qó6ôYõ . (b)
The image corrected to follow pinhole model. Straight lines are
straight as they should be.

4. Experiments
In the experiments, we used an equidistance fish-eye lens
with the nominal focal length of 1.178 mm attached to a Wa-
tec 221S CCD colour camera. The calibration object was a� Þ ��ö - plane containing white circles with the radius of 60
mm on the black background. The calibration images were
digitised from an analog video signal to 8-bit monochrome
images, whose size was 640 by 480 pixels.

When the basic model (8) is used the calibration can be
performed even from a single image of the planar object
as Fig. 2 illustrates. In that example we used 60 control
points for the calibration. However, for the most accurate
results, the whole field of view should be covered with a
large number of measurements. Therefore we experimented
our method with 12 views and 740 points in total with vary-
ing number of internal parameters in the final calibration
step. The results are in Table 1. It can be seen that the
centroid correction has a very important role. The extended
model (12) gives the smallest deviations ÷ � and ÷ � in ther

and

t
directions, respectively, but the basic model with

the three additional parameters gives almost as good results.
Nevertheless, there should be no risk of over-fitting because
the number of measurements is large. The estimated asym-
metric distortion and the residuals are displayed in Fig. 3.

To demonstrate the achieved level of accuracy in another
way, we approximate the size of the solid angle that projects
to an ellipse with principal axes � ÷ � and � ÷ � . For the
equidistance projection the solid angle corresponding to the
small area Ë�ø in the image plane isË�ùí� �
 -  �!"���� Ë�ø & (16)

Near the principal point ( � = � ) with 
	úÇ( ) =1.12 mm we

Table 1: Standard deviation of the residuals ( û·üêýû ) where þVÿ
is the basic model, þ�� is the basic model with three additional
parameters (

�����������	��

), and þ� � is the extended model. The star

(*) indicates that the centroid correction of Sec. 3.2 is not used.þ��ÿ þ ÿ þ�� þ� ���� [pix] 0.26 0.11 0.074 0.069��� [pix] 0.24 0.10 0.060 0.058

(a) (b)
Figure 3: (a) The estimated asymmetric distortion ( ����������������� )
using the extended model þ�� � . (b) The remaining residual for each
control point that shows no obvious systematic error. Both plots
are in normalised image coordinates and the vectors are scaled up
by a factor of 150 to aid inspection.

have Ë�ù =  �&"!�# �4�%$ 5 . At the distance of 500 mm from the
camera centre this corresponds approximately to the area of
a circle with the radius of 0.2 mm, which is in good agree-
ment with the assumed accuracy of the calibration device.

5. Conclusions
We have proposed a novel camera calibration method for
fish-eye lens cameras that is based on viewing a planar cali-
bration pattern. The method is generic and easy-to-use, and
provides for a relatively high level of accuracy by using cir-
cular control points. The achieved level of accuracy is com-
parable to the results of Heikkilä and Silvén for narrow-
angle lenses [6] that is promising considering the aim of
using fish-eye lenses in measurement purposes.
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