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ABSTRACT

This paper presents a recurrent neural network architecture,
guided by the bottom-up attention, for the recognition task.
The proposed architecture processes an input image as a se-
quence of selectively chosen patches. The patches are chosen
from the salient regions of the input image. Using human
driven saliency maps from gaze, the benefit of such a selec-
tion process is first shown. Next, the performance of compu-
tational models of bottom-up attention are assessed as alter-
native to human attention.

Index Terms— Recurrent neural networks, image recog-
nition, gaze, saliency, deep neural networks

1. INTRODUCTION

This paper investigates the role of salient regions in the fea-
ture learning process of recognition task. The saliency map
of an image is used as a means to extract a sequence of image
patches. This sequence is then used in a recurrent architecture
for image recognition as depicted in Fig. 1.

The recurrent processing of the information for learning
feature representations is argued to be a way of efficiently
achieving further depth and improving the performance of
convolutional deep neural networks. To date, existing recur-
rent architectures have been processing the whole visual in-
put multiple times, e.g. [1]; or exploit a top-down guided at-
tentional mechanism for localizing and detecting objects and
fine-grained details e.g. [2, 3].

On the contrary, this paper proposes to employ processing
a sequence of informative patches selected from salient re-
gions of the image, provided by a bottom-up attention mech-
anism, independent of the task. Our contributions are (1) us-
ing human driven saliency, we propose a recurrent neural ar-
chitecture in order to show that a sequence of patches from
bottom-up attention is helpful for learning feature represen-
tations, and (2) similar performance boost can be observed
using computational saliency models.
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Fig. 1. A framework for saliency guided recurrent model of
recognition. The LSTM is unrolled for five fixations. For an
input image, the saliency is obtained from human gaze or a
computational model. A dynamic fixation selection mecha-
nism using winner-take-all mechanism and inhibition of re-
turn is used to choose informative regions guided by saliency.
The sequence of image patches from such regions is used for
recognition.

2. RELATED WORKS

There exists numerous literature on learning feature represen-
tations that going through all is beyond the scope of this paper.
For brevity, we summarize some of the most notable ones in
this section.

The active vision texts are replete with methods and tech-
niques conducting object detection and localization using
saliency as a preprocessing step to choose where to look in
the environment. Among all, a series of works by Itti and
Koch [4] established a new standard, in which a winner-take-
all neural network in conjunction with an inhibition of return
mechanism is employed over a saliency map to attend infor-
mative locations. This approach has been a basis for many
detection algorithms in active and robot vision, e.g. [5, 6].
We follow the same approach for selecting the informative
regions from a saliency map; however, the saliency computa-



tion pipeline differs from the above.
The feedback networks [1] employ stacks of neural blocks

consisting of convolutional neural networks (ConvNets) and
long short-term memory (LSTM) networks to create a deep
neural architecture. The feedback networks process the whole
image multiple times. One drawback to feedback networks is
that it should be trained from scratch due to architectural de-
sign. On the contrary, the proposed architecture (1) exploits
the internal informative regions of the image and process dif-
ferent regions of the image as a sequence, and (2) can extend
any existing ConvNets architecture and be trained using pre-
trained networks.

The recent machine learning literature is full of networks
with an attention mechanism, which is a feature alignment
procedure. Such networks learn to choose the features with
respect to the task. The most notable of all is [2], which learns
to sequentially extract information from images and videos
for specific tasks. The model of [2] is not differentiable and
is trained by a reinforcement learning policy. On the other
hand, our proposed model is differentiable and the attention
mechanism is independent of the task.

There exist also other attention networks, e.g. Xue et
al. [7] employ a mechanism to dynamically select visual fea-
tures for inferring a word contributing to the image caption.
The main criticism to these architectures is that the attention is
task dependent and difficult to train. Bottom-up attention can
be suggested as an alternative to achieve task independence.
Within the span of captioning models, Tavakoli et al. [8], ex-
plored the contribution of bottom-up attention models for im-
age captioning. In their approach, the saliency is employed
as a mechanism to boost the ConvNets features for caption-
ing. They show that once a network is trained on a specific
task and data, there is not much contribution from saliency;
but the model becomes more robust and improves for han-
dling different visual input. This paper employs bottom-up
attention as a cue to extract sequence of image patches for a
recurrent neural architecture.

In the next section, we will lay the foundation of our pro-
posed pipeline. We, then, will investigate its usefulness for
recognition task using human-driven saliency. Next, the com-
putational models of saliency prediction are evaluated as an
alternative to human-driven saliency. Our results indicate that
learning a sequence of informative patches in a recurrent ar-
chitecture improves recognition task.

3. RECURRENT RECOGNITION

We propose a probabilistic neural sequence model for the
recognition task by maximizing the probability of the correct
classification using the following formulation:

θ? = argmax
θ

P (C|{F}; θ), (1)

where θ is the parameters of the model, {F} is a set consisting

of the sequence of image patches, andC is the class prediction
from a sequence of predictions at each time step. We can,
thus, write:

P (C|{F}; θ) = φ
(
P (CN |C0, . . . , CN−1, FN ; θ), . . . ,

P (Ct|C0, . . . , Ct−1, Ft; θ), . . . ,

P (C0|F0; θ)
)
,

(2)

where Ct, and Ft are predicted class labels and patch input
at time step t, respectively, and φ is a linear neural mapping
function with softmax.

To model P (Ct|C0, . . . , Ct−1, Ft; θ), we resort to recur-
rent neural (RNN) models and employ long short-term mem-
ory (LSTM) networks [9]. The LSTM networks encode the
knowledge of inputs at every time step to the current time by a
memory cellmt. The advantage of LSTM over a vanilla RNN
is avoiding vanishing gradients using a control forget gate ft.
The input and output of LSTM are controlled by input gate it
and output gate ot, deciding how to handle the data. These
gates are formulated as follows:

it = σ(Wixxt +Wimmt−1), (3)

ft = σ(Wfxxt +Wfmmt−1), (4)

ot = σ(Woxxt +Wommt−1), (5)

ct = ft � ct−1 + it � tanh(Wcxxt +Wcmmt−1) (6)

mt = ot � ct, (7)

where � is the Hadamard multiplication, the W represents
parameter matrices, and σ(.) is the sigmoid function, xt is the
feature representation obtained for patch Ft using ConvNets.
At time step t, we measure P = softmax(mt).

Training. The full architecture is trained using cross en-
tropy loss with Adam optimizer and learning rate of 1e−6 for
20 epochs. To train a network, we preprocess the images to
have zero mean and standard deviation of 1. The code for
the recognition pipeline is available at http://github.
com/hrtavakoli/BAR

4. SALIENCY GUIDED RECOGNITION

Our recurrent recognition approach utilizes a sequence of
image patches. To select the patches, we propose using
bottom-up attention and a dynamic attention mechanism
based on winner-take-all (WTA) and inhibition of return
mechanism [10]. The saliency map is fed to a two dimen-
sional layer of neural units. The neuron with maximum
saliency (winner) is activated, causing the focus of attention
shift to the winning location, where a fixed image patch is
extracted to be processed in our recurrent architecture. Along
with the winner neuron, a series of inhibitory neurons are also
activated to prevent attending the same location. We follow
the implementation of [11] and extract patches of fixed size
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Fig. 2. The winner-take-all process for image patch selection.
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Fig. 3. The architecture of our feature encoding pipeline.
Conv OK × K S, indicates a convolution with O outputs,
K ×K kernel and S stride, similarly for MaxPooling opera-
tor K × K S, indicates size of kernel and stride, and FC#
indicates the fully connected layer with # outputs, which for
the last layer # is the number of classes in the database. The
same architecture is used as a feed-forward baseline.

of 150 × 150, centered at the location of the winner neuron.
This process is depicted in Fig. 2.

5. LEARNING BY GAZE-DRIVEN SALIENCY

To validate our proposed approach, we employed a relatively
shallow ConvNets for feature encoding and trained our net-
work from scratch on saliency maps from human gaze. The
settings of this network is depicted in Fig. 3. We use the same
architecture as a feedforward baseline with the same training
settings as the recurrent architecture.

For this purpose, we use the Pascal Objects Eye Track-
ing (POET) [12] data. It consists 6270 of the images of the
Pascal VOC challenge 2012 [13], which includes 10 of the 20
Pascal classes. It has a total of 178000 fixations of 28 par-
ticipants, where each image on average has 5.7 fixation per
observer. The data is split into a training set of 2800 training
images with 280 images per class category and a test set of
3470 images.

To obtain human-driven saliency, we pulled the gaze
points of observers together and built a fixation map for each
image. Then, the fixation maps were convolved with a Gaus-
sian kernel corresponding to 1◦ of visual angle in POET. The
sequence selection process of section 4 is employed and a
series of image patches are extracted.

We compare the results of the proposed recurrent frame-
work as a function of image patches with the performance of
the feedforward network trained on the whole image (base-
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Fig. 4. The performance of recurrent recognition on human-
driven image patches in comparison to two baselines on
POET data. Baseline 1 is the feedforward network, trained
with the whole image as input; Baseline 2 is the feedforward
network trained with the first salient patch as input.

line 1) and the first most salient patch (baseline2). The result
is summarized in Fig. 4. As depicted, a feedforward network,
trained on the most salient patch, outperforms the same archi-
tecture, trained on the whole image. Nevertheless, the recur-
rent architecture outperforms both models by a large margin.
The current experiment indicates that recurrent architecture
improves the performance of a network, consistent with the
various evidence, including the empirical results of the feed-
back networks [1].

To investigate the contribution from the whole image in
recurrent model, we also trained the recurrent model for three
time-steps with the whole image as the first time step input
and the top 2 salient patches as consequent inputs. The re-
sults shows the top 1 accuracy of the recurrent model with
whole image and the top 2 salient patches as input is 33.54,
which is inferior to the top 1 accuracy of the top 2 and top 3
salient patches, 37.78 and 37.93, respectively. This indicates
the nature of images is such that the whole image carries too
much extra information, e. g. background data, that a crop
from the most salient region boosts the recognition and the
whole image adversely affects the performance of the recog-
nition pipeline.

We furthermore evaluated the sequence of patches by em-
ploying randomly selected patches from a uniform distribu-
tion and using the whole image as input in different steps of
the recurrent model. Our results indicate that random patches
achieve the top 1 accuracy of 25.73; and the whole image as
input configuration result in top 1 accuracy of 28.56, which is
even worse than the performance of the feedforward network.
This clearly indicates that the sequence of image patches mat-
ter, i. e. where the model is looking in an image significantly
influences its understanding of the content and the results.



6. LEARNING BY COMPUTATIONAL SALIENCY

To replicate human gaze, computer vision has been utilizing
saliency modeling as a mean for fixation prediction. Except a
limited number of works that directly addressed saccade gen-
eration e. g. [14, 15], most of the saliency models focus on
predicting the saliency maps. This latter group of models has
a well-established evaluation mechanism and community has
a better understanding of their performance in comparison to
human. They can also be easily used for patch selection in a
WTA network.

The applicability of such computational models are as-
sessed. We choose several saliency models and use their
saliency maps for patch extraction. These models are SAL-
ICON [16], ISEEL [17], and GBVS [18]. SALICON is
deep learning model, which is trained end-to-end to estab-
lish a multi-resolution regression between image domain and
saliency space. It fine-tunes the deep features for the specific
task of saliency predictoon. ISEEL is another deep model
which exploits the similarity between images to predict the
saliency using an ensemble of neural predictors. It treats
deep features as generic features and avoids fine-tuning for
saliency prediction. The GBVS model is a classic saliency
model which relies on low-level image features and Markov
chain approach for predicting the saliency.

Fig. 5 summarizes the comparison between saliency mod-
els and human. While overall there exist a degree of contribu-
tion from computational models, the performance gain does
not follow the same trend as the human. All the computa-
tional models achieve their peak performance for three most
salient patches. The better a model replicates human fixation
density maps, the better performance it achieves for salient
patch selection.

The experiment also signifies the role of the sequence of
patches. While the sequence of four patches is the most infor-
mative sequence by human and producing the best prediction
model, a sequence of four patches guided by saliency under-
performs significantly in comparison to a sequence of three
or five patches. This indicates that the computational models
does not produce similar to human sequences as expected.

7. DISCUSSION AND CONCLUSIONS

This paper presented a recurrent architecture for image recog-
nition, exploiting the salient regions of images. The experi-
ments showed that learning a sequence of informative image
patches is an effective approach for image recognition.

The proposed recurrent architecture consists of a series
of convolution operations and a recurrent part. The convolu-
tion operations can be initialized from pre-trained networks,
which makes the training of the network easier. In this work,
we employed three layers of convolutions due to the relatively
limited number of training samples that are accompanied with
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Fig. 5. The performance of recurrent recognition using com-
putational saliency models for patch selection and human as
upper-bound. The results of the recurrent approach are shown
using 2, 3, 4 or 5 patches (as in Fig. 4).

human gaze data and the fact that we trained the neural archi-
tectures from scratch.

In the experiments, we learned that (1) the best informa-
tive patch is better than the whole image in training a feed-
forward network, (2) a recurrent model based on a sequence
of informative image patches is superior to a feed-forward
model and a sequence of randomly chosen image patches,
and (3) despite the gap between saliency models and human
has become smaller in fixation prediction task, there is a
larger gap in performance of gaze-driven maps (maps from
human) and saliency models for selecting informative patch
sequences in recognition task.

There has been works that addressed the role of feed-
back and recurrent architectures. Nevertheless, the feedback
has been a recurrent architecture that has been processing the
whole input image several times as in [1]. We did not find any
significant boost with such a setting, i. e. inputing the whole
image several times does not improve the recurrent network
over the feed-forward network (28.56 vs. 29.8) and is much
inferior to the recurrent architecture with informative patches.
The fine-grained object detection has also utilized recurrent
attentive networks e. g. [3]. The recurrent attention models re-
quire a heavy training in a top-down fashion in order to learn
a feature alignment in which the network finds out where to
attend. As an alternative, a bottom-up approach for selecting
informative patches seems to be an effective approach to be
investigated for recognition tasks.
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