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ABSTRACT

Robust cell detection plays a key role in the development of
reliable methods for automated analysis of microscopy im-
ages. It is a challenging problem due to low contrast, vari-
able fluorescence, weak boundaries, conjoined and overlap-
ping cells, causing most cell detection methods to fail in dif-
ficult situations. One approach for overcoming these chal-
lenges is to use cell proposals, which enable the use of more
advanced features from ambiguous regions and/or informa-
tion from adjacent frames to make better decisions. How-
ever, most current methods rely on simple proposal genera-
tion and scoring methods, which limits the performance they
can reach. In this paper, we propose a convolutional neural
network based method which generates cell proposals to facil-
itate cell detection, segmentation and tracking. We compare
our method against commonly used proposal generation and
scoring methods and show that our method generates signif-
icantly better proposals, and achieves higher final recall and
average precision.

Index Terms— cell proposals, cell detection, cell track-
ing, deep learning, fully convolutional network

1. INTRODUCTION

Light microscopy is the most common method to investigate
cells and robust cell detection in microscopy images plays
a key role in most cell segmentation and tracking methods,
which are necessary to gain insights into cell functions, tis-
sue development and disease progression. Only using human
vision and labor based approaches cell detection is impracti-
cal or impossible due to very large numbers of cells, and for
computer-based solutions it is a very challenging problem due
to high cell density, low contrast, variable fluorescence, weak
boundaries, strong gradients inside cell bodies, deformable
cell shapes, and conjoined and overlapping cells. These fac-
tors frequently result in ambiguous regions and cause most
cell detection methods to make mistakes. One approach for
reducing these errors is to generate a relatively large set of cell
proposals such that they have a very high recall and then select
the optimal set among them. This approach enables the use
of more advanced reasoning and temporal information when

finding the optimal set of proposals, leading to improvement
in performance.

In recent years, proposal generation methods have be-
come very popular in object detection and all current top
ranked methods use object proposals [1]. However, the chal-
lenges in bio-medical image analysis are very different from
general object detection and most object proposal generation
methods do not transfer well when applied directly. Recently,
few methods have been presented which utilize cell proposals
for cell detection [2, 3, 4] and tracking [5, 6, 7]. These cell
proposal methods fall into 3 categories: thresholding [2, 3],
shape matching [7, 5] and super-pixel merging [6, 4].

Thresholding based methods (e.g. MSER) [2, 3] assume
that cell centers are brighter than their boundaries and there
exists some optimal threshold at which individual cells can
be segmented as separate proposals. In many challenging
sequences, this assumption does not hold true and these
methods cannot generate good proposals. One method for
overcoming this limitation is to allow each proposal to con-
tain more than one cell [8], while another is to transform
the images so that this assumption becomes true [8]. Shape
based methods either use multi-scale blob detection [7] or
multi-scale ellipse fitting [5] to detect and segment cells.
These methods can generate good proposals when cells have
round or elliptical shapes but do not work well for general
cell shapes. Super-pixel merging methods [6, 4] do not inher-
ently make any of the above assumptions, so they can handle
arbitrary shapes, but they still need some criteria for merging
superpixels, which can be challenging due to strong gradients
within cells and weak gradients between cells.

None of the above mentioned cell proposal generation
methods provide a natural way of ranking or scoring the pro-
posals, so a second stage is used to extract some features from
each proposal region and these features are used to score it.
These features are usually hand crafted and consist of basic
appearance and shape statistics, including area, mean inten-
sity [6], histogram of proposal boundary [2], etc. These fea-
tures are then used by random forest [6], gradient boosted
trees [5] or SVM [7, 3, 2] classifier to compute the probabil-
ity of the proposal being a cell.

After proposal generation, cell detection is posed as the
selection of proposals which maximize the combined score



Fig. 1: Cell Proposal Network. A selected area from Fluo-N2DL-HeLa dataset is shown. Left: Positive and negative training
anchors are marked. Right: Top ranking cell proposals and ground truth bounding boxes are shown.

under the constraint that no two selected proposals conflict
(overlap). This optimization is performed either using Inte-
ger Linear Programming [3, 4] or dynamic programming [2].
In cell tracking applications, proposals in adjacent frames are
linked with each other and then the solution providing trajec-
tories of cells along with selected proposals is obtained either
by Linear Integer Programming [5, 6] or by iteratively finding
the shortest path [7].

Proposal generation and their scoring is a bottleneck in
the performance of these tracking and detection methods. A
better proposal generation and/or ranking method can lead to
significant improvement in performance of these methods es-
pecially on more challenging data-sets. Recently, [9] and [10]
have shown that convolutional neural networks can be used to
generate very high quality (high recall and precision) object
proposals in context of generic object detection.

In this work, we utilize an approach similar to [9] to gen-
erate cell proposals for fluorescence microscopy images. That
is, we present a deep learning based cell proposal genera-
tion network, which provides cell proposals and their scores.
Our method bypasses the need for manual selection and de-
sign of features for computing cell probabilities. Our novel
contributions include: (1) a network for cell proposal genera-
tion and (2) a data expansion method for augmenting train-
ing data with weakly annotated cell images. We evaluate
our method against existing proposal generation and ranking
methods and show that it outperforms them. We also show
that our method outperforms state of the art cell detection
method [2] by greedily selecting non-conflicting proposals.

2. METHOD

Network Structure: Our cell proposal network (CPN) uses a
fully convolutional neural network to predict bounding boxes
for cell proposals and their scores - probability of them be-
ing cells. It consists of two parts and is shown in Fig. 1.
First part, feat, extracts 256-dimensional feature vectors from
53x53 rectangular regions (with stride of 8) in the input im-
age. This part of our network is based on Zeiler and Fergus
model [11] and was selected experimentally. The second part
(shown in red) consists of two parallel fully connected lay-
ers, score and bbox. bbox layer outputs proposal bounding
boxes, while score layer outputs their scores. Both fully con-

nected layers (implemented as 1x1 convolution layers) slide
over the feat output and provide multiple proposals for each
pixel in this feature map. CPN uses k (=6) anchors [9] at each
pixel in feat output to propose cells at multiple scales and as-
pect ratios. Anchors are bounding boxes placed in the input
image at the center of receptive field of each pixel in feat out-
put. The outputs of bbox layer, bi, are parameters of predicted
bounding boxes, b = (x, y, w, h), relative to anchor bounding
boxes, ba = (xa, ya, wa, ha) [9].

bi = ((x− xa)/wa, (y − ya)/ha, log(w/wa), log(h/ha))
(1)

Training: We use overlap of anchors with cell bound-
ing boxes to generate positive and negative samples. Anchors
having the highest intersection over union overlap (IoU) with
each ground truth (GT) cell bounding box are used as positive
samples. Negative samples are selected randomly from an-
chors having maximum IoU below 0.4 with all GT cell bound-
ing boxes. Each training batch consists of a single frame, with
equal number of positive and negative samples. All other an-
chors are not used for training and hence do not contribute to
the multi-task loss function [9]:

L(pi, bi) = Lscore(pi, p
∗
i ) + λp∗iLbbox(bi, b

∗
i ) (2)

where Lbbox is smooth-L1 loss [12] and penalizes differences
between predicted (bi) and ground truth (b∗i ) bounding box
parameters. Lscore is soft-max classification loss for two
classes, cell and background. pi is the probability of bound-
ing box, bi, being a cell. Ground truth label, p∗i , activates
the Lbbox loss for positive samples and disables it otherwise.
λ(=10) balances the bounding box regression loss relative to
the classification loss.

Data Expansion: Our network needs bounding boxes for
training but the ground truth data that is typically available
has very few cells with bounding boxes. This limited train-
ing data does not cover cell appearance and shape variation
sufficiently for the network to learn the desired invariances.
However, in a typical dataset all cells in a sequence have a
ground truth marker (few connected pixels identifying each
cell uniquely) inside their body. We use these markers to ob-
tain cell bounding boxes and increase training data. We first
segment cells from background using graph cuts. This binary



segmentation fails to detect some very dark cells, so we place
an average cell sized bounding box centered at their marker
location. Then we use ground truth markers and marker-
controlled watershed to split cell clusters in initial segmenta-
tion. Some watershed regions are very small due to errors in
cluster splitting; we remove these regions from training data.
Cells in microscopy images, unlike objects in natural images,
can be present in any orientation so we use rotations and flips
to further increase training data.

Post-processing: CPN evaluates ∼ H ×W × k/64 pro-
posals for an image of size H ×W and can generate multiple
proposals for some cells. We use non-maxima suppression
(IoU=0.5) to remove lower scored duplicate proposals.

Our deep learning network provides a bounding box for
cell proposals but in most bio-medical image analysis applica-
tions, cell segmentation proposals are needed. We obtain the
required segmentation mask by thresholding. The proposal
bounding boxes predicted by CPN are not very precisely lo-
calized so we first expand the bounding boxes by 3 pixels on
each side. Then, we threshold the expanded bounding box
regions by using their mean intensities as the threshold. Mor-
phological closing and hole filling are used to refine the pro-
posal segmentations. Some proposed bounding boxes may
contain multiple objects after the post-processing steps; only
the largest object in a bounding box is retained as the segmen-
tation mask.

3. EXPERIMENTS

Dataset: We evaluate our method on Fluo-N2DL-HeLa data-
set from ISBI cell tracking challenge [13]. This data-set con-
tains 2 time-lapse sequences (92 frames each) of fluorescent
HeLa cells cultured and imaged on two dimensional surface.
The ground truth (GT) for this data-set contains markers for
all cells in all frames and segmentation masks for all cells in 2
frames from each sequence.Some of the challenges with this
data-set are: many cell clusters, frequent cell divisions, low
contrast, variation in cell sizes and intensities.

Baseline: We compare our CPN with two cell proposal
generation methods: BLOB and MSER. BLOB [7] uses mul-
tiple filter banks, covering common cell scales and aspect
ratios, to detect and segment cell proposals. MSER [2, 14]
finds stable connected components (area does not vary across
a range of thresholds) and uses these as cell proposals.

Both proposal generation methods do not provide any
ranking so we use the following three feature sets for rank-
ing proposals. Set A [2] contains three intensity and one
shape histogram and was proposed as part of a cell detection
method. Set B [7] contains few image moments and some
basic shape features, e.g. perimeter, solidity, etc. Set C [6]
includes few intensity statistics of cell proposal and its dila-
tion. Both feature set B and C were proposed to compute the
probability of a proposal being a cell in joint cell detection
and tracking pipelines.

Evaluation Criteria: We use two metrics to evaluate pro-
posals as either true positive (TP) or false positive (FP). First
metric evaluates segmentation masks; a proposal is consid-
ered TP if its mask has intersection over union overlap (IoU)
> 0.5 with any unmatched ground truth (GT) cell segmenta-
tion mask, otherwise the proposal is considered FP. GT cells
which remain unmatched are false negatives (FN). Since we
have only four frames with GT segmentation masks but have
access to cell markers for all frames, so we propose a second
evaluation metric which considers the number of cell markers
inside a proposal’s segmentation mask. A proposal is consid-
ered TP if it contains only one GT cell marker inside its body
and that marker is unmatched, otherwise it is considered FP.
Cell markers which do not occur alone inside any evaluated
proposal are considered FN.

The number of cells and hence the difficulty of generating
proposals in a frame varies a lot 1 so we generate proposals for
all frames in the data-set, order them by their score and then
evaluate them as either TP or FP, obtaining a pair of recall
(R = TP/(TP+FN)) and precision (P = TP/(TP+FP)) values
after evaluating each proposal. We report these values using
precision-recall curves along with average precision (AP) -
area under precision-recall curves.

Implementation Details: Same pre-processing (median
filtering) is used for all comparison methods. For BLOB and
MSER, we generate the proposals, extract above mentioned
feature sets and normalize each feature set to have zero-mean
and unit-variance. Proposals with one GT cell marker inside
them are labeled as positive samples, while the rest are labeled
as negative samples. Then, a 2-class random forest classi-
fier is trained to predict the probability of a proposal being a
cell. Once we have the proposal scores, we use non-maxima
suppression to get rid of duplicate proposals. We use same
non-maxima suppression settings (IoU = 0.5) for all methods.

CPN’s weights are initialized randomly from a Gaussian
distribution with zero-mean and 0.01 standard deviation. We
use learning rate of 0.001 for first 25k iterations, then it is
reduced to 0.0001 for next 15k iterations.

For all methods, one sequence is used for training and the
other one for testing; this is repeated for both sequences. Then
proposals from both sequences are combined, sorted by their
score and evaluated as either TP or FP.

Results: Fig. 2a shows the precision-recall curves when
GT cell markers are used for evaluation. Average precision
(AP) is shown in the legend along with the combination of
proposal generation method and feature set used for ranking
it. CPN has highest AP (0.963), highest final recall (0.996)
and higher precision for all recall values. Combination of
BLOB proposals and Set A features has almost the same pre-
cision as CPN for low recall values, however the difference
between them increases with recall. CPN maintains precision
above 0.95 for recall up to 0.9 indicating that it is quite ac-
curate at picking out easy and moderately difficult cells. Its

1In our data-set, the number of cells in a frame varies from 43 to 363.
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Fig. 2: Results for Fluo-N2DL-HeLa data-set. Average precision (AP) is shown in legend of (a) and (b). Average recall (AR) is
shown in legend of (c). Results in a) were computed using ground truth (GT) cell markers from all frames, while the results in
b) and c) were computed using GT segmentation masks from four frames.

precision drops for the last ∼10% of cells, some of which can
be very challenging.

Fig. 2b shows the precision-recall curves when GT cell
masks are used to evaluate methods. The difference in pre-
cision and recall of CPN and other methods is larger in this
case. One reason for this larger difference is the fact that two
of the four frames have high cell density and contain many
conjoined and overlapping cells: challenging situations which
CPN can handle better. This trend is also observed in evalu-
ation of individual frames, where CPN has greater lead over
other methods for dense frames compared with sparse frames.
Another reason for this difference is the lower recall of BLOB
and MSER due to removal of some good proposals in non-
maxima suppression stage. Higher recall (but still lower than
CPN) can be obtained for MSER and BLOB by removing non-
maxima suppression at the cost of drop in their precision.

Fig. 2c shows how the recall varies with segmentation IoU
threshold, average recall (AR) values are shown in the legend.
Top 900 proposals were selected from all methods and re-
call computed at IoU thresholds between 0.1 and 1. CPN has
higher recall for IoU thresholds up to 0.7 but its recall drops
below combination of BLOB and set A features for higher
thresholds. CPN has lower recall at high IoUs due to lim-
ited precision of predicted bounding boxes and use of thresh-
olding when obtaining segmentation masks. Localization of
predicted bounding boxes can potentially be improved by us-
ing feature maps from earlier layers [15] and more accurate
segmentation masks can be obtained by replacing threshold-
ing with graph cuts.

We tested 3 very different feature sets for ranking propos-
als. Set A, which contained multiple histograms, consistently
produced better ranking for both BLOB and MSER proposals
indicating that using more advanced shape and appearance
features has some advantage over more commonly used ba-
sic appearance and shape features. The difference between
performance of Set B and C, both of which contained simple

intensity and shape statistics, was not as consistent.
We also include the cell detection results for a state of

the art method [2, 16] (CellDetect) and our method (CPN-
Greedy) in Fig. 2a and Fig. 2b. CellDetect uses MSER to
generate cell proposals and structured SVM to learn the prob-
ability of each proposal being a cell from GT cell markers. It
then uses dynamic programming to select the optimal set of
proposals, which are the detected cells. CPN-Greedy greed-
ily picks the top ranked proposals under the constraints that
selected proposals do not conflict and have a high score.
CPN-Greedy has higher recall and precision than CellDetect
(Fig. 2a and Fig. 2b). Both CPN and CellDetect have al-
most same performance for low cell density frames but for
high cell density frames CPN-Greedy has higher recall and
precision, indicating that it can better handle challenging sit-
uations. Further improvement in recall and precision can be
obtained by using Integer Linear Programming for selecting
the optimal set of proposals.

4. CONCLUSIONS

In this paper we have proposed a convolutional neural net-
work based cell proposal generation method, which generates
a set of segmentation masks along with their probabilities.
We have shown that our proposal generation method per-
forms better on a challenging data-set compared with current
cell proposal generation methods and a state of the art cell
detection method. We have demonstrated that it can gen-
erate much better proposal ranking than hand crafted sets
of shape and appearance features commonly used for this
task. We plan to extend this work by utilizing our pro-
posal generation method in a joint cell detection and tracking
method. We also plan to apply this method to images from
other microscopy modalities. Some initial tests on phase
contrast images of non-labeled cells have provided promis-
ing results. Code is available at https://github.com/
SaadUllahAkram/CellProposalNetwork.

https://github.com/SaadUllahAkram/CellProposalNetwork
https://github.com/SaadUllahAkram/CellProposalNetwork


5. REFERENCES

[1] J. Hosang, R. Benenson, P. Dollár, and B. Schiele,
“What makes for effective detection proposals?,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 2015. 1

[2] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman,
“Learning to Detect Cells Using Non-overlapping Ex-
tremal Regions,” in International Conference on Medi-
cal Image Computing and Computer Assisted Interven-
tion (MICCAI). 2012. 1, 2, 3, 4

[3] R. Bise and Y. Sato, “Cell Detection From Redundant
Candidate Regions Under Nonoverlapping Constraints,”
IEEE Transactions on Medical Imaging, 2015. 1, 2

[4] J. Funke, F. A. Hamprecht, and C. Zhang, “Learning to
Segment: Training Hierarchical Segmentation under a
Topological Loss,” in International Conference on Med-
ical Image Computing and Computer Assisted Interven-
tion (MICCAI). 2015. 1, 2
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