
A NOVEL FEATURE DESCRIPTOR BASED ON MICROSCOPY IMAGE STATISTICS

Neslihan Bayramog̃lu § Juho Kannala § Malin Åkerfelt ‡
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ABSTRACT

In this paper, we propose a novel feature description algo-

rithm based on image statistics. The pipeline first performs

independent component analysis on training image patches to

obtain basis vectors (filters) for a lower dimensional represen-

tation. Then for a given image, a set of filter responses at each

pixel is computed. Finally, a histogram representation, which

considers the signs and magnitudes of the responses as well

as the number of filters, is applied on local image patches. We

propose to apply this idea to a microscopy image pixel identi-

fication system based on a learning framework. Experimental

results show that the proposed algorithm performs better than

the state-of-the-art descriptors in biomedical images of differ-

ent microscopy modalities.

Index Terms— local image descriptor, pixel labeling, cell

detection, phase contrast imaging, electron microscopy, mito-

chondria, tumor, cell co-culture.

1. INTRODUCTION

In order to obtain quantitative cell analysis from microscopy

data, there is need for computational methods that can ex-

tract measurements of complex cellular dynamics automati-

cally. In the literature, there has been a great number of work

for automatic analysis of microscopy images. However, the

majority of papers in medical and biomedical image analysis

describe an algorithm or solution that addresses a particular

task. The diversity in the type of the microscopy, molecular

labelling, resolution, quality of images, cell appearance and

cell dynamics in image data is high. Therefore, usually, it

is not applicable to utilize existing methods to address those

challenges and needs. The challenge is to develop a generic

algorithm that has a wide application area in automated mi-

croscopy image analysis.

In this study, we propose a novel local image descriptor

that can be utilized in various applications in (bio)medical

image analysis research. Our proposed feature descriptor is

based on statistical models of images. In this work, perfor-

mance of the descriptor is tested in a microscopy image pixel

labeling framework. Pixel level identification scheme can be

employed as a generic detection method and as a priori for

subsequent segmentations [1] of different cell lines and mi-

croscopy modalities. We employ our feature descriptor for

detection of tumour cell spheroids in phase contrast imag-

ing of cell co-cultures and for detection of mitochondria in

electron microscopy images. Our method works under heavy

occlusions and clutter and therefore suitable for most of the

biomedical images. Experimental results demonstrate signif-

icant improvements over strong baseline methods.

2. METHOD

In traditional computer vision problems, local image descrip-

tors are dominant because of their proven successes. Various

descriptors have been proposed in the literature [3]. The most

widely used local region descriptor is Scale Invariant Feature

Transform (SIFT) [2] and it has become a baseline method for

comparison. Local binary pattern (LBP) [4] and local phase

quantization (LPQ) [5] are notable feature descriptors mainly

used for face and texture recognition. Local feature descrip-

tors have shown to be very successful also in (bio)medical im-

age analysis research such as live cell tracking [6], cell/object

detection [7, 8, 9], mitosis event segmentation [10], cell clas-

sification [11], and image alignment and registration [12].

Our method is inspired by SIFT and a recent binary de-

scriptor called Binarized Statistical Image Features (BSIF)

[13]. Our descriptor computation has a similar step with the

gradient orientation binning in SIFT. In SIFT, each pixel is

assigned to the orientation bin, weighted by the gradient mag-

nitude. However, in contrast to SIFT, we utilize a set of re-

sponses of linear filters for every pixel. On the other hand,

BSIF method is based on binary code string representation

of pixels. The code is computed by binarizing the response of

linear filters that are learnt from independent component anal-

ysis of natural image patches. Similarly, we utilize a set of lin-

ear filters; however, our local patch descriptor is computed by

accumulating patch filter response magnitudes within a his-

togram based representation. The proposed descriptor, which

is called Natural Image Statistics based Feature (NISF), con-

sists of two main steps: learning filters from image statistics



Fig. 1: NISF Descriptor. (Top) Illustration of histogram bin-

ning. (Bottom) Spatial encoding of a local image patch.

and filter response binning.

2.1. Microscopy Image Statistics

We begin our descriptor computation pipeline with filter

learning. We learn filters by applying Independent Com-

ponent Analysis (ICA) [14] to image patches from a set of

images. In ICA, it is assumed that the input signal is to be

produced as a linear superposition of independent signals.

Denote by x = [x1, x2, . . . , xk×k]
T a vectorised image patch

of size k × k, then the model of the ICA is given by:

x =

N
∑

i=1

siai = As (1)

where N is the number of filters, si’s are the independent

components and basis images are the column vectors of A.

The aim of ICA is to find the statistically independent com-

ponents si by estimating the inverse matrix W of matrix A:

s=Wx where the row vectors in W are the ICA filters that

can be used to analyse images. But first, data centering and

whitening by principal component analysis is applied. The

dimensionality is decreased at the same time. ICA encoding

provides a new basis of representation by reducing the infor-

mation redundancy of input images by projecting the data on

statistically independent signals. ICA learns filters from un-

labelled image patches and the number of basis images can

be controlled in addition to the size of the image patches (i.e.

N ≤ (k × k)). For a detailed algorithm explanation we refer

reader to [14].

2.2. NISF Descriptor

Our natural image statistics based (NISF) descriptor uti-

lizes responses of filters that are learnt from microscopy

images in the previous step. First, filter responses, y =
{y1, . . . , yi, . . . , yN}, are computed at each pixel by convolv-

ing N learnt filters with the input image. Then, we compute

histogram of image patches based on their filter response

magnitudes and their signs. The descriptor fp(x,y) of a pixel

p located at (x, y) is evaluated within a rectangular grid cen-

tered at pixel p. Similar to SIFT, the supporting region is

then divided into 4 × 4 sub-patches of sizes m × m (Figure

1). Denote filter responses within a sub region by yt where

t corresponds to pixel index. Then the histogram HS for a

sub-patch is computed by summing absolute values of filter

responses. Positive and negative responses are accumulated

in different bins. Therefore, the bin index j is determined by

the filter index i and the sign of the filter response:

HS
binj

=

m×m
∑

t=1

abs(yti), j =

{

2× i yti ≥ 0
2× i− 1 yti < 0

i = 1, 2, . . . , N (2)

which results (2 × N) length sub-patch histograms. Fi-

nally, NISF descriptor is built by concatenating sub-patch

histograms into a compact feature vector of length (4 × 4 ×
2×N): fp(x,y) = {HS1HS2 . . . HS16}.

3. SOFT PIXEL LABELLING

In this study, we propose a learning based framework for

soft pixel labelling that employs our NISF descriptor (Fig-

ure 2). Local image descriptors can be utilized to identify

pixel data; for example to detect particular cells/objects in

microscopy images. We employ it for detection of tumour

cell spheroids in phase contrast imaging of cell co-cultures

(Figure 5) and for detection of mitochondria in electron mi-

croscopy (EM) images within a learning based framework.

We start our pipeline by training a “random forest” (RF) clas-

sifier on pixel level features [1]. Similarly, pixel level deci-

sions are then made during test time. We tested our method

on six different public datasets. Table 1 gives detailed infor-

mation about databases used in this study.

4. EXPERIMENTS

In our initial experiments, we used 8 filters learnt from a set

of EM images provided by the authors of [15]. Filters are

learnt using 50000 image patches of sizes 7×7 sampled from



Fig. 2: Illustration of pixel classification framework: It de-

pends on a random decision forest framework to provide a

pixel wise probabilistic classification.

Table 1: Datasets used in RF classification

Number of Images

Dataset Train Test Total Size (∗: Scaled)

1 EPFL [15] 17 165 182 410× 307∗

2 TrackEM2 [17] 6 24 30 358× 358∗

3 UCSD 1 9 42 51 350× 350∗

4 Turku-Col [8] 18 167 185 400× 300
5 Turku-Mat [8] 6 21 27 400× 300
6 Turku-Mtg+Col [8] 6 21 27 400× 300

20 images from the training set of EPFL dataset [15]. Data

used during the RF classifier training step is shown in Table 1.

Note that a subset of EPFL training images is utilized in this

work. A RF classifier is trained on features that are extracted

by using our proposed descriptor. Equal number of samples

from background and foreground are selected from the train-

ing set. During test time, pixel level features are extracted

as it is done in the training stage and pixels are assigned to

probabilistic outputs (soft decisions) based on the average de-

cision generated by the random trees. Binary decisions for

pixel class IDs can be made by simply thresholding the prob-

abilistic outputs. Precision-recall (PR) curves are obtained by

varying the threshold from 0 to 1.

We compare our results with the state-of-the-art descrip-

tors including SIFT [2], BSIF [13], LBP [4], and SURF [16].

Similar to NISF, a 4 × 4 patch is employed in constructing

pixel based descriptors of all the features. Uniform LBP pat-

terns are utilized in order to reduce the high dimensional fea-

tures. BSIF descriptors are computed with the same set of

filters employed in NISF (i.e. 8 filters learned from 7 × 7
patches of EPFL data). For RF classification, for SIFT and

SURF feature extraction, OpenCV implementation is used.

We extract features from image patches of sizes 41 × 41 at

one scale. For training RF classifiers, 20 trees are employed

with a maximum depth of 15.

The comparative results are displayed in Figure 3. The

pixel classification performance of the proposed method

achieves the best performance in each dataset. In Figure 5,

visualization of soft pixel labeling of sample images from

1ccdb.ucsd.edu, project ID: P2080, segmentation mask from

http://cytoseg.googlecode.com
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Fig. 3: Performance comparison of NISF, SIFT, BSIF, LBP

and SURF descriptors on the datasets given in Table 1.

EPFL and Turku-Col using our approach and SIFT, which

performs second best among all others, are provided. Despite

it’s simplicity, BSIF demonstrate a weak performance in this

context. This could be due to its high dimensional and sparse

structure which makes the descriptor sensitive to small data

variations. We have also tested BSIF without dividing the

image patch into grids and using a single global histogram

for the whole patch but it did not improve the performance.

The selection of ICA based filters in NISF experiments are

not random. In order to observe the effects of filter parameters

we tested various filters generated from different sized im-

age patches. The effect of increasing sizes of image patches

while keeping the number of filters fixed is shown in Figure

4a for Turku-Col dataset. The eight filters NISF descriptor

give good results with 7× 7 filters. If the size of filters is kept
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Fig. 4: Effects of (a) filter sizes, (b) number of filters, and (c-d) data on filter learning

Fig. 5: (From top to bottom) Example images from datasets

EPFL and Turku-Col. Segmentation mask of mitochondria in

EPFL and tumour cell spheroids in Turku-Col data. Proba-

bility maps with no class labels assigned for SIFT and NISF

respectively. Color map. (These results are obtained with

1000 RF trees.)

fixed at 7 × 7 and the number of filters is increased then the

performance of NISF improves in the high recall region (Fig-

ure 4b). However, descriptor length increases as the number

of filters increases. Therefore, we used 8 filters in all other

experiments.

In Figure 3 experiments, a fixed set of filters learned

only from EPFL EM images are used. We further investigate

the effects of data used in filter learning stage. We tested

NISF performance on phase contrast data by employing fil-

ters learned also from phase contrast data. The average PR

curves of NISF descriptor employing filters learnt from EM

and phase contrast images with fixed filter size of (7× 7) and

fixed filter number (8) are shown in Figure 4 (c-d) for Turku-

Col and Turku-Mat. Learning filters from the same kind of

test data performs better than learning filters from images

of different content. ICA filter learning is a fully automatic

step and does not require data annotation, therefore, all the

available image data can be utilized in this stage.

In NISF, filter learning can be done off-line and only once.

On the other hand, the number of convolutions performed dur-

ing NISF construction and the increased vector length due to

positive and negative bin partitioning increases the complex-

ity of NISF descriptor. Although NISF is computationally

more complex than SIFT, it performs better in all the experi-

ments and the performance gain reaches up to 35% for exam-

ple for UCSD dataset (Figure 3).

5. CONCLUSION

We introduce a new feature descriptor based on image statis-

tics. Such a local image descriptor can be used in various ap-

plications in (bio)medical image analysis research from seg-

mentation to tracking. The proposed method is tested in a mi-

croscopy image pixel classification application with several

datasets. Our method NISF works under heavy occlusions

and background clutter and performs better than the state-of-

the-art baseline methods. Moreover, this work provides en-

couraging results for employing NISF in other domains.
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