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ABSTRACT

In this paper we propose a novel method for the recov-
ery of affine transformation parameters between two im-
ages. Registration is achieved without separate feature ex-
traction by directly utilizing the intensity distribution of the
images. The method can also be used for matching point
sets under affine transformations. Our approach is based
on the same probabilistic interpretation of the image func-
tion as the recently introduced Multi-Scale Autoconvolu-
tion (MSA) transform. Here we describe how the frame-
work may be used in image registration and present two
variants of the method for practical implementation. The
proposed method is experimented with binary and grayscale
images and compared with other non-feature-based registra-
tion methods. The experiments show that the new method
can efficiently align images of isolated objects and is rela-
tively robust.

1. INTRODUCTION

There are basically two main approaches to image regis-
tration: feature-based and featureless solutions [7]. In the
feature-based solutions the aim is to first extract some salient
features from both images and then find correspondence
between these features. Thereafter the feature correspon-
dences are used to recover the geometric transformation that
registers the images. The problem with this approach is that
it is not always possible to find a sufficient number of fea-
tures which can be localized accurately from both images
and matched reliably between them.

In the featureless approach the registration is achieved
by directly utilizing the intensity information of the images.
For example, in the Fourier-Mellin transform the log-polar
mapping of the spectral magnitude makes it possible to ef-
ficiently match images under similarity transformations [2].
Unfortunately, there are quite a few direct registration meth-
ods for the more general class of affine transformations. The
affine invariant spectral signatures [1] could be used but
the computational cost of this method is quite high and it
is primarily designed for object recognition purposes. The
cross-weighted moments [6] and affine moment descriptors
[4] are two possible approaches that have been proposed

for affine registration. However, due to its computational
complexity the cross-weighted moment method is some-
what cumbersome for large images.

In this paper, we propose a novel approach for the affine
registration problem. The approach is based on the MSA
transform [3], which is briefly described in Section 2. In
Section 3, we derive our registration method by utilizing
the framework behind the MSA. We also present a variant
of the method that can be used to match affine transformed
point sets without knowing the point correspondences. The
implementational issues are covered in Section 4. The re-
sults are presented and discussed in Sections 5 and 6.

2. MULTI-SCALE AUTOCONVOLUTION

Let f : R?2 — R with f > 0 be an image intensity function
in L'(R?) N L?(R?). Then p(x) = f(x)/||f]|z1 is a proba-
bility density function, and we may take X, X1, and X to
be independent and identically distributed random variables
with the probability density function p. For a, § € R, we
define a random variable

Ua,ﬁ = aXl + ﬁX2 + ’YXOa (1)

where also the notation v = 1 — o — 3 is introduced. It
can be shown that the probability density function of U, g
is the double convolution

PU, s (u) = (poc *Pg *p'y)(u)v 2)

where p,(x) = 5p(%) if a # 0, and pa(x) = 6(x) if
a = 0 (Dirac delta).

The MSA transform of f is defined as the expectation
value of f(U, ), i.e.,

Fa, 8) = E[f(Ua,p)]

3)
~ [ F@)pa s ps < p) ()
R
It is essential for the efficient implementation of MSA that
instead of computing the double convolution (2) and the
integral (3) one may compute the transform in frequency
domain. Indeed, using the Plancherel formula, fR2 fg =



fR2 f §, and noting that Fourier transform takes convolutions
into products, we obtain from (3) that

Fla.f) = | F(=&)pa(&)ps()p(€)dE. 4

Since f,(w) = f(aw) when f,(x) = % f(¥), the MSA
transform of f may be written also in the form

Flaf) = — [ f-6)fee)ieef0edE  ©
f(0)% Jr2
which holds for all «, (.
The MSA transform values are invariant to affine trans-
formations of the image and can be used as affine invariant
features in object recognition and classification [3, 5].

3. AFFINE REGISTRATION
3.1. MSA descriptors

In image registration, we would need such descriptors that
allow to recover the geometric transformation between the
images, instead of being transformation invariant. There-
fore we slightly modify the approach above and define the
MSA descriptors of f in R? as follows.

Definition 1 Let f > 0 be a function in L*(R?) N L?(R?)
with a compact support, and let p(x) = f(x)/||f|| L1 be the
corresponding probability density function. Take X, X1,
and Xy to be independent and identically distributed ran-
dom variables in R? with the probability density function p.
For o, € R set v = 1 — o — (8 and define the random
variable U, g by (1). The MSA descriptor H(a, 3) of f is
defined as

H(aa ﬁ) = E[Ua,ﬁf(Uaﬁ)] (6)

By explicitly writing out the expectation values in (6) we
get

H(0.8) = [ uf(u)pn s+ ) ()i

= [ -0 (©a(e)- )€ o

1 / - A A s
= 5 | h(=8)f(a€)f(BE)f(7€)dE,
Fo JLCEI TGO 08
where h(£) is the Fourier transform of x f (x).
The MSA descriptors have the following important prop-
erty.

Property 1 Let A(x) = Tx + t be an affine transforma-
tion, where T is a nonsingular matrix. Let f be an image in-
tensity function and ' the A transformed version of f, i.e.,
f'(x) = f(A7Y(x)). Then the MSA descriptor H'(c, ) of
1! is obtained from the corresponding descriptor of f by

H'(c, #) = TH(av, 8) + tF(a, §), ®)
where F(«, 3) is the MSA transform of f.

Hl(a’ﬁ):

Proof: From (7) we get

R P
f/(0)3/R2h (—&)f'(al) f(BE) ' (v€)dE, 9)

where
(€)= [ e e (x)ax
R2
= /]RZ e~ 92mE(TY+t) (Ty 4 t) f(y)|det T|dy (10)
= ¢ I2mE ot T (Tﬁ(TTg) +t f(TTg)) .
For the Fourier transform of f’ it holds
F'(8) = e det T f(TT). (11)

By substituting (10) and (11) into (9), noting that o + 3 +
~ = 1 and changing variables, one sees that (8) holds. [

Hence, by computing H(«;, 8;), H (a, 8;) and F(ay, 3;)
for at least three different pairs («;, 8;) one obtains a set of
linear equations from which T and t may be solved. If more
than three points are used, a linear least-squares solution of

I%TZHH/(ahﬁi) — (TH(oy, 3i) + tF(ay, 3:))|>  (12)

can be computed.

In order to avoid singular configurations when choos-
ing the suitable set of points («;, 3;) one should take into
account the symmetries of H(«, 3).

Property 2 The descriptor values H(«, ) have symmetry
over three lines: o« — =0, a + 28 =1 and 2a+ (3 = 1.

Proof: The symmetries are the same as those of F(«, 3)

[3] and they follow from the symmetries of py,, . 0

Remark 1 Notice that for the invariance property

Elg' (U, g)] = E[g(Uqap)]

and the transformation property
E[U, 39' (U, 5)l = TE[Ua,9(Uap)] + tE[g(Ua,p)]

it is not required that the function g is equal to f which is
used to define the random variable U, g. It is sufficient that
g = goA~1, where the affine transformation A is the same

asin f' = fo A™L
Remark 2 Moreover, if E[g(U,,g)] # 0, we may write the
transformation property in the form
E[U:x,ﬁg/(U;,ﬂ)} _ E[Ua,ﬁg(Ua,ﬁ)]
Elg' (U, 5)] E[g(Uaq,p)]

Here we may replace g’ with some scalar multiplied version
sg'(x) = sg(A~1(x)), s # 0, so that (13) still holds.

+t. (13)



3.2. Matching point sets

Assume that we have a set of two-dimensional points, x;,
and an affine transformed version of it, x; = A(x;), and
we would like to solve the transformation between the point
patterns without knowing the point correspondences.

We consider that the points x; are random samples of a
random variable X with some probability density p. Then
the points x/ are samples of X’ which has density p’ = (po
A7) /|lpoA71||L1. We denote the mean and covariance of
X by p and C, and those of X’ by p/ and C’. For o, 5 € R
we may use p and p’ to define random variables U, 3 and
U, 5 as in Definition 1. By defining

g(x) = N(1,C), ¢'(x)=N(',C), (14)
where N(p, C) is the Gaussian distribution with mean g
and covariance C, we have ¢/(x) = g(A~1(x))/|det T|.
Therefore, in principle, we could use (13) to solve T and t.

In practice, we do not know the functions p and p’, which
implies that we do not know the probability density func-
tions of U, g and U’ ;. Neither do we know the means
and covariances of X and X’. However, we may estimate
these as sample means and sample covariances from the
point sets {x;} and {x}}. We may also compute the expec-
tation values in (13) as sample means. Namely, each point
(Xiy X4y, Xi5 ) Of the Cartesian product set {x;} x {x;} x
{x;} defines a sample of U, g by u = ax;, + 0x;, + (1 —
a — 3)x;,. The samples of U’% 5 are obtained respectively.

Thus, by using at least three (v, 3)-pairs we get from
(13) a set of equations from which T and t may be solved.
In the noiseless case the affine transformation is recovered
exactly, up to a numeric round off error, but the above prob-
abilistic framework provides a justification of the method
also when there is noise in the point coordinates or some
points in the other set have no counterparts in the other.

Remark 3 The approach presented here for point pattern
matching can be applied also in image registration. The
pixels of an image are considered as 2D points and the
grayscale values are used as weight factors when comput-
ing the sample means.

4. IMPLEMENTATION
4.1. MSA descriptors
The implementation of the MSA descriptors is based on the
Fast Fourier Transform (FFT) [3]. By discretizing the sec-
ond integral in (7) we get

NiN>
1

Hy(a, )= N, ; Hi(vi)Pa(vi)Pp(vi)Py(vi), (15)

where &k = {1,2} and 3 is the discrete Fourier trans-

form (DFT) of x4 f(x) and each P, is the DFT of the cor-
responding discrete function p,. If the size of the image
fis My x M5, we must choose the DFT lengths so that

(@) (b) (©) (d)
Fig. 1: Pattern matching: original (a), transformed and noise added
(b), recovered transformation with MSAP (c), and with MD (d).
Table 1: The average values of the matching error € among 1000
estimated transformations at six different levels of noise.

A 0 0.02 0.04 0.06 0.08 0.10
MD 0.00 0.01 0.07 0.14 0.24 0.31
MSAP 0.00 0.04 0.08 0.12 0.16 0.22
Ccw 0.00 0.05 0.10 0.16 0.23 0.30

N; > (la] +|8] + |v])M; — 2 in order to avoid the wrap-
around error. To avoid large DFT lengths « and (3 should be
reasonably small numbers.

To compute (15) we need scaled versions of the original
image. We do the interpolation and decimation in such a
way that the probability mass of each image region is ap-
proximately preserved in the scaling.

The computational complexity of the MSA descriptors
for an N x N image is O(N?log N) since the complexity
of the FFT is O(N?log N) and the summations and multi-
plications in (15) are only O(IN?) operations.

4.2. Point-based method

Implementation of the point-based matching method of Sec-
tion 3.2 is straightforward. However, in order to increase
efficiency we choose the values o, 3 sothat 1 —a— 3 = 0.
Then the number of samples of U, 3 may be reduced from
n3 to n?, where n is the number of points in the set {x;}.
Since an N xN image contains N2 pixels the computational
complexity of the method is O(N*) which is the same as the
complexity of the cross-weighted moment method [6].

5. EXPERIMENTS
5.1. Point pattern

First we experimented our method with the point pattern
shown in Fig. 1(a). The points were transformed with ran-
dom affine transformations and isotropic Gaussian noise was
added to the coordinates before matching, cf. Fig. 1(b). The
random transformation matrices were chosen according to
T — <cos(w) —sin(w)) (1 O) (Cos(gb) —sin(¢5))

© \sin(w)  cos(w) J\O d/)\sin(¢p) cos(¢) )’
where w,¢ € [0,27] and d € [0.3,1] are uniformly dis-
tributed random variables. The standard deviation o of the
Gaussian noise was chosen to be proportional to the stan-
dard deviation of the z-coordinates of the original data points,
i.e., o0 = Aoy, where values A € [0, 0.1] were used.

Patterns were matched with three different methods: aff-
ine moment descriptors (MD) [4], point-based MSA method
(MSAP) and cross-weighted moments (CW) [6]. In MSAP

we used three (av, 3)-pairs: (0,1), (3, %) and (3, 1).
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Fig. 2: Image registration: original (a), transformed and noise
added (P =0.08) (b), recovered transformation (e =0.13) (c)

Table 2: Results for the binary image with different levels of noise.

P 0 0.02 0.04 0.06 0.08 0.10
MD 0.47 0.62 0.67 0.74 0.74 0.79
CwW 0.11 0.17 0.21 0.28 0.29 0.34
MSAP 0.07 0.13 0.16 0.19 0.22 0.27
MSAP* 0.04 0.07 0.08 0.10 0.13 0.15
MSAD 0.05 0.09 0.13 0.15 0.16 0.20

For each estimated transformation matrix T we eval-
uated the distance € to the true matrix T by defining the
points p; = (1,0) " and p> = (0,1) T and computing

: :
_ Ly UT - 6

This is the measure we lllgéd to assess the matching result.
In Table 1 we have tabulated the average values of (16)
among 1000 estimated transformations at different levels
of noise. The results show that the new method seems to
be most tolerant to noise. Although the moment descriptor
method often gives a good result it sometimes badly fails, as
in Fig. 1(d). The point-based MSA method and the cross-
weighted moment method seemed to behave more steadily.

5.2. Binary image

The second experiment was quite similar to the first but now
we considered the binary image shown in Fig. 2(a). The
random transformations were obtained as above. The noise
added to the transformed images was uniformly distributed
binary noise with the noise level P indicating the probabil-
ity of a single pixel to change its value. After adding the
noise we removed the separated noise pixels from the back-
ground, cf. Fig. 2(b).

We did 500 random affine transformations and the av-
erage errors € at different noise levels are shown in Table
2. The method MSAP* is the point-based MSA method
but with three additional («, 3)-pairs, and MSAD is the fre-
quency implementation of the MSA method with the fol-
IOWing (a,ﬂ)-pairs: (070)’ (%a %)’ (%a %)’ (1a ]-) and (17 %)

We can see that the moment descriptor method works
badly with this data. It works fine for some transformations
but it fails so often that the average error is quite high. All
the MSA-based methods work reasonably well.

5.3. Grayscale image

We did experiments also with grayscale images. Since the
methods MSAP and CW are computationally heavy and not
very convenient for large images we used only the methods
MD and MSAD to register the grayscale image in Fig. 3(a)

(@)
Fig. 3: (a) Original image, (b) transformed and noise added, (c)
difference image with MD, (d) difference image with MSAD

with its affine transformed and noisy version, Fig. 3(b). The
noise was Gaussian with standard deviation of 1% of the
maximum intensity and was added also to the black back-
ground. As the difference images illustrate only the MSA
method succeeds in registration.

6. CONCLUSIONS

We have proposed a novel method for affine registration of
images and point patterns. The method is based on the MSA
descriptors which were defined by utilizing the probabilistic
interpretation of the image function analogously to the MSA
transform [3]. It was shown that the MSA descriptors have
the important transform property that allows the recovery
of affine transformation between two images without sepa-
rate feature extraction. For the registration of digital images
we proposed an efficient frequency space implementation
which is similar to the discrete MSA transform. The experi-
ments showed that the new method performs robustly when
compared to other similar methods. Nevertheless, there are
still open questions for future research. One such is the op-
timal choice of («, 3)-pairs.

7. REFERENCES

[1] J. Ben-Arie and Z. Wang. Pictorial recognition of objects
employing affine invariance in the frequency domain. /EEE
Trans. Pattern Anal. Mach. Intell., 20(6):604—618, 1998.

[2] Q. Chen, M. Defrise, and F. Deconinck. Symmetric phase-
only matched filtering of fourier-mellin transforms for image
registration and recognition. I[EEE Trans. Pattern Anal. Mach.
Intell., 16(12):1156-1168, 1994.

[3] J. Heikkild. Multi-scale autoconvolution for affine invariant
pattern recognition. In Proc. ICPR, pages 119-122, 2002.

[4] J. Heikkild. Pattern matching with affine moment descriptors.
Pattern Recognit., 37(9):1825-1834, 2004.

[5] E. Rahtu and J. Heikkild. Object classification with multi-
scale autoconvolution. In Proc. ICPR, pages 37-40, 2004.

[6] Z. Yang and F. Cohen. Cross-weighted moments and affine
invariants for image registration and matching. [EEE Trans.
Pattern Anal. Mach. Intell., 21(8):804-814, 1999.

[7] B.Zitova and J. Flusser. Image registration methods: a survey.
Image Vis. Comput., 21:977-1000, 2003.



