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Abstract. This paper presents a framework for using high-level visual
information to enhance the performance of automatic color constancy
algorithms. The approach is based on recognizing special visual object
categories, called here as memory color categories, which have a relatively
constant color (e.g. the sky). If such category is found from image, the
initial white balance provided by a low-level color constancy algorithm
can be adjusted so that the observed color of the category moves toward
the desired color. The magnitude and direction of the adjustment is con-
trolled by the learned characteristics of the particular category in the
chromaticity space. The object categorization is performed using bag-of-
features method and raw camera data with reduced preprocessing and
resolution. The proposed approach is demonstrated in experiments in-
volving the standard gray-world and the state-of-the-art gray-edge color
constancy methods. In both cases the introduced approach improves the
performance of the original methods.

Key words: object categorization, category segmentation, memory color,
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1 Introduction

Color constancy is a characteristic feature of human visual system which causes
the perceived color of objects to remain relatively constant under varying il-
lumination conditions. It is also a desired property of digital cameras, which
typically aim to reproduce the colors of the scene to look similar as they ap-
peared to a human observer standing behind the camera when the image was
taken. However, the response of digital camera sensors depends on the chro-
maticity of the illumination and this effect has to be compensated in order to
achieve visually pleasing reproduction of colors. Therefore most cameras apply
computational color constancy algorithms, also known as automatic white bal-
ancing algorithms, which estimate the illumination of the scene so that color
distortions can be compensated [1, 2].
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The existing computational color constancy algorithms can be divided into
two categories: the ones that require characterization of camera sensor response
and the ones that do not. Examples of the former category are color by cor-
relation [3] and gamut mapping algorithms [4], whereas the gray-world [5] or
gray-edge [6] algorithms exemplify the other class. In large scale mass produc-
tion of camera sensors, the color response of the sensors can vary from sample
to sample. Having very strict limits for the color response would mean reduced
yield and hence higher cost per sensor. Sample specific characterization is also
possible, but that would have an impact on the sensor price as well. Conse-
quently, the color constancy algorithms which do not rely heavily on accurate
characterization information are useful in such cases in which the cost of the
camera sensor is a very critical parameter. On the other hand, the accuracy of
illumination estimates is typically better for the algorithms which utilize sensor
characterization.

The common factor in the most of previous works on color constancy is that
they are based on low-level image information. The use of object recognition
in color constancy is considered in [7], but their approach requires that one or
more of the exact training objects appear in the analyzed image. According to
our knowledge the use of visual object categories is considered only in [8]. How-
ever the estimation method they present is based on purely utilizing the mean
color values of the categories without any further analysis in the chromaticity
domain. Moreover the evaluation method introduced there is rather expensive
to compute.

The color constancy application that is considered in this paper is consumer
photography with digital cameras, including mobile phone cameras. In this ap-
plication visually pleasing color quality is more important than very precise
color reproduction. Therefore, instead of sensor characterization, we investigate
an approach which is based on analyzing the semantic content of images. That
is, we aim to detect such object categories from the images which have mem-
ory colors associated with them. Such categories are, for example, foliage, grass,
sky, sand and human skin [9]. Each of such objects have a limited range of chro-
maticities associated with them, referred to as memory color clusters hereinafter.
Consequently, the initial estimate of white point, which can have error due to
inaccurate characterization or poor algorithm performance, can be improved by
modifying the white point in such way that the chromaticities of detected objects
or surfaces fall closer to their corresponding memory color clusters.

In addition, many color constancy algorithms have difficulties in estimating
the illumination chromaticity when there are only a few colors present in the
image. This is the case for example for gamut mapping algorithms or gray-world
and similar algorithms for obvious reasons. By utilizing the approach proposed
in this paper it is possible to increase robustness also in these kinds of situations.

2 Memory color categories

The concept of memory color refers to such colors that are associated with
familiar object categories in long term memory [10]. This concept is particularly
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useful in our application, where the goal is to provide visually pleasing colors
and it is preferred to reproduce colors close to the corresponding memory colors.
An essential characteristic of a memory color is the fact that it is defined in a
relatively compact domain in the chromaticity space. In the following we describe
how the memory colors used in this paper are learned from correctly white
balanced sample images.

We collected a training dataset of 53 images illustrating the tested categories
in different locations, time instants, and illuminations. For each training image
we also associated a reference white point, which was based on illumination
chromaticity measurements with Konica-Minolta CL-200 chroma meter. The
reference points were used to white balance each training image according to
the von Kries model [11, 12]:

xwb = Gxraw = s

 1
wR

0 0
0 1

wG
0

0 0 1
wB

xraw, (1)

where wR, wG and wB are the corresponding RGB-coordinates of the refer-
ence white point, s = max(wR, wG, wB), and xraw = [Rraw, Graw, Braw]T and
xwb = [Rwb, Gwb, Bwb]T are RGB-vectors of the raw and the white balanced
pixels respectively. The scaling s is introduced to prevent the colorization of the
saturated areas of the image.

After the white balancing the images need to be further converted from the
sensor color space to a sensor-independent reference color space, which in our
case is the linear RGB space (RGBlin) with sRGB [13] primaries (i.e. transfor-
mation from RGBlin to sRGB is obtained by applying the gamma correction
[12]). The conversion is done using 3 × 3 sensor specific conversion matrix CC
as xlin = CCxwb, where xlin = [Rlin, Glin, Blin]T is the vector of the resulting
RGBlin values.

The RGBlin training images were roughly hand segmented by defining a
set of bounding boxes that capture the memory color categories. The pixels
in these segments were converted to chromaticity space [Rlin/Glin, Blin/Glin]T

[12], where a mean value was computed for each category in each image. The
final memory color domain was defined by an ellipse (x−mell)TC−1

ell (x−mell) =
r2m, where mell is the weighted mean of the segmented pixels over all training
images and Cell is the corresponding covariance matrix. The size rm of the ellipse
remained as a parameter. The weighting used was the number of segmented
pixels per image. Figure 1(a) illustrates some examples of the training images
and segmentations.

3 Proposed framework

In this section we describe the details of the proposed approach. We start from
the recognition of the memory color categories and then continue by introducing
a method for the refinement of the initial color constancy estimate. The overall
process is illustrated in Figure 1(b).
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Fig. 1. (a) Examples of the training images and segmentations. (b) The overall image
processing pipeline proposed in this paper (cf. [12]).

3.1 Category recognition

The first step in the proposed process is to recognize the memory color cat-
egories. For this task we apply the widely used bag-of-words (BOW) method
combined with a SVM classifier [14]. In BOW approach the image is described
as a distribution over visual words, which are learned from the local visual de-
scriptors of the training images using vector quantization. The local descriptors
are computed from circular patches with radius 4, 8, and 12 pixels extracted on a
regular grid with 10 pixel spacing. Each patch is described by one of the following
three descriptors, gray scale SIFT [15], W-SIFT [16], or Centile [17], depending
on the experiment. In the case of SIFT and W-SIFT the feature vectors were
further reduced to 40 dimension using principal component analysis.

The vector quantization is performed by K-means clustering resulting in a
vocabulary of 1000 words. In the SVM classifier we used Chi-squared kernel
defined as K(x, y) = e−γχ

2(x,y), where γ is a learned parameter and χ2(x, y) =∑
j(xj−yj)2/(xj+yj). The three different descriptors were chosen to examine the

effects of different modalities in the recognition performance with our image data.
SIFT, W-SIFT, represent two state-of-the-art texture based descriptor, where
the first one applies only gray scale information and the second one includes also
color modality. The Centile feature represents a simple method that exploits
only color information.

Since we are interested in applying high-level color constancy estimation
as an integral part of the camera’s image processing pipeline (Fig. 1), we aim
to make a fast recognition using the original raw data with clearly downscaled
resolution. The data for the recognition may be achieved from the corresponding
viewfinder image that is captured before the final image is taken. However due
to the properties of raw camera data, some preprocessing is still essential.

The reduced pipeline we applied was the following: 1) remove the possible
offset from the pixel raw values, 2) perform linear interpolation based Bayer
pattern demosaicing, 3) downscale the image to 240 × 320, 4) perform gray-
world white balancing. The normalization in step four was introduced in order
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to equalize the differences in color response between different models of camera
sensors. The size 240×320 was selected to match the size of the viewfinder image
in our camera system. One can refer to [12] for more comprehensive discussion
and examples of camera systems.

3.2 Refining color constancy approximation

The color constancy refinement takes place in the automatic white balancing
stage of the processing pipeline illustrated in Figure 1(b). There we first make
an initial estimation of the balance with some standard method, which in our
experiments was taken to be either gray-world or gray-edge. These two reference
algorithms were selected since they do not need any sensor characterization,
which could be prohibitive in the case of low cost equipment. Furthermore the
gray-edge algorithm [6] has been reported to achieve comparable results with
the state of the art methods like gamut mapping [4] and color-by-correlation [3].

After the white balancing with the reference method, we take the cate-
gory recognition result into account. If a memory color category is found, we
perform fast approximate segmentation to the image. This is done by first
converting the image pixels to RGBlin and then to the chromaticity space
[Rlin/Glin, Blin/Glin]T . In this space we take all pixels into the segment that
lay inside the extended memory color ellipse. The ellipse is achieved from the
corresponding memory color domain by extending the original ellipse size from
rm to rs. For a satisfactory segmentation we must assume that chromaticities of
the pixels are not too far from their true values. However we are only refining
the result of the reference method, and we can assume that the solution is al-
ready reasonably close to the correct one. The experiments later illustrate that
usually even the simple gray-world method produces an initial estimate that is
close enough. Figure 2(a) illustrates results of the segmentation step.

Before refining the color constancy estimate, we verify that the memory color
category covers more than given proportion p of the image area. The limitation is
set in order to have enough support for the memory color for reliable refinement
and to detect some of the missclassifications. If the support of the category is
larger than the limit p, we compute the mean value msRB of the segmented
pixels in [Rlin/Glin, Blin/Glin]T . The initial white balancing is then refined so
that msRB moves to the closest point esRB at the corresponding memory color
ellipse, if not inside the ellipse already. Given msRB and esRB the refined white
balancing matrix is calculated as

p1 = C−1
C

[
esRB(1) 1 esRB(2)

]T
, p2 = C−1

C

[
msRB(1) 1 msRB(2)

]T
, (2)

Gref = s

p1(1)/p2(1) 0 0
0 p1(2)/p2(2) 0
0 0 p1(3)/p2(3)

Ginit, (3)

where x(i) refers to i-th component of a vector x, Ginit and Gref are the initial
and refined white balance matrices respectively, and s is such constant that the
minimum value at the diagonal of Gref is equal to one. From here the processing
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(a) (b)

Fig. 2. (a) Example results of the category segmentation. The pixels not included into
segment are shown as white. (b) Samples of the final white balanced images in sRGB.
The columns from left to right illustrate the white point estimation using gray-edge,
refined gray-edge, and ground truth, respectively.

pipeline continues normally using now the estimated Gref instead of Ginit as a
white balancing transformation.

4 Experiments

To demonstrate the performance of our framework, we performed two kind of
experiments. First we evaluated the memory color categorization and then the
method for color constancy refinement. We begin with the categorization exper-
iments.

4.1 Memory color categories

In these experiments we evaluate the method using two memory color categories,
namely grass & foliage and sky. We collected seven datasets of raw images, each
taken by different person with different sensor in a wide variety of time instants
and places. The number of images in these sets were 377, 518, 508, 506, 319, 108,
and 508. The images in the training sets were processed using the pipeline in
Section 3.1 and hand labeled so that if the image contains significant portion of
the memory color category it was tagged with the category label and otherwise
not. This differs slightly from the traditional categorization, but since our goal
at the end was to refine the color constancy estimation we were only interested
in images, where the support for the category was large enough. Figures 2 and
3 illustrate some images used in the experiment.
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Grass & foliage category:

SIFT descriptor set 1 set 2 set 3 set 4 set 5 set 6 set 7 average

True positive 74.3 % 83.7 % 85.9 % 88.0 % 74.2 % 66.7 % 92.6 % 86.2 %

False positive 8.8 % 4.8 % 2.7 % 15.7 % 7.5 % 13.1 % 12.6 % 7.7 %

W-SIFT descriptor

True positive 82.9 % 80.6 % 93.7 % 96.4 % 81.8 % 54.2 % 96.3 % 91.5 %

False positive 3.3 % 2.6 % 1.1 % 15.2 % 5.9 % 8.3 % 15.1 % 5.7 %

Centile descriptor

True positive 69.5 % 81.6 % 88.0 % 91.3 % 74.2 % 58.3 % 75.6 % 81.2 %

False positive 4.0 % 5.5 % 5.2 % 12.7 % 15.4 % 3.6 % 5.7 % 7.4 %

Sky category:

SIFT descriptor set 1 set 2 set 3 set 4 set 5 set 6 set 7 average

True positive 68.2 % 59.2 % 76.5 % 66.4 % 63.4 % 77.8 % 87.6 % 73.7 %

False positive 5.7 % 3.2 % 4.5 % 3.2 % 3.0 % 9.7 % 11.6 % 5.1 %

W-SIFT descriptor

True positive 78.8 % 75.0 % 67.9 % 77.3 % 68.3 % 94.4 % 93.6 % 81.1 %

False positive 4.9 % 2.5 % 2.3 % 1.9 % 2.5 % 4.2 % 12.7 % 4.1 %

Centile descriptor

True positive 50.8 % 68.4 % 71.6 % 64.8 % 61.0 % 80.6 % 91.4 % 71.9 %

False positive 3.8 % 2.5 % 4.5 % 4.2 % 3.8 % 5.6 % 8.4 % 4.3 %
Table 1. Mean classification performances for grass & foliage and sky categories. Each
column gives the results for a train-test-split where given set is used as a test set.

The categorization system described in Section 3.1 was trained using six of
the image sets, and then tested using the seventh one. For each of the descrip-
tors, SIFT, W-SIFT, and Centile, we calculated the mean performance over the
all seven combinations of test and training sets. The resulting classification per-
formances are listed in Table 1. Each column gives the result for a train-test-split
where the given set is used for testing.

The overall performance with the sky category seems to be lower than with
grass & foliage category. This probably follows from the characteristic texture
of the latter category compared to almost textureless sky. Furthermore we can
observe that texture based features are performing better, but still computa-
tionally simple Centile features result relatively high recognition rate especially
with grass & foliage category. In some cases one can also observe near 10% false
positive rate. A closer look reveals that almost all of these images contain a little
portion of the memory color category, but not enough to be labeled as positive
in the ground truth. These images however rarely cause problems in the color
constancy refinement, because of the limit in the segment size.

4.2 White balance refinements

For the fifth image set in the categorization experiment we also measured the il-
lumination chromaticity with similar methods as in Section 2. These values were
used as a ground truth in the following automatic white balancing experiment,
where the initial color constancy, provided by a low-level reference method, was
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Category ∆errmean ∆errmedian number of images improved

grass & foliage 2.6 % / 5.6 % 14.3 % / 2.7 % 51.9 % / 61.4 %

sky 25.2 % / 1.9 % 29.1 % / 15.0 % 76.9 % / 57.5 %
Table 2. Relative improvements achieved. The left result refers to gray-world and right
to gray-edge method as initial approximation.

refined for those images, which were recognized to contain a memory color cate-
gory. As reference methods we used both gray-world and gray-edge algorithms.
The category labeling for the test set was taken from the results achieved with
SIFT descriptor in the previous section. We selected SIFT instead of W-SIFT
for this experiment since it was faster to evaluate. The framework used in the
experiment was the one described in Section 3.2 with parameter values rm = 0.5,
rs = 3.0, and p = 10%, for the grass & foliage category and rm = 0.6, rs = 2.0,
and p = 25%, for the sky category. For the gray-edge method we applied param-
eter values n = 1, p = 1, and σ = 6, according to [6].

As an error measure we calculated angle difference of the white point coor-
dinates err = cos−1(ŵtrue · ŵestim), where â = a/||a||L2 , and wtrue and westim
are vectors containing the ground truth and the estimated coordinates of the
white point respectively. The results are shown in Table 2. The relative improve-
ments reported there are calculated as follows ∆errmean = (mean(errinit) −
mean(errref ))/mean(errinit) · 100%, where errinit and errref refer to errors
of the initial and refined approximations respectively, and mean is the mean
over all positively classified images. The median error ∆errmedian is achieved by
replacing mean with median operator. Finally the number of images improved
indicates the portion of the positively classified images, that resulted in the same
or better estimation than with the reference method. Some images of the results
are also illustrated in Figures 2(b) and 3.

It can be observed, that according to all measures, the application of memory
color correction achieves a considerable improvement in both categories, and
especially in the case of sky. This is probably due to the fact that the memory
color domain for sky is more compact than that of grass & foliage. Further
improvements may be achieved by dividing the grass & foliage category in several
sub classes for which more compact memory color clusters are available. Finally
also visual results indicate a clear improvement in the subjective quality of the
white balancing.

5 Conclusions

In this paper we presented a framework for applying visual category recognition
results to improve automatic color constancy. The approach was based on so
called memory color categories, which are known to occupy a compact region
in the chromaticity space. The category recognition was performed by using
the bag-of-features approach for low resolution input images which were first
roughly white balanced with the simple and fast gray-world algorithm. Then,
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Fig. 3. Samples of the final white balanced images in sRGB. The columns from left
to right illustrate the white point estimation using gray-world, refined gray-world, and
ground truth, respectively.

the categorization was used for adjusting the white balance produced by a low-
level method, such as the gray-world or gray-edge algorithms. The experiments
indicate that the proposed approach constantly improves the result of both low-
level methods. Hence, utilizing semantic information of object categories is a
promising new direction for automatic color constancy.
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