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Abstract—Variations in the ambient magnetic field can be used
as features in indoor positioning and navigation. We describe a
technique for map matching where the pedestrian movement is
matched to a map of the magnetic landscape. The map matching
algorithm is based on a particle filter, a recursive Monte Carlo
method, and follows the classical terrain matching framework
used in aircraft positioning and navigation. A recent probabilistic
Gaussian process regression based method for modeling the
ambient magnetic field is employed in the framework. The
feasibility of this terrain matching approach is demonstrated in
a simple real-life indoor positioning example, where both the
mapping and positioning is done using a smartphone device.

I. INTRODUCTION

Indoor positioning is an important prerequisite for a wide
range of applications, for example, in robotics, health-care,
security, business, and transportation. Location information
can be used to monitor patients and staff in hospitals, to
find injured people on accident sites, for targeted advertising,
and to guide people in shopping malls, among other uses.
Recent advances in smartphone technology have made indoor
positioning practical also for consumer use, because most
smartphones nowadays contain a wide range of sensors which
are required and which are also enough for accurate indoor
positioning.

Indoor positioning is considerably harder than outdoor po-
sitioning. For finding the location outdoors, satellite based
positioning systems (e.g. GPS [1]) provide good accuracies
for most purposes, but not for indoor use. This article is
concerned with magnetic field based positioning [2, 3], where
the basic idea is to create a map of magnetic anomalies inside
a building and use it to find the current position. The advantage
of this methodology over other commonly used methods such
as Wi-Fi and Bluetooth based methods is that no infrastructure
needs to be installed—the magnetic field is an inherent prop-
erty of the indoor environment. Furthermore, magnetometers
are nowadays present in (almost) any smartphone.

For indoor positioning using the ambient magnetic field one
requirement is that accurate maps of the magnetic field need
to be created before positioning is possible—another approach
is to form them simultaneously during positioning via SLAM
methods (see, e.g., [4]), which is not considered in this paper.
In this work we follow the approach of [5] and use Gaussian
process models from machine learning [6] to create a magnetic
map from pre-collected smartphone measurements.

Magnetic field positioning methods (and Wi-Fi/Bluetooth
based methods) can be significantly improved by combining
them with inertial navigation, which keeps the system in-
formed about movement in the local coordinate frame. Inertial
navigation [7] is a class of methods, which is also applicable
to indoor positioning. Because pure inertial navigation is hard
or even impossible with smartphone sensors, in smartphones,
one typically uses a limited form of inertial navigation which
combines step-counting based speed measurements (see, e.g.,
[8, 9]) with gravitation tracking and gyroscope-based orienta-
tion estimation (see, e.g., [10]). Another commonly used idea
is to use zero-velocity updates to compensate for the inertial
sensor errors, but the use of this in practice requires that the
sensors are attached to shoes [11].

The locally accurate, but long-term inaccurate inertial mea-
surements can be combined with global measurements such
as magnetic field measurements or Wi-Fi/Bluetooth measure-
ments using Bayesian state-estimation (or filtering) methods
(see, e.g., [12]). In this work we use particle filtering for this
purpose. This kind of general methodology is often referred
to as terrain navigation (see, e.g., [13–15]). However, the use
of magnetic fields for terrain navigation has a long history.
Tyrén (1982) [16] argued that the heterogeneous character
of the intensity of the Earth’s magnetic field could be used
as a potential basis for a ground-speed measurement system
in vehicle and aircraft localization. Ideas of magnetic terrain
navigation have been considered in naval applications to
submarine positioning and tracking [17].

Previously, in indoor environments, the anomalies in the
magnetic field have been successfully used in positioning
for example by [2, 18]. More recent contributions include,
for example, [19–21]. In this article the contribution is to
use terrain navigation particle filtering methods together with
probabilistic physics-aided Gaussian process generated maps
[5] for accurate magnetic field based indoor positioning.

This paper is structured as follows. In the next section
we present how the concept of particle filtering based terrain
navigation can be combined with a probabilistic map of the
ambient magnetic field, which also accounts for the uncer-
tainties related to the magnetic map. Section III presents an
empirical study where the positioning algorithm is employed
in indoor localization using a handheld smartphone. Finally,
the results are discussed in Section IV.



Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.
The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)
and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-
component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain
navigation is shown in Figure 1. The magnetic terrain naviga-
tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a
sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

• The magnetic terrain which the observations are matched
against. The map is constructed by a Gaussian process
model which is able to return a magnetic field estimate
and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,
often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the
map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for
probabilistic statistical inference (i.e., Bayesian filtering and
smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the
dynamics of the state xk ∈ Rdx , and p(yk | xk) defines
the model for the measurements yk ∈ Rdy in the form of
conditional distribution of the measurements given the state.
For example, in (magnetic) terrain navigation, the dynamic
model tells how the target moves according to a (pedestrian)
dead reckoning and the (Markovian) randomness is used
for modeling the errors and uncertainty in the dynamics.
In conventional terrain navigation, the measurement model
tells what distribution of height we would measure at each
position, and in magnetic terrain navigation it tells what is the
distribution of magnetic field measurements we could observe
at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering
distribution, which refers to the conditional distribution of the
current state vector given the observations up to the current
time step p(xk | y1:k). Particle filtering uses a weighted
Monte Carlo approximation of n particles to approximate this
distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this



Alg. 1: Algorithm for particle filter based (abstract) terrain
navigation. The recursion defines a sequential Monte Carlo
method.

Initialization: Draw n samples x
(i)
0 from the prior

x
(i)
0 ∼ p(x0), i = 1, . . . , n,

and set w(i)
0 = 1/n, for all i = 1, . . . , n.

For each time step k = 1, 2, . . .

1) Prediction: Draw samples x
(i)
k from the importance

distributions

x
(i)
k ∼ π(xk | x(i)

k−1,y1:k), i = 1, 2, . . . , n.

This propagates the particles according to the PDR
model.

2) Map matching: Calculate new weights according to

w
(i)
k ∝ w

(i)
k−1

p(yk | x(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
k−1,y1:k)

and normalize them to sum to unity.
3) Resampling: According to the resampling strategy:

Take n samples with replacement from the set
{x(i)

k }ni=1 where the probability to take sample i is
w

(i)
k , after which let w(i)

k = 1/n. The resampling is
only done when necessary, that is, when the effective
number of particles is too low (see the body text).

framework, the expectation of an arbitrary function g(·) can
be approximated as

E[g(xk) | y1:k] ≈
n∑

i=1

w
(i)
k g(x

(i)
k ). (3)

When the state contains the position, as is typical in terrain
navigation, the filtering distribution gives the posterior distri-
bution of the position given all the observations obtained so far.
A particle filter estimate of this kind is illustrated in Figure 2.
The experiment setup is described in detail in Section III.

Our terrain matching algorithm is a special case of a
particle filter (see [13] for a good introduction to particle
filtering in positioning). A general particle filter and hence
an abstract form of our terrain matching algorithm is shown
in Algorithm 1. In practice, the performance of the particle
filtering algorithm is determined by the underlying state space
model, the number of particles n, the selected importance dis-
tribution π(·), the resampling method as well as the schedule
of resampling operations. For more comprehensive discussion
on these issues the reader is referred to [12].

In principle, a particle filter is a sequential importance
sampling algorithm, whose performance is determined by the
choice of the importance distribution. A practical problem
in particle filtering is sample depletion which means that
over time the weights between particles become unevenly
distributed. This can slowly lead to a situation where all

(a) t = 0 s

(b) t = 2 s

(c) t = 4 s

(d) t = 6 s

(e) t = 8 s

Fig. 2: Example evolution of the particle filtering estimate
from initialization to convergence. See the body text for further
explanation (Sec. III).



weight might be concentrated to a single particle, and the filter
estimate is thus only dependent on that one particle.

Sample depletion is avoided by resampling (step 3 in
Alg. 1). By resampling new (representative) particles are cre-
ated to replace those particles which have become negligible.
Resampling however increases uncertainty and therefore it
is avoided until needed, and therefore resampling is done
when the number of effective particles drops below a given
threshold.

The effective number of particles (see [12] for discussion)
gives a summary for sample depletion:

neff ≈
1∑

i[w
(i)
k ]2

. (4)

The number of effective samples is between 1 ≤ neff ≤ n,
where the upper bound indicates that all particles are equally
weighted and the lower bound that one particle has all the
weight. Thus the resampling threshold can be determined, for
instance, to be neff <

2
3n.

If the terrain matching algorithm completely looses track
of the position, the effective number of particles tends to drop
drasticly at once. Therefore, on occasions when this happens,
we propose a reinitialization strategy which resets the particle
filter when the number of effective particles drop below 1

3n
on two consecutive steps.

B. Pedestrian dead reckoning

The knowledge of the movement of the target is encoded
into the dynamical model in the terrain matching algorithm
(step 1 in Alg. 1). In pedestrian positioning this model is
usually referred to as the ‘pedestrian dead reckoning’ (PDR)
component. In theory, this PDR information can originate
from various sources, such as device-provided odometry,
wheel encoders, pure inertial navigation, or step-detector based
movement indications.

In this study the interest is in matching the user-acquired
magnetic trajectory with the magnetic terrain. Therefore we
put less interest in the PDR model, and employ a simple
baseline model for the user movement. The model assumes
that the attitude and heading reference system (AHRS, see,
e.g., [10, 24]) estimating the orientation of the mobile device
is able to return decent (but noisy and drifting) estimates
of relative heading for each step. The AHRS operates on
gyroscope and accelerometer measurements only.

In our terrain navigation setup, the state variables are xk =
(pk, θk), where pk stands for the metric position at time tk,
and θk is the current heading estimate at that time instance.
The directed random walk model is as follow:

pk+1 = pk + uk, (5)

where uk = 1.5 ∆tk (cos θk, sin θk), with a probability of
0.95, and uk = 0, with a probability of 0.05. The stand-
still model allows the user to stop, and the default walking
speed parameter 1.5 m/s corresponds to normal walking at
approximately 5.4 km/h.
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Fig. 3: The norm of the mapped and interpolated magnetic
field. The opacity of the magnetic field estimate follows the
certainty (marginal standard deviation) of the Gaussian process
estimate.

The heading estimate θ0 is initialized by matching the first
magnetometer observation to the magnetic map, and it is up-
dated from relative information provided by the AHRS system
on each step: θk = θk−1+∆θk+qk, where qk ∼ N(0,∆tk/2).
The random walk models for the position and heading together
define the dynamic (prediction) model

xk+1 ∼ p(xk+1 | xk) (6)

which is a probabilistic model for the transition between the
previous state and the next state. This model is driven by the
AHRS estimates of the orientation. We also use this model as
the importance distribution in the particle filter.

C. Modeling the magnetic field by Gaussian processes

The modeling and interpolation of the magnetic field map
is based on the methodology presented by Solin et al. [5],
where additional knowledge from the physical properties of the
magnetic field is encoded into a Gaussian process regression
model.

The magnetic field is a vector field that obeys laws of
physics known as Maxwell’s equations. When the spatial lo-
cations x at which the magnetic field is observed or estimated
are far enough from any free currents (not inside building
structures), we may consider a latent scalar potential field ϕ(x)
such that ϕ : R3 → R, where x ∈ R3 is the spatial coordinate.

Gaussian processes (see, e.g., [6]) are convenient and widely
used tools in spatial statistics and machine learning. Their
strength is the ease of encoding prior knowledge into the
model through a covariance function structure. We assume the
magnetic scalar potential field to be a realization of a Gaussian
process prior and the observations (magnetic field readings) to
be the gradients yi ∈ R3 of this field corrupted by Gaussian
noise:

ϕ(x) ∼ GP(0, κlin.(x,x
′) + κSE(x,x′)),

yi = −∇ϕ(x)
∣∣
x=xi

+ εi,
(7)

where εi ∼ N(0, σ2
noise I3), for each observation i =

1, 2, . . . , n.



The local Earth’s magnetic field contributes linearly to the
scalar potential as

κlin.(x,x
′) = σ2

lin. x
Tx, (8)

where σ2
lin. is a magnitude scale hyperparameter.

For the local variations in the magnetic field we use a
squared exponential covariance function which allows for
modeling anomalies induced by small-scale fluctuations and
building structures:

κSE(x,x′) = σ2
SE exp

(
− ‖x− x′‖2

2 `2SE

)
, (9)

where the hyperparameters σ2
SE and `SE represent the magni-

tude scale and the characteristic length-scale, respectively.
The model now has four hyperparameters: two magnitude

scale parameters (σ2
lin. and σ2

SE), a length-scale parameter (`SE),
and a noise scale parameter (σ2

noise). These parameters can be
learned from the data by maximizing the marginal likelihood,
or fixed to sensible values describing typical variation.

The Gaussian process model can be used for modeling and
interpolation of the local magnetic field by first collecting
a batch of mapping data. This data consists of a set of
input–output pairs D = {(xi,yi)}ni=1 at a discrete set of
spatial inputs xi and the (noisy) magnetic field observations
yi ∈ R3 at those locations. In the following, we assume
that the magnetic field readings collected during mapping are
calibrated and corrected for rotation.

The Gaussian process regression model in Equation (7)
provides a means of estimating the predictive magnetic field
observation y∗ at an unseen test input x∗. Thus returning the
following marginal predictions for the vector field components
x, y, and z (j = 1, 2, 3):

yj,∗ ∼ N(yj,∗ | E[yj,∗ | x∗,D], var[yj,∗ | x∗,D]). (10)

This information can be utilized in the terrain matching
algorithm (step 2 in Alg. 1) during the update step, as it
directly gives the required probability formulation p(y | x)
required during the weight calculation:

p(y | x∗) =

3∑
j=1

N(yj,∗ | E[yj,∗ | x∗,D], var[yj,∗ | x∗,D]),

(11)
where y denotes the observed magnetic field, and y∗ the
predicted magnetic field from the GP regression model. Ori-
entation correction was accounted for by using an AHRS
algorithm for matching the z-component direction, and the
heading θ in the state variable x. As the variance grows
outside mapped areas, the measurement model also implicitly
restricts the particle movement to traversable areas defined
during mapping.

In the particle filter, the initialization strategy was also based
on the magnetic field map. However, during initialization only
the z-component and the magnitude of the perpendicular xy-
component were used due to the lack of orientation informa-
tion.
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Fig. 4: The components of the mapped and interpolated mag-
netic field. The opacity of the magnetic field estimate follows
the certainty (marginal standard deviation) of the Gaussian
process estimate.

TABLE I: Results for the 100 test paths (68 converged) each
30 s in length.

Median Mean Standard deviation

Time-to-convergence 11.79 s 14.18 s 7.97 s
Distance-to-convergence 13.42 m 17.90 m 10.22 m
Error after convergence 4.87 m 9.28 m 10.86 m
Total error 18.49 m 19.42 m 11.47 m

III. RESULTS

We illustrate the feasibility of the terrain navigation setup
which combines a baseline PDR model, the a probabilistic map
of the magnetic field, and a particle filter based map matching
algorithm.

We consider an example of mapping of and self-localization
in an indoor environment. The test environment was chosen
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included for comparison; it shows the mean absolute error over the whole paths for all 100 sessions.

so that it encloses both open areas and narrow corridors. The
venue is located on the Aalto University campus in Espoo,
Finland. This example covers the public space on the ground
floor of the building. A floor plan sketch of the venue shown
in Figure 3.

Mapping was performed on foot by using a Nexus 5
smartphone device (Google Inc., manufactured by LG, with a
AKM AK8963 3-axis magnetometer). The mapping positions
on the floorplan were matched using a foot-mounted sensor
that internally uses short time-scale inertial navigation (GT
Silicon Pvt Ltd.). The foot-path was manually aligned to the
floor plan image. Slight drift in the foot-sensor paths was
encountered.

In total, the mapping paths measured some 867 meters of
walking and the total acquisition time was 13.74 minutes,
during which 41,219 vector-valued magnetometer readings
were obtained (sampling rate 50 Hz). The magnetometer was
calibrated prior to mapping using standard spherical calibra-
tion.

The magnetic Gaussian process regression map was gen-
erated by the batch processing approach presented in [5]. In
this study, we used fixed hyperparameters: σ2

lin. = 800 (µT)2,
`SE = 1 m, σSE = 600 (µT)2, and σ2

noise = 5 (µT)2. The

mapped area corresponds approximately to 2330 m2, and the
magnitude of the generated magnetic field map is visualized
in Figure 3. The individual vector components are shown in
Figure 4. The opacity in the visualizations follow the marginal
standard deviation of the predictions.

Validation data for testing was collected independently from
the mapping data two weeks after the initial mapping data
was collected. The test data was acquired with a similar foot
sensor setup providing ground-truth positions, and later split
into separate shorter validation paths. The collected validation
data measured some 430 meters in length and covered largely
the same open areas and corridors as the mapping data,
but also leaving the mapped areas momentarily and exiting
the building altogether. The total acquisition time for the
validation data was 6.17 minutes, during which 18,536 vector-
valued measurements of the magnetic field were obtained
(sampling rate 50 Hz).

The terrain matching algorithm tends to converge rather
quickly, and therefore we split the validation data into shorter
test paths. We split the long validation set into 100 test paths,
each 30 seconds in length and with a random initialization
time. To generate more versatile test cases the paths are either
extracted as is or flipped. The paths are finally downsampled
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from 50 Hz to 5 Hz. This all was done in order to provide
a challenging enough test setup which would match real use
cases.

The particle filter terrain matching algorithm was applied
to each of the test paths with n = 5000 particles. The
measurement noise parameters were tuned such that dur-
ing initialization the magnetic field estimate is trusted more
(σ2

noise = 32 (µT)2)—the initialization uses the heading-
invariant magnetic field estimate. During the measurement
updates, the mismatch in device and user heading cause addi-
tional uncertainty to the matching of the x- and y-components.
Therefore the measurement noise levels were increased to
82 (µT)2 for those components.

We run the terrain matching algorithm for each of the
100 test sessions. We measure the performance of the terrain
matching approach in terms of absolute error to the ground-
truth position collected by the foot-sensor. Convergence of
the algorithm is defined in terms of simultaneously following
the 95% certainty radius and position (median of the particle
swarm) estimate. The algorithm is regarded converged once
the positioning error is less than 5 meters and the 95%
certainty radius is at maximum 5 meters.

Figure 2 shows the evolution of the algorithm for one of the
test sessions. The initialization based on the first magnetometer
reading is shown in the first plot, where after the state
of the algorithm is visualized with 2 second intervals until
convergence at 8 seconds. The figures also show the ground-
truth (black cross) and the true path walked since initialization.

Of the 100 test paths 68 reached convergence within the
30 second time-frame. Table I shows a set of summary results
for these paths. In practice, the terrain matching algorithm
requires that the user moves in order for the test trajectory

to converge. Because the user did also stay stationary, we
report both time-to-convergence and distance-to-convergence.
As seen in the table, these values tend to peak around 10–
15 seconds/meters. More granularity is provided in the his-
tograms in Figure 5, which show the spread of the convergence
time and distance. We also report the mean absolute error after
convergence, and the absolute error calculated over all test
paths (including non-converged cases).

The absolute error after convergence appears slightly pes-
simistic in the table and histograms. This is due to the esti-
mate still shrinking after reaching the convergence criterion.
Figure 6 shows the median and mean of the evolution of both
the absolute positioning error and the evolution of the 95%
certainty radius of the estimate. The jitter in the mean is due
to some test paths which diverged after the initial convergence
and were reinitialized.

IV. DISCUSSION AND CONCLUSION

In this article we have presented a magnetic field based posi-
tioning algorithm which uses a physics-aided Gaussian process
model for the magnetic field map and a terrain navigation
particle filter for positioning on the map. The algorithm uses
pedestrian dead reckoning and orientation tracking results as
stochastic inputs. The algorithm was applied to smartphone-
based indoor positioning at the Aalto University campus.
Although the used particle filter model was very simple, the
Gaussian process based magnetic map seems to be informative
enough for the particle filter to give good results.

There are many ways how the algorithm can be improved.
The PDR algorithm which we used was a fairly directed
random walk model, and with more careful modeling of
the movements its accuracy could be significantly improved.
By careful design of the PDR, it is possible get rid of the
orientation constraint: the current model assumes that the
orientation and the direction of movement coincide, which
might not reflect reality.

In this paper we only used magnetic field measurements,
but similarly it is possible to create maps of Wi-Fi and BLE
signals (such as beacons), and to use them in the particle filter
as well. These measurements can also be used to initialize the
positioning. This algorithm could be extended to simultaneous
localization and mapping (SLAM) using magnetic fields such
that localization is done while building the map [25, 26].

We also calibrated the magnetometer beforehand, although
it is also possible to calibrate the magnetometer online during
positioning. Similarly we can estimate the calibration param-
eters of the other sensors offline or online.

We also note that after the initial convergence, our simple
baseline PDR based algorithm was indeed able to reach the
1–2 meter error region which is often considered as the
feasibility limit for indoor positioning methods. Together with
the improvements outlined above, the algorithm framework is
likely to provide an accurate indoor positioning methodology
with fast convergence and consistent one meter (or less) error
in typical indoor spaces.
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J. Röning, “Simultaneous localization and mapping using
ambient magnetic field,” in Proceedings of the IEEE
Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), Salt Lake City, UT, USA,
September 2010, pp. 14–19.

[5] A. Solin, M. Kok, N. Wahlström, T. B. Schön, and
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[10] S. Särkkä, V. Tolvanen, J. Kannala, and E. Rahtu,
“Adaptive Kalman filtering and smoothing for gravitation
tracking in mobile systems,” in Proceedings of the Inter-
national Conference on Indoor Positioning and Indoor
Navigation (IPIN), Banff, Canada, October 2015, pp. 1–
7.

[11] J.-O. Nilsson, A. K. Gupta, and P. Händel, “Foot-
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