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Abstract. Accurate cell segmentation is vital for the development of re-
liable microscopy image analysis methods. It is a very challenging prob-
lem due to low contrast, weak boundaries, and conjoined and overlapping
cells; producing many ambiguous regions, which lower the performance
of automated segmentation methods. Cell proposals provide an efficient
way of exploiting both spatial and temporal context, which can be very
helpful in many of these ambiguous regions. However, most proposal
based microscopy image analysis methods rely on fairly simple proposal
generation stage, limiting their performance. In this paper, we propose
a convolutional neural network based method which provides cell seg-
mentation proposals, which can be used for cell detection, segmentation
and tracking. We evaluate our method on datasets from histology, flu-
orescence and phase contrast microscopy and show that it outperforms
state of the art cell detection and segmentation methods.

Keywords: cell proposals, cell segmentation, cell detection, convolu-
tional neural network, deep learning

1 Introduction

In the last few decades advances in automation and optics of microscopes have
led to rapid growth in the number and resolution of images being captured, with
single experiments in developmental biology producing tera-bytes of data. Often
the processes being investigated are subtle and to obtain biologically meaningful
quantification, it is necessary to analyze large number of cells in multiple samples.
Doing these analyses manually is a very inefficient and tedious use of a biologists
time and is dependent on the skill level of biologists leading to very subjective
and often non-reproducible results. These factors have increased the importance
of automated and semi-automated analysis methods.

Recently, convolutional neural networks (CNNs) have outperformed the state
of the art methods in multiple biomedical instance level segmentation chal-
lenges [13,5]. These methods either prioritize boundary pixels by increasing their
weights [13] or detect them explicitly in addition to binary segmentation [5].
These networks have large receptive fields allowing them to utilize large spatial
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context and predict very accurate segmentation masks at instance level. How-
ever, since these methods provide only one set of segmentations they can still
fail in some ambiguous regions. When analyzing microscopy sequences, tempo-
ral information can resolve many of these ambiguities. Cell proposals provide a
computationally efficient way of exploiting both temporal and spatial context
by reducing the number of alternative hypothesis for a region. So far, cell pro-
posals have been used for cell detection [3,4] and tracking [14,2]. These methods
rely on MSER[3], superpixels[14] and blob detection[2] for proposal generation
and use hand crafted features to score them. Deep learning has also been ap-
plied recently for proposing cell candidate bounding boxes [1], however they use
thresholding to obtain segmentation masks, which are not very accurate and it
is not trivial to obtain segmentation masks using their approach for images from
other microscopy modalities.

In this paper, we propose a CNN based method which first proposes cell
bounding boxes using a fully convolutional neural network (FCN) [1]. It then
uses a second CNN to predict segmentation masks for each proposed bounding
box. Recently, [6] have shown the effectiveness of a similar idea for general object
segmentation. Our novel contributions are: (1) a new network for cell segmenta-
tion proposal generation and (2) a single network model which can segment cells
from multiple microscopy modalities. We compare our method’s proposals with
proposals from two state of the art cell detection methods and our cell detections
with three state of the art cell segmentation/detection methods and show that
our method outperforms them on three different datasets which represent cells
with varying appearance and imaging conditions.

2 Method

Our method has two stages, in the first stage (Sec. 2.1) a convolutional neural
network (CNN) proposes cell bounding boxes along with their scores, i.e. proba-
bility of them being a cell. In the second stage (Sec. 2.2), a second CNN utilizes
the proposed bounding boxes to predict segmentation masks for cells.

2.1 Proposal Bounding Boxes

Our first network, shown in the top half of Fig. 1, is modified from the network in
[1]. Briefly, it predicts k bounding boxes and their scores at each pixel in the last
feature map, removes duplicate proposals using non-maxima suppression and
returns the remaining N bounding boxes as the cell proposals. Details of how
this network proposes bounding boxes [1,12] and how it is trained are available
in [1].

2.2 Proposal Segmentation

Network Structure: Our second network, which is used for predicting segmen-
tation masks is shown in the bottom half of Fig. 1. This network takes the image
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Fig. 1: Cell Segmentation Proposal Network: Top half shows the first network,
which proposes N bounding boxes and their scores. Bottom half shows the second
network which generate segmentation masks for the N proposals. Convolution
(filter size is shown in the box), max-pooling, and ROI-Pooling + concatenation
layers, with the number of feature maps on top of each layer, are shown. Proposed
bounding boxes and segmentation masks after non-maxima suppression (NMS)
are shown for a selected area from Fluo-N2DL-HeLa dataset.

and N proposed bounding boxes from first network as its inputs and predicts
N segmentation masks of size 25x25 each. First part of this network contains
eight convolution layers which are applied to the whole image. Second part uses
region of interest (ROI) pooling layers [7] to extract fixed size (25x25) features
maps from four sets of feature maps as shown in Fig. 1. ROI-Pooling layer uses
adaptive max pooling of the region inside the bounding box in a given feature
map to extract a fixed sized feature map. The ROI-pooled feature maps are
concatenated to obtain a feature map of size 25x25x480 for each proposed cell
bounding box. It is important to select features from layers at different depth so
that the network can use both coarse high level information to predict which re-
gions belong to the cell being segmented and fine low level information to predict
accurate localization of cell boundaries. The fixed size feature map extracted for
each proposed bounding box is used by a small sub-network, consisting of three
convolution layers, which picks the appropriate combination of features from
different depths so that it can better leverage both fine and coarse information.
For each proposed bounding box, this network outputs a 25x25 probability map,
which is resized back to the original bounding box size using bicubic interpola-
tion, thresholded and largest connected component is used as the segmentation
mask.

All convolutional layers use a stride of 1 pixel and padding to preserve the
feature map size. ReLu non-linearities are used after all convolutional layers
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except the last one. Local contrast normalization layers with same normalization
parameters as ZF model [15] are used after first eight convolutional layers. All
max-pooling layers use a filter of size 3x3, padding of 1 and stride of 2 to reduce
feature map size and increase the receptive field.

Training: The bounding boxes proposed by the first network are used to
train the segmentation network. The overlap of these bounding boxes with the
ground truth bounding boxes is computed and if the intersection over union
(IoU) overlap is greater than 0.5, then these boxes are used for training; oth-
erwise, they are ignored. For each bounding box, a 25x25 binary segmentation
mask is used as the target output during training. This mask is obtained by
cropping the region inside the predicted bounding box, resizing this region to
25x25 using nearest-neighbor interpolation and labeling all pixels except those
of the largest cell within that box as background. The loss function used for
training is a pixel-wise softmax log loss.

Implementation Details: To use the exact same network for all datasets,
we resize the images in each dataset so that the mean cell bounding box is
∼25x25 pixels. Images in some datasets are quite large so we split these images
in equal sized smaller images so that no image dimension is larger than 500 pixels
to reduce GPU memory requirement. Since there are very few training images,
we use horizontal and vertical flips, and 90 degree rotations to augment training
data.

We initialize our segmentation network by picking weights randomly from
a Gaussian distribution with zero-mean and 0.01 standard deviation. We use
learning rate of 0.0001 for first 40k iterations then it is reduced to 0.00001 for
next 10k iterations.

2.3 Cell Detection and Segmentation

There are not many widely used cell proposal generation method which makes
it difficult to compare our performance. However, there are few popular cell
segmentation and detection methods available publicly. In order to compare
our method against these methods, we use stronger non-maxima suppression to
remove most duplicate proposals and use the selected proposals (Ours-Greedy)
as cell detections and their masks as cell segmentations of our method. The IoU
and score threshold values which maximize average precision and f-score on the
training data are used for each model. Since we use IoU > 0, this can result
in some pixels having multiple labels, we assign these pixels the label of the
cell (proposal) with the highest score. We would like to point out that these
detections can be considered as a weak baseline when using our proposals for
cell detection or segmentation. Better performance can be obtained by using
dynamic programming [3] or integer linear programming [4], which can select
the optimal set of proposals.
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(a) Fluo-N2DL-HeLa (b) PhC-HeLa (c) Hist-BM

Fig. 2: Datasets: Ground truth cell markers (•) and boundaries are marked.

3 Experiments

3.1 Data-sets

We evaluate our method on three datasets Fluo-N2DL-HeLa [10], PhC-HeLa [3]
and Hist-BM [8]. Figure 2 shows one sample region from each dataset along with
the Ground Truth (GT) segmentation masks and cell markers.

Fluo-N2DL-HeLa data-set is from ISBI cell tracking challenge [10] and it
contains 2 time-lapse sequences (92 frames each) of fluorescent HeLa cells cul-
tured and imaged on two dimensional surface. The GT for this data-set contains
markers for all 34,060 cells in all frames and segmentation masks for all 874 cells
in 4 frames. It also includes segmentation masks for few cells in other frames but
since those frames are not exhaustively segmented, we do not use them. Some of
the challenges with this data-set are: many cell clusters, frequent cell divisions,
low contrast, variation in cell sizes and intensities.

PhC-HeLa data-set [3] consists of 22 phase contrast images of cervical can-
cer colonies of HeLa cells, split in 2 sets (training and test). The GT for this
dataset consists of cell markers for all 2,228 cells. Challenges with this dataset
include high variation in cell shapes and sizes, missing cell boundaries, and high
cell density.

Ground truth segmentation masks for this dataset are obtained by greedily
selecting the largest MSER region for each ground truth marker under the con-
straints that the selected MSER region contains only one cell marker, has little
overlap with previously selected regions and markers which are inside smaller
regions are processed first.

Hist-BM data-set [8] consists of 11 images stained with Hematoxylin and
Eosin of human bone marrow from eight different patients. The ground truth for
this dataset consists of markers for all 4,202 cell nuclei and ambiguous regions.
We split this dataset in two sets, with first five images in set 1 and rest in set 2.

Ground truth segmentation masks for this dataset are generated using multi-
label graph cuts. Terminal edge costs are set using cell and background Gaussian
mixture models, learnt from pixels within radius of 6 from markers and pixels
outside radius of 20 from all markers respectively. Cells are divided into 7 sets
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so that cells adjacent to each other have a different label. Then pixels within
radius of 6 from a marker are fixed to the terminal node representing that cell’s
label to separate cells in contact with each other.

3.2 Evaluation Criteria

Average Precision (AP): We use average precision (AP) - area under precision-
recall curve - to evaluate segmentation proposals. Proposals are first sorted by
their score, then a proposal is counted as true positive (TP) if it has intersec-
tion over union overlap (IoU) > 0.5 with any unmatched ground truth (GT)
cell segmentation mask, otherwise it is counted as false positive (FP). GT cells
which remain unmatched are counted as false negative (FN). We obtain a pair
of recall (R = TP

TP+FN ) and precision (P = TP
TP+FP ) values after evaluating each

proposal.
F-Score (F1): To evaluate detection performance we use same criteria as

above to obtain recall (R) and precision (P) using all cell detections and compute
F-Score (F1 = 2·P ·R

P+R ).
SEG: We evaluate accuracy of segmentation masks using the SEG measure,

based on Jaccard similarity index, used in ISBI cell tracking challenge [10]. A
detection (D) is matched with a GT cell (G) if and only if it contains more
than half pixels of that GT cell, i.e. |D ∩G| > 0.5 · |G|. For each GT cell and its

matched detection, Jaccard similarity index is computed using J(G,D) = |D∩G|
|D∪G| .

SEG is the mean of Jaccard similarity index of all GT cells and ranges between
0 to 1.

We use the SEG measure as defined above to evaluate proposal masks. When
evaluating proposals, some pixels can be inside multiple proposals and as a result
there might be multiple proposals which satisfy |D∩G| > 0.5 · |G|. We compute
Jaccard similarity index for these proposals and match the GT cell with the best
proposal, i.e. one having the highest Jaccard similarity index.

Implementation Details: All three datasets are split in two sets as de-
scribed in Sec.3.1. One set is used for training the methods and the other for
testing; this is repeated for both sets. Same non-maxima suppression settings
(IoU=0.5) are used for all methods to remove duplicate proposals. The propos-
als from both sets are combined, sorted by their score and evaluated as either
TP or FP. The detection results are combined similarly and SEG and F-Score
computed for the whole dataset.

3.3 Baseline

We compare our method (Ours) with two cell proposal generation methods
MSER [3,11] and CPN [1], and three cell detection and segmentation methods,
KTH [9], CellDetect1[3] and CPN-Greedy [1]. CPN uses a method similar to
our first stage to propose cell candidates and CPN-Greedy uses stronger non-
maxima suppression to obtain cell detections from CPN proposals. CellDetect

1 http://www.robots.ox.ac.uk/~vgg/software/cell_detection/

http://www.robots.ox.ac.uk/~vgg/software/cell_detection/
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Fig. 3: Precision vs Recall (at IoU = 0.5) for all three datasets. Average Precision
(AP) and F-Score (F1) are shown in the legend.

uses MSER regions [11] as proposals, represents each proposal using hand crafted
features, and uses structured SVM to score them. We use these scores to rank
MSER regions during evaluation of MSER proposals. CellDetect then selects
optimal set of MSER regions using dynamic programming and uses these selected
regions as cell detections. KTH uses a band pass filter followed by thresholding
to segment cells, watershed transform is then used to split cell clusters, and
finally tracking is used to correct errors in segmentation. KTH software2 does
not provide access to segmentation results so we use their segmentation masks
after the tracking stage during evaluation.

3.4 Results

Fig. 3 shows the precision-recall curves for the proposal generation methods and
precision-recall values for cell detection methods. Precision-recall curve for our
proposals not only remains significantly above the curve for MSER proposals, it
is even slightly above the precision-recall values of CellDetect detections for all
datasets. For Fluo-N2DL-HeLa dataset, CPN has better precision for all but very
high recall values, however it has slightly lower recall than our method. Even
though CPN uses simple thresholding, it is able to obtain good performance at
IoU=0.5 as thresholding can provide a coarse mask. For higher IoU values, its
performance degrades and gap in our method and CPN increases.

Table 1 compares the segmentation quality (SEG) of our method’s proposals
against other baselines and shows that our method’s proposal masks are consis-
tently better than MSER and CPN proposals for all three datasets. Table 1 also
lists SEG and F-Score (detection performance) values for all cell detection meth-
ods. Our method has better detection and segmentation performance compared
to other detection methods. The difference in both detection and segmentation
performance of our method and CellDetect is quite large for all three datasets.

2 http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/

KTH-SE.html

http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/KTH-SE.html
http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/KTH-SE.html
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Table 1: Cell segmentation (SEG) and detection (F-Score) results.

Fluo-N2DL-HeLa PhC-HeLa Hist-BM

SEG F-Score SEG F-Score SEG F-Score

Detections

Ours-Greedy 0.858 0.969 0.761 0.932 0.804 0.828
Ours-S-Greedy 0.815 0.953 0.769 0.924 0.789 0.821
CellDetect [3] 0.734 0.906 0.717 0.901 0.682 0.816
KTH [9] 0.852 0.954 - - - -
CPN-Greedy [1] 0.808 0.958 - - - -

Proposals

Ours 0.874 - 0.818 - 0.823 -
Ours-S 0.865 - 0.807 - 0.823 -
MSER [3] 0.757 - 0.779 - 0.768 -
CPN [1] 0.831 - - - - -

Our method also outperforms KTH method slightly, which has the best segmen-
tation performance on Fluo-N2DL-HeLa dataset in ISBI cell tracking challenge
[10] and uses tracking stage to correct errors in segmentation.

Cell boundaries produced by our method are quite accurate; most segmenta-
tion errors are due to (1) errors in localization of bounding boxes, which some-
times clips parts of cells and (2) the failure of segmentation stage to ignore parts
of other cells in the proposed bounding box. We tried using a dilated proposal
bounding box but it led to lower performance as even though it reduced clipping
errors, the errors due to failure to ignore other cells increased. We also experi-
mented with a fully connected layer at the end of the network, which was able
to ignore other cells better but it produced coarse masks and did not improve
performance.

Two of the challenges of biomedical image analysis are the large variation
between sequences and lack of ground truth. Often a method is trained or de-
signed for a particular set of sequences and works well for images captured in a
narrow range of imaging conditions. Having a general method which can cope
with a wider range of imaging settings is very important as it is not always fea-
sible to design or tweak existing methods for the sequences being analyzed. As a
small step towards achieving this goal, we train a single network model (Ours-S)
using all three datasets. Equal number of training samples were used from each
dataset. This model has slightly lower performance on two of the three datasets
but on Fluo-N2DL-HeLa dataset its performance decreases considerably. Even
with this lower performance it outperforms CellDetect on all three datasets.

4 Conclusions

In this paper, we have presented a deep learning based method for proposing cell
segmentation candidates and demonstrated that it can produce excellent pro-
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posals for three different microscopic modalities. We have compared our method
against state of the art cell detection and segmentation methods and shown
that our method outperform them on common evaluation metrics. We have also
presented a single model trained on all three datasets and shown that its per-
formance does not degrade significantly, which is promising and indicates that
a single model for cell detection and segmentation can be trained without com-
promising too much on performance. Performance of such a model may even
improve if it is trained on datasets which are imaged in somewhat similar imag-
ing conditions; this is something we plan to investigate in future. We also plan
to use our method’s proposals for cell detection and tracking. Code is available
at https://github.com/SaadUllahAkram/CellProposalNetwork.
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