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Abstract

We present a method for generating object segmentation
proposals from groups of superpixels. The goal is to pro-
pose accurate segmentations for all objects of an image.
The proposed object hypotheses can be used as input to
object detection systems and thereby improve efficiency by
replacing exhaustive search. The segmentations are gener-
ated in a class-independent manner and therefore the com-
putational cost of the approach is independent of the num-
ber of object classes. Our approach combines both global
and local search in the space of sets of superpixels. The
local search is implemented by greedily merging adjacent
pairs of superpixels to build a bottom-up segmentation hi-
erarchy. The regions from such a hierarchy directly provide
a part of our region proposals. The global search provides
the other part by performing a set of graph cut segmen-
tations on a superpixel graph obtained from an intermedi-
ate level of the hierarchy. The parameters of the graph cut
problems are learnt in such a manner that they provide com-
plementary sets of regions. Experiments with Pascal VOC
images show that we reach state-of-the-art with greatly re-
duced computational cost.

1. Introduction
Automatic detection and recognition of objects from im-

ages are tasks which have been under active research during
the recent years. The research efforts have led to significant
improvements in the state-of-the-art in the field. For exam-
ple, since the launch of the Pascal Visual Object Classes
(VOC) challenge [6] the progress of the field has been regu-
larly evaluated using standardized databases. Recently also
other databases have been introduced, like the ImageNet1

and the SUN dataset2 , which contain more images and ob-
ject classes than the VOC dataset. In fact, there is a trend
towards larger and richer datasets and this sets up additional
challenges for the detection systems.

A dominant paradigm in object detection and recognition
has been to use so called bag-of-visual-words features or
histograms of oriented gradients in a sliding window frame-
work [17, 7]. Typically these approaches represent the vi-

1
http://www.image-net.org/

2
http://groups.csail.mit.edu/vision/SUN/

Figure 1. Example segmentations. Top: original image and ground
truth. Bottom: colors indicate the best segmentations from pools
of proposals generated by [16] (left) and our method (right).

sual appearance of a rectangular image window using his-
togram features, which encode information of texture, color
or intensity gradients. The histogram features are then used
as input to a discriminant function of a binary classifier for
joint detection and recognition. Usually a separate classi-
fier is trained for each object category which is to be rec-
ognized. Since the location, size and aspect ratio of the
bounding boxes of objects are initially unknown, both fea-
ture extraction and evaluation of classifiers are performed
for a very large number of densely placed image windows
and hence the term sliding window is used.

However, despite its success, the sliding window tech-
nique suffers from the problem of high computational cost
when the number of object categories is large or the applied
classifiers are costly to evaluate. Therefore, several ap-
proaches have been proposed in order to address efficiency
issues. For example, multi-stage cascade architectures have
been proposed in which the early stages filter out a large
portion of bad bounding box hypotheses using simple clas-
sifiers, which are cheaper to evaluate than the more accurate
ones [17]. This implies that costly classifiers can be evalu-
ated with a smaller set of windows. Still, a huge number of
windows per image must be classified by some means and
therefore the method is not suitable for large datasets with
many object classes.

In addition, there are approaches which try to reduce
the number of processed windows by sampling the space
of bounding boxes non-uniformly and by discarding non-
object windows in a category-independent manner [2, 14].
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That is, the bounding box hypotheses which most likely
contain background stuff (e.g. sky or water) and which are
not likely to contain instances from any object category
are discarded from further consideration using computa-
tionally cheap features and classifiers. Importantly, the cost
of such stage is independent of the number of object cate-
gories which are searched for. Still, even for relative small
images, such as those in Pascal VOC dataset, tens or hun-
dreds of thousands of windows must be classified, at least
once, or otherwise the level of attainable recall drops sig-
nificantly. Hence, these approaches are not suitable for very
large datasets although their performance scales better with
respect to the number of object classes than that of the con-
ventional approaches.

Further, the efficient subwindow search method pro-
posed by [11] avoids explicit processing of all possible sub-
windows by using a branch and bound strategy. Neverthe-
less, this approach is not as generic as the conventional slid-
ing window method but is limited to use relatively simple
classifiers, which typically do not provide as good perfor-
mance as their more complex alternatives. Therefore many
of the recent approaches that produce state-of-the-art results
use the sliding window approach or its variants [17, 7].

Recently, a promising research direction for object de-
tection has emerged with approaches that generate object
segmentation proposals [16, 4, 5]. Some of these ap-
proaches are very slow [4, 5], and hence not at all suit-
able for efficient and scalable frameworks. However, the
approach of [16] is relatively efficient and was used as a
first stage in object detection systems that won the detec-
tion challenges of ImageNet 2011 and Pascal VOC 2012.

In this paper, we describe a fast method for produc-
ing object segmentation proposals by grouping superpixels.
The method can be used as a first stage in a class-generic
object detection framework to limit the number of image
regions passed to further processing stages, which may be
class-specific. Our approach is inspired by [16] but pro-
vides considerably better segmentations as also shown in
Fig. 1. Our contributions and their connection to closely
related previous work are described in the next section.

2. Related Work
The closest works to ours are [16, 5, 4]. We take some

of the best innovations from these previous works, which
represent the current state-of-the-art, and propose several
important developments that allow us to find an excellent
balance between the computational efficiency and the num-
ber and coverage of segmented regions. We will show that
our approach is approximately as fast as [16] but provides
more accurate segmentations which better cover the objects
in an image. Further, our approach is much faster than [5, 4]
but provides segmentations of comparable accuracy.

The approach of [16] obtains the proposed object regions

from a segmentation hierarchy which is formed by start-
ing from an over-segmentation, which consists of regions
(i.e. superpixels) obtained by [8], and then greedily merg-
ing pairs of adjacent regions until there is only one region
left (i.e. the whole image is a single region). A single seg-
mentation hierarchy is not enough to get a sufficiently di-
verse set of regions but by using several over-segmentations
computed in several color spaces [16] is able to obtain rea-
sonable levels of recall.

Our approach utilizes similar segmentation hierarchies
as [16] but in a different manner. Instead of simply increas-
ing the number of hierarchies by choosing several start-
ing points from different over-segmentations, we branch
the bottom-up segmentation hierarchy at a certain level into
several branches each of which leads to a small set of bi-
nary foreground-background segmentations. That is, at a
fixed level of the hierarchy we form a graph of this level’s
regions and obtain several binary segmentations by opti-
mizing various versions of a cost function with graph cuts
using different parameter settings and different subsets of
regions as foreground and background seeds. In addition
to this we take all the regions from the full hierarchy ob-
tained by running the greedy merging process [16] until
the end. Our approach is motivated by the observation that
the greedy local search for pairs of adjacent regions works
well in the beginning when sufficiently similar regions are
merged (i.e. close to the bottom of the hierarchy) whereas
”grabcut” [15] type of global segmentation allows efficient
diversification of proposal regions when it is performed on
a relatively rough segmentation level where the number of
regions is not too high (i.e. the number of nodes in the graph
is small).

The main difference to [16] is that besides the greedy
merging process, which can be seen as a local search in
the space of sets of superpixels, we also use global search
which is realized by solving several graph cut problems on
a superpixel graph. Further, for measuring the similarity
of regions we use different color and texture features than
[16], and, instead of using several segmentations obtained
by running [8] with various parameter settings in different
color spaces, we compute our initial over-segmentations by
using the SLIC segmentation method [1] in addition to [8].

Binary foreground-background segmentations imple-
mented by graph cuts have been used in [5, 4]. However,
our work deviates from these previous works in two impor-
tant aspects. Firstly, our approach is much faster than [5]
and [4] since we use more efficient image features and are
able to run graph cut based segmentation on coarser graphs.
Secondly, we use training data to learn a threshold which
determines the initial over-segmentation used as a starting
point for the global search by graph cuts (i.e. the branch-
ing level in our segmentation hierarchy) and we also learn
a ranking for the segmentation branches. That is, we learn



a (partial) ordering for the seeding strategies and param-
eters of the graph cuts optimization and this allows us to
add branches gradually in such a manner that the regions
from newly added branches generally tend to give the high-
est possible increase in recall.

Hence, our approach is in contrast to [5, 4] which first
generate a larger pool of proposal regions and then rank
them according to their ”objectness”. If the aim is to apply
the segmentation proposals as input to a detection cascade,
such as in [16] or [12], and the later processing stages can
process only a certain number of regions per image, it is
computationally more efficient to directly generate an ap-
proximately correct number of good proposal regions than
to first generate a larger set of regions, then rank the regions
and select the desired number of top-ranked regions. Still, if
a full ordering of the proposal regions would be necessary,
our regions could be ranked using the techniques presented
in [5] or [4], and also [14] or [18] if bounding boxes are
used instead of the original regions.

Further, it should be noted that we solve graph cut opti-
mization problems on a superpixel graph whereas [4] per-
forms graph cut optimization on the original pixel graph.
In our case the graph has less nodes which is beneficial
(i.e. about hundreds of nodes instead of hundreds of thou-
sands). Thus, in our approach the global search stage
greatly benefits from the greedy local search which gener-
ates the initial segmentation for the global stage. Indeed,
unlike previous approaches, we are able to utilize the obser-
vation that the greedy merging performs particularly well
in the early stages of the bottom-up segmentation hierarchy
when there usually are many similar superpixels.

3. Our Approach
This section describes our approach in detail. In our

method, a given image is first over-segmented into small su-
perpixels, after which segmentation proposals are obtained
using two approaches, local and global.

The local approach is basically similar to the greedy su-
perpixel merging technique of [16] except that we use dif-
ferent features. In this approach, each adjacent superpixel
pair is assigned a score that represents the visual similarity
of the superpixels. The most similar pair is then merged
into a single superpixel, and its pixels are saved as a seg-
mentation proposal. Similarity scores of this new superpixel
with its neighbors are updated. The merging process is con-
tinued iteratively until only one superpixel remains and all
the segmentation proposals have been collected. This lo-
cal approach produces segmentation proposals in all scales
efficiently, but is not suitable for discovering objects that
consist of dissimilar parts.

For the global approach, we specify the problem as seg-
mentation of foreground from background by minimization
of an energy function defined on the superpixel graph. The

superpixel graph consists of nodes representing the super-
pixels and edges representing the neighborhood relations.
The energy function has a unary term that is defined by the
similarity scores of each superpixel with the foreground and
background hypotheses, and a pairwise term that is derived
from the similarity scores of adjacent superpixels. By vary-
ing the foreground and background hypotheses and param-
eters of the energy function, we can obtain large numbers
of segmentation proposals. Using a training set, we order
these sets of parameters so that diverse segmentations are
obtained when the number of proposals generated by the
global approach is gradually increased.

The following subsections describe the different stages
of our method.

3.1. Superpixels and feature extraction

As a first stage of the proposed method, we segment
the input image into superpixels using two approaches de-
scribed in [1] and [8]. The first approach is referred as
SLIC and it produces relatively compact superpixels that
have approximately equal size. On the other hand, the lat-
ter method, referred as FH in the following, produces very
diverse set of superpixels that can be anything from half
of the image to a narrow object boundary. Both methods
have parameters that we set to produce considerable over-
segmentation.

Once the superpixels are generated, we compute a fea-
ture vector for each of them. In our work, we use SIFT
descriptors [13] computed on a dense regular grid and RGB
values extracted from each pixel. Both descriptors are quan-
tized using visual vocabulary that is learned using training
data. We use 500 and 150 words for SIFT and RGB, re-
spectively. The descriptor for each superpixel is collected
by histogramming the visual words from image area it oc-
cupies. The corresponding histograms for superpixel i are
denoted as hiSIFT and hiRGB , respectively.

3.2. Refined superpixels

In the second stage, we pick one of the initial superpix-
elizations and refine it as follows. We first compute a simi-
larity score for each pair of adjacent superpixels. This score
is defined for superpixel pair (i, j) as

S(i, j) =1− 1∑
i ci

(
c1d(h

i
SIFT , h

j
SIFT ) (1)

+c2d(h
i
RGB , h

j
RGB) + c3A(i, j)

)
, (2)

where c1, c2 and c3 are constants, d(a, b) is the χ2 distance
between the histograms a and b, and A(i, j) is the propor-
tion of the image area that superpixels i and j jointly oc-
cupy. In our experiments we set c1 = c2 = 1 and c3 = 2.

Once the scores are computed, the algorithm merges the
two most similar superpixels together into a new larger su-



Figure 2. Illustration of different phases in the proposed approach. From left to right: The dense initial superpixelization created using
SLIC; the proposed refined superpixelization; and illustration of the superpixel pair merging in the local search; a proposal obtained as a
result of one global search branch.

perpixel. After the merge, the scores are updated accord-
ingly. This process is similar to [16], but in our case we
do not include the segments generated in the early stages
into the output proposal set. Instead, we run the algorithm
without storing any of the generated segmentations until a
certain threshold for the similarity measure S is reached.

At the threshold level, we are left with a sparser seg-
mentation that we refer as refined superpixelization in the
following sections. Figure 2, illustrates one example of
the original and refined superpixelizations. The segmenta-
tion before the threshold level were discarded, since it was
noticed that good object proposals are rarely generated in
the early stages. This can be seen by examining the upper
bound for the recall which is attainable with the given super-
pixels after each merging step. The difference in the bound
between original and the refined superpixelization was only
few percents, but the drop in the number of output proposals
was considerable.

3.3. Local search

Once we have reached the similarity threshold, we start
collecting the proposal regions by first including all the
superpixels in the refined superpixelization in the output
set. After this phase the search is split into several paral-
lel branches. One of these branches, continues the merging
in the same way as in Section 3.2, but now collecting all
the generated segmentations into the proposal set. Figure 2
illustrates one step of the local search algorithm.

This branch is referred as local search, since it consid-
ers only superpixel pairs when deciding the next proposal.
What often happens, is that this approach fails to detect
large non-homogeneous objects that consist of diverse set
of superpixels. In such case, there may be some part of the
object that is much closer to background appearance and
gets merged there before the object is detected. Once this
happens, the object is lost from the local search for good.
This problem can be alleviated up to some limit by starting
from several different initial superpixelizations as in [16].
In our method we used two different superpixelizations as
explained in Section 3.1.

3.4. Global search

In order to overcome the limitations of the local search
approach, we propose a method that considers all superpix-

els at once when deciding the next object proposal. This
is done by defining an optimisation problem over a graph
where each superpixel represents one node and there is a
link between each pair of adjacent superpixels. The details
are as follows.

For each superpixel, define a label li that can take one of
the values {fg,bg}, which stand for foreground and back-
ground, respectively. Furthermore, define the general form
of the energy function as

E(L) =
∑
i

D(i, li) + α
∑
i,j∈E

V (i, j, li, lj), (3)

where L = {l1, . . . , ln} is a set of all superpixel labels, E
is the set of adjacent superpixel indices, and D and V are
unary and pairwise potentials defined below.

Before going into the actual potentials, we extend the
definition of the similarity measure S to sets of superpixels.
The similarity between superpixel sets is simply computed
by using (1) with the modification that histograms hj are
computed over the union of the superpixels in the sets. In
addition, for global search we drop the size term by setting
c3 = 0.

We now define the unary potential D as

D(i, li) =


λS(i, C∗fg) if li = bg, i /∈ Cfg

S(i, Cbg) if li = fg, i /∈ Cbg

∞ if li = bg, i ∈ Cfg

∞ if li = fg, i ∈ Cbg,

(4)

where Cfg and Cbg are subsets of superpixels that are
picked to model foreground and background appearances,
respectively. The set C∗fg is the union of Cfg and its imme-
diate neighbours, as detailed below. In summary, the unary
term penalises associating foreground label to superpixels
that are similar to background hypothesis and vice versa.

The pairwise potential V is defined as V (i, j, li, lj) =
S(i, j), if li 6= lj , and 0 otherwise. This formulation simply
penalises the assignments where similar adjacent superpix-
els are given different labels.

Given the parameters α,λ,Cfg and Cbg, we can find the
labelling L that minimises the energy function (3). The for-
mulation we use allows to utilise the standard Graph-Cut
algorithms to solve the global optimum of (3). This is done



very efficiently, since our graph contains only up to few
hundred nodes due to the refinement in the superpixeliza-
tion. Once the optimal labelling is found, the union of the
superpixels corresponding to foreground label is included
in the set of object proposals.

The formulations above contain four key parameters,
α,λ,Cfg and Cbg, that allow us to control the generated
segmentations. By varying these parameters, we can create
thousands of unique segmentation proposals. For the back-
ground hypothesis Cbg, we use 9 different combinations of
the superpixels along the four edges of the image.

Given Cbg, we cycle through remaining superpixels, us-
ing each of them individually as the foreground hypothe-
sis Cfg. Since the histograms of a single superpixel may
not capture the characteristics of a large object, we collect
the foreground histograms from a wider area. More pre-
cisely, we define C∗fg as the union of Cfg and its immediate
neighbours on the superpixel graph, and test the similarity
of other superpixels j against it using values of the similar-
ity S(i, C∗fg).

For each combination of Cbg and Cfg, we can addition-
ally vary the parameters α and λ. The former controls the
weighting between the unary and the pairwise potentials.
We let α vary over the values 1

7 ,
1
6 ,

1
5 , . . . , 3, 4, 5. The pa-

rameter λ is used to control the penalty associated to label-
ing superpixels similar to foreground hypothesis as back-
ground. Large values of λ increase the size of segmentation
proposals, which is usually preferable as captures the large
objects the are particularly difficult for local search. We
uniformly pick several λ values from the interval [0.75, 3].

Using all the parameter combinations, usually over 100
000 unique segmentation proposals per image are gener-
ated. However, it was noticed that most of these regions are
not complementary and using much smaller subset would
result in equal recall values.

Hence, we ordered the parameter combinations
{Cbg, α, λ} by number of objects found on the training
set and complementariness. Specifically, we first listed
which objects in the training set were found using each
triplet. The triplet finding most objects was put on the top
of the ordering, and all the objects it found were removed
from consideration. Next, we picked the triplet that found
most of the remaing objects and removed them. This
was repeated until no parameter set found more than 5
previously missed objects. At this point the process was
reset by considering all objects again and selecting new
sets of parameter triplets (from those not yet selected) by
repeating the process. This was done to avoid overfitting
to the small training data set. In our experiments each such
selection round produced around 14 triplets.

In the experiments, we use 15-150 highest ranking pa-
rameter triplets {Cbg, α, λ}. This results in approximately
500-3000 unique segmentations per image. We formed the

ordering of the parameter triplets using refined SLIC su-
perpixelizations, but use the same ordering also for global
search with FH superpixels.

3.5. Post-processing

Both local and global search algorithms manipulate data
purely at the superpixel level with no notion of individual
pixels. Because of that, the generated proposals are effi-
ciently identified using superpixel indices. This fact also
enables efficient duplicate removal.

4. Experiments
We run the experiments using the 1449 images in

the validation set of PASCAL VOC 2012 segmentation
challenge[6]. Additionally, we use a subset of 200 images
of the training set for learning the parameters for the global
search algorithm. The dictionaries for the SIFT and RGB
were learned using images outside PASCAL dataset.

To evaluate the quality of the segmentation proposals we
use the Pascal overlap vs. union criteria. The overlap score
of pixel regionsA andB is defined bym(A∩B)/m(A∪B),
where m(A) is the pixel count of region A. Overlap score
gives a real number on the interval [0, 1], value 1 corre-
sponding to perfect segmentation. If the maximum overlap
score among a set of segmentation proposals against some
ground truth object segmentation exceeds a fixed thresh-
old, we say that the object has been found at that thresh-
old. We also compare bounding boxes of proposals against
the bounding box of an object using the same formula, by
treating the boxes as rectangular sets of pixels.

Given a threshold, we obtain a recall score for a set of
proposals by counting the number of objects for which the
highest overlap score exceeds the threshold, and divide it
by the total number of objects. We exclude objects anno-
tated as ’difficult’ from the test set. We focus on the results
for threshold value of 0.7 using the segmentations, but re-
port also some results at threshold level 0.5 as well as using
bounding boxes. We plot recall scores as the function of
average number of segmentation proposals per image.

4.1. Experiment 1

The first experiment will provide motivation for using
the refined superpixelizations as starting point for both
global and local search. To obtain the refined superpix-
elization, we start from a dense superpixelization produced
by either one of the algorithms we use [8, 1], and run the
greedy pairing process until the highest similarity score
among all pairs drops below a certain threshold. Here we
show that the coarse refined superpixelization is a better
starting point for our global search than the original super-
pixelization.

In Figure 3, we compare the recall scores of two ver-
sions of our algorithm. The first one starts global search
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Figure 3. Comparison of recall values using refined and initial FH
superpixelizations. Global search works clearly better with refined
superpixelizations. Additionally, the figure shows the difference in
recall between our similarity measure and the one in [16]

branches at the refined supepixel level whereas the second
one starts these directly from the initial superpixels. The
starting points of the curves correspond to using the local
search only, and subsequent points are obtained by increas-
ing the number of proposals generated by the global search
(the parameters for the global search branches are selected
according to the prelearnt ordering). Both superpixeliza-
tions give similar recall with local search. But it can be seen
that for global search, the top curve, which uses refined FH
superpixelizations, gives much higher recall than the lower
curve, which uses the initial FH superpixelizations.

Here we have used FH superpixels since they were used
in [16], but similar results are obtained with SLIC as well.
In other words, the results show that the raw superpixeliza-
tions from either [8] or [1] are not as good for our purposes
as the refined superpixelizations.

4.2. Experiment 2

In this experiment we compare our method against the
baselines [5, 4, 16]. We use the publicly available imple-
mentations, except for [16]. This is because their executa-
bles can not be modified to output segmentations instead of
bounding boxes. Hence, we use a re-implementation that
was verified to reproduce the results in [16].

Results are shown in Figure 4 where the plots for our
method are obtained in similar manner as in Figure 3, but
using both FH and SLIC superpixelizations and their com-
bination. The results show that our approach works well
with both SLIC and FH superpixels, and combining both of
them gives a further improvement in recall. In terms of re-
call at overlap level 0.7, our algorithm clearly outperforms
[16]. We also slightly improve on the methods of [5, 4],
which are tens of times slower than our method.

We also ran our local search using the settings compa-
rable to those presented in [16], i.e. utilising up to 4 color
spaces and two FH superpixelizations in each color space
(not refined). The leftmost points of the cyan and green
curves correspond to using just the RGB color space and
one superpixelization, while the rightmost points collect lo-

Method this paper van de Sande et al. [16]

Oxford Sculptures 0.91 / 0.79 / 1198 0.87 / 0.58 / 1913
Oxford Flowers 0.96 / 0.95 / 1879 0.94 / 0.71 / 2200
UCSD Birds 0.94 / 0.43 / 1204 0.82 / 0.23 / 1862
CORE 0.87 / 0.60 / 890 0.86 / 0.40 / 2071

Table 1. Recall values at 0.5 and 0.7 overlap thresholds and the av-
erage number of regions per image for Oxford Sculptures & Flow-
ers, UCSD birds, and CORE.

cal segmentation proposals by running the respective algo-
rithm 8 times utilizing 4 different color spaces and 2 dif-
ferent FH superpixelizations. The features of both methods
change when the image is transformed into another color
space, resulting in different superpixel mergings and there-
fore different proposals.

The leftmost points of the cyan and green curves show
that our features are substantially better in the case of using
just single RGB version, but the rightmost indicate that our
local search does not benefit as much from addition of the
color spaces as [16] does. This may be because we did not
focus on making our features applicable outside RGB. In
any case, in our situation it is more profitable to vary the
initial superpixelizations, rather than the features in order
to diversify the search. The usage of single set of features
is also beneficial to keep the global search efficient.

4.3. Experiment with other datasets

In order to demonstrate that the proposed method gen-
eralises beyond PASCAL VOC, we carried out experiments
using four additional datasets: Oxford sculptures3 & flow-
ers4, UCSD birds5, and CORE6. In all cases, the parameters
were the same as for VOC and the overlap measure for the
evaluation was computed using ground truth segmentations.
Table 1 shows the results for our method using only SLIC
superpixels and the method of [16]. In all the four cases the
average number of proposal regions per image was notably
smaller with our method than with [16] although the recall
of our method was clearly higher. The results are interest-
ing also because the object classes in these datasets are quite
different to those in VOC.

4.4. Comparison of execution times

Table 2 compares the execution times of the proposed
approach and the baselines. The results indicate that the
methods of [5, 4] are very slow, but achieve recalls close to
our method. The approach of [16] essentially runs the lo-
cal search, similar to ours, 8 times, using computationally
inexpensive features. The implementation we used for [16]
uses Matlab MEX functions for the computational bottle-
neck (our method does not), which probably explains the

3
http://www.robots.ox.ac.uk/˜vgg/data/sculptures6k/

4
http://www.robots.ox.ac.uk/˜vgg/data/flowers/102/index.html

5
http://www.vision.caltech.edu/visipedia/CUB-200.html

6
http://vision.cs.uiuc.edu/CORE/

http://www.robots.ox.ac.uk/~vgg/data/sculptures6k/
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
http://www.vision.caltech.edu/visipedia/CUB-200.html
http://vision.cs.uiuc.edu/CORE/
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Figure 4. The recall values for various methods using bounding boxes with overlap threshold 0.5 (left) and segmentations with overlap
thresholds 0.5 (middle) and 0.7 (right), respectively. Our method using two superpixelizations improves over the slower methods of Endres
and Carreira, and substantially improves the accuracy of 0.7 segmentations in comparison to van de Sande. Using one superpixelization
per image is faster and gives reasonable recall as well.

Method Recall Regions Time

This paper (FH and SLIC) 0.546 1656 13.5
This paper (FH) 0.488 601 6.5
Carreira10 et al. [4] 0.534 646 280
Endres et al. [5] 0.512 1534 140
van de Sande et al. [16] - - 7.5
reimplementation of [16] 0.376 1993 2.5

Table 2. Recall values for VOC 2012 segmentation challenge val-
idation data using 0.7 overlap threshold, with the average number
of proposals and average running time (seconds) per image. For
our method, we use 15 parameter triplets and initial superpixels as
indicated in the brackets. These correspond to the second points
from left of the magenta and blue curves in Fig. 4.

speed difference to the original implementation.
The breakdown of computation time for our method in

the 6.5 seconds case, which uses a single FH superpixeliza-
tion and does both local and global search, is as follows.
About 57% of time goes to computing the SIFT descriptors,
for which we use VLFeat7 functions. Decreasing the his-
togram size from 500, making the computation grid on im-
age sparser, or using altogether different features would be
options to speed up the method. However, we observed that
the combination of SIFT with the color feature produced
considerably better results than either feature alone. Even
if multiple superpixelizations are used, these features only
need to be calculated once per image, while using multiple
color spaces, as [16] does, might require different features
for each case. Furthermore, dense SIFT features are of-
ten needed in the subsequent detection phases and are com-
puted in any case.

The aforementioned bottleneck, computation of his-
togram distances to obtain the similarity scores, takes about
19% of the execution time. We used the χ2 distance, which
gave good results in comparison to other faster options. Fi-
nally, about 15% of the time goes to constructing the initial
superpixelizations, depending on the method used.

7
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Figure 5. Recall values for each object class in VOC 2012 valida-
tion data using segmentations and 0.7 overlap threshold. Numbers
in brackets are average numbers of proposals used.

5. Conclusion and Future Work

In this paper, we have presented a fast approach for gen-
erating high-quality class-independent object segmentation
proposals for color images. One of the key innovations of
the proposed method is to combine techniques for global
and local grouping of superpixels in such a manner that high
recall of objects can be obtained with a relatively low num-
ber of regions, even at high values of the Pascal overlap
threshold. Our experimental evaluation with annotated Pas-
cal VOC images shows that the generated region proposals
provide accurate segmentations for various kinds of objects.
Our approach is approximately as fast as the fastest avail-
able comparison method but provides substantially more
accurate segmentations. In terms of segmentation accu-
racy our approach provides comparable results with the best
comparison methods but is more than 10 times faster.

Considering future work, we believe that our method has

http://www.vlfeat.org/


Figure 6. Examples of best detections for each method (i.e. the region with the highest overlap is shown for each ground truth object). From
left to right: ground truth, our method (on average 1656 regions per image), Carreira et al. (646 regions), Endres et al. (1534 regions), van
de Sande et al. (1993 regions). More examples can be found from the supplementary material.

a lot of potential to be used as a component in object detec-
tion and segmentation systems, such as those recently sub-
mitted to ImageNet and Pascal VOC challenges. This belief
is based on the fact that until now [16] has been the only
approach which is able to produce accurate segmentation
proposals sufficiently fast in order to be applicable for very
large datasets, such as the ImageNet. Yet, the advantages of
this kind of an approach have been clearly demonstrated as
the contributions from the authors of [16] have won the de-
tection challenges in ImageNet 2011 and Pascal VOC 2012.
Since our approach provides more accurate segmentations
than [16], it would be interesting see whether it can further
improve the performance of detection systems as well. In
addition, since our method is substantially faster than [4]
which is successfully used in the state-of-the-art segmenta-
tion systems [9, 3], addressing segmentation of large image
sets might be one fruitful research topic in future [10]. In or-
der to advance the future use of our approach we will make
our implementation publicly available upon the publication
of the article.
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