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Abstract

In this paper we propose extensions to the match propa-
gation algorithm which is a technique for computing quasi-
dense point correspondences between two views. The ex-
tensions make the match propagation applicable for wide
baseline matching, i.e., for cases where the camera pose can
vary a lot between the views. Our first extension is to use a
local affine model for the geometric transformation between
the images. The estimate of the local transformation is ob-
tained from affine covariant interest regions which are used
as seed matches. The second extension is to use the second
order intensity moments to adapt the current estimate of the
local affine transformation during the propagation. This al-
lows a single seed match to propagate into regions where
the local transformation between the views differs from the
initial one. The experiments with real data show that the
proposed techniques improve both the quality and coverage
of the quasi-dense disparity map.

1. Introduction
Automatic three-dimensional model acquisition for an

unknown scene from multiple images is a classical prob-
lem in computer vision. For uncalibrated image sequences,
the standard approach is based on sparse points of interest
which are tracked across the sequence and reconstructed to-
gether with the camera motion [5, 3, 6]. Eventhough the
sparse approach is often sufficient for calibrating both the
internal and external parameters of the cameras it is not suf-
ficient for the accurate three-dimensional description of the
scene. However, the sparse approach is often used to sim-
plify the problem whereafter dense matching methods are
applied for the calibrated views [16, 17].

So far there are many dense matching algorithms avail-
able. The number of traditional two-frame stereo corre-
spondence algorithms is large [18]; there are also several
volumetric approaches which are voxel-oriented [19, 8] or
based on graph cuts [7] or level sets [2]. In addition, prob-
abilistic [20] and PDE-based formulations [21] have been

used for dense matching of wide baseline images.The prob-
lem with traditional stereo algorithms is that they are de-
signed for view pairs with a small baseline and for almost
frontoparallel planes. Hence, they can not be easily used
for wide baseline views for which the epipolar lines are not
parallel. On the other hand, the volumetric approaches use a
discretized volume or restrict the possible depth values to a
predefined accuracy. Thus, these methods are expensive in
terms of time and memory when high accuracy is needed.
However, the quasi-dense approach [10] is more efficient
than the dense approaches but sufficient also for 3D surface
reconstruction.

This paper is hence built on the previous works [9, 10]
where a quasi-dense approach to surface reconstruction
from image sequences was proposed. In this approach,
sparse interest point matches are used as seed points for the
match propagation algorithm which produces denser, but
not completely dense, pixel correspondences that are called
quasi-dense pixel correspondences. The quasi-dense pixel
correspondences are computed for successive image pairs in
the sequence and they are also used in the image geometry
estimation. For uncalibrated image sequences, the quasi-
dense approach provides a full automatic geometry estima-
tion like the standard sparse approach but it also provides
a high density of 3D points on which a surface representa-
tion can be reconstructed. Moreover, it has been reported
that the quasi-dense approach provides more robust and ac-
curate geometry estimation than the sparse approach [10].
Hence, even if the final goal would be a completely dense
reconstruction the quasi-dence approach may still be use-
ful since most of the dense methods, such as [21], require
reliable pixel correspondences for initialization.

There are certain issues in the match propagation algo-
rithm which limit its applicability in the wide baseline case.
At each step of propagation, small image patches are ex-
tracted around the current seed point in both images and the
new candidate matches are scored according to the zero-
mean normalized cross-correlation (ZNCC) [9]. Hence, it
is implicitly assumed that the local transformation between
the patches is effectively a translation, so the algorithm is
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not suitable for wide baseline matching. To cope with this
problem, we use a general affine model for the local trans-
formation between the patches. Moreover, we will show
that it is possible to determine the local affine transforma-
tion adaptively during the propagation. This is achieved by
using the second order intensity moments locally together
with the epipolar geometry. The experiments show that
the proposed extensions improve the performance of match
propagation in the wide baseline setting.

The structure of this paper is as follows. First, there is
a brief description of the original match propagation algo-
rithm in Section 2, and the proposed improvements are then
described in Sections 3 and 4. The experiments are pre-
sented in Section 5.

2. Background
The match propagation algorithm [9] starts from a set of

sparse matches between two images, I and I ′, and produces
a quasi-dense disparity map which contains a large num-
ber of pixel correspondences. In [9], the initial matching of
sparse interest points was done by using the ZNCC score to-
gether with a simple cross-consistency check. The propaga-
tion itself starts from the set of initial matches {(xi,x

′

i)}i,
where xi and x

′

i are corresponding pixels in the two images.
The initial matches are called seed points. The propagation
proceeds by iterating the following three steps:

(i) the seed point (xi,x
′

i) with the best ZNCC score is
removed from the list of seed points

(ii) new candidate matches are searched from the spatial
neighborhood of the current seed (xi,x

′

i)

(iii) the candidate matches exceeding a ZNCC threshold
and a difference-based confidence limit are stored in
the disparity map and added to the list of seed points

In this way the number of pixel correspondences in the dis-
parity map increases until the list of seeds becomes empty.

More precisely, in step (ii) above the spatial neighbor-
hood, N (x,x′), of a match (x,x′) is defined so that the
matches in this neighborhood satisfy a constraint called dis-
crete 2D disparity gradient limit. The precise definitions
are as follows. The (2N +1)× (2N +1) neighborhoods of
pixels x and x

′ are

N (x) = {u | (u − x) ∈ [−N,N ]2},

N (x′) = {u′ | (u′ − x
′) ∈ [−N,N ]2},

as usual, and the neighboring matches satisfying the dispar-
ity gradient constraint are given by

N (x,x′) = {(u,u′) | u ∈ N (x),u′ ∈ N (x′),

||(u′ − x
′) − (u − x)||∞ ≤ ε},

where ε is the disparity gradient limit. With integer pixel
coordinates, the smallest nonzero value for ε is 1 which is
also the value used in [9] (together with N =2). Enforcing
the disparity gradient constraint implies that the 2D vectors
from the current seed point to the new candidate point must
have approximately the same direction in both images.

In step (iii) of the algorithm, when the candidate matches
(ul,u

′

l) are given for the current seed, a difference-based
confidence measure s is computed for the candidate pixels,

s(ul) = max{|I(ul +δ)−I(ul)|, δ ∈ {(±1, 0), (0,±1)}},

and s′(u′

l) is computed in the corresponding way. In order
to prevent propagation into too uniform areas, those candi-
date matches are discarded for which s(ul) < t or s′(u′

l) <
t, where t is a predefined threshold. The remaining candi-
date matches are sorted using the ZNCC measure, which is
computed using the windows of size (2W +1)× (2W +1)
around the candidate pixels. Those matches which are not
yet in the disparity map (either one of the matching pixels)
and exceed a predefined threshold z for the ZNCC score are
stored in the disparity map and added to the list of seeds.

The match propagation algorithm is efficient. When the
ordering of seed points according to the ZNCC scores is
maintained in a heap data structure the time complexity of
the algorithm is O(n log n) where n is the final number of
matched pixels. The algorithm is also robust to outliers ly-
ing in the set of initial matches due to the best-first strat-
egy in the propagation [9]. In addition, if the fundamental
matrix for the view pair is known, the epipolar constraint
can be used as an additional matching constraint during the
propagation. In [10], in fact, the unconstrained propaga-
tion is first used to generate quasi-dense point correspon-
dences for the fundamental matrix estimation and there-
after the constrained propagation is used to produce the final
matches.

The major problem with the match propagation algo-
rithm is that it requires conventional stereo image pairs. In
particular, the orientation of the images should be similar
due to the usage of the direct ZNCC similarity measure and
the aforementioned disparity gradient limit. However, in the
following we will show that using an affine model for the
local transformation between the images makes the match
propagation approach applicable in the wide-baseline case.

3. Match propagation for wide baseline views
The first step towards quasi-dense wide baseline match-

ing is to use the sparse wide baseline matching approaches
[15, 14] for initial matching. Hence, we suggest using affine
covariant regions [15] as seed matches for the match prop-
agation. Such seed matches can provide an estimate for the
local geometric transformation between the images, in ad-
dition to the position of the match. In order to properly uti-
lize this information, we propose an extension to the match



propagation algorithm which allows adequate modeling of
geometric transformations between image patches. But
first, we briefly describe the computation of seed matches.

3.1. Initial matches
The affine covariant region detectors [15] together with

a viewpoint invariant descriptor [12] have shown good per-
formance in sparse wide baseline matching. Hence, it is a
natural choice to use this approach in computing the ini-
tial matches for match propagation. In fact, the idea of
propagating matches from few initially matched regions to
nearby ones has been used in the context of object recogni-
tion [4]. The detector that we used in our experiments was
the Hessian-Affine detector proposed in [13]. The detected
regions were matched using the SIFT descriptor [12]. In
principle, any other region detector could be used as well,
as long as the detected regions can be represented by el-
lipses so that the ellipses of corresponding regions, given as
symmetric 2 × 2 matrices C and C

′, are related by

C
′ = A

−>
CA

−1, (1)

where A is the local affine transformation between the
matching regions [13]. Equation (1) provides a basis for
estimating the affine transformation A given the measure-
ment regions C and C

′. In fact, from (1) we get

A = C
′−1/2

RC
1/2, (2)

where R is an arbitrary orthogonal matrix. Additional in-
formation is needed to determine R and here we used the
orientation of local image gradients as in [12, 13]. In sum-
mary, the result of the initial matching step is a set of point
matches {(xi,x

′

i)}i (the centroids of the matched elliptical
regions) accompanied with the estimates Ai for the corre-
sponding local transformations.

Giving an example, Figs. 1(a) and 1(b) illustrate the
matched Hessian-Affine regions in two images of a planar
scene. The images are from [22] where also the known ho-
mographies between the views are available together with
the implementations of region detectors [15] and descriptors
[14]. For the descriptor matching we used a modified near-
est neighbor strategy. We required both that the matching
descriptors are the nearest neighbors of each other and the
distance to the second nearest neighbor is above a certain
threshold. In our experiments, we found that such matching
strategy significantly reduces false matches for images with
repeating texture patterns as opposed to using just a single
threshold for the nearest neighbor distance. In Fig. 1, the 50
best matching regions are shown.

3.2. Propagation with affine normalization
In this section we describe our first extension to the

match propagation algorithm. We append the seed matches

(a) (b)
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(d)
Figure 1. (a) and (b): The matched Hessian-Affine regions. One of
them, denoted by the cross, is used as a seed match for the match
propagation algorithm. The pixel matches computed with the orig-
inal (c) and the modified (d) propagation approach are illustrated
in the second view by coloring them according to their Sampson
distance from the ground truth homography. (The distances over 5
are suppressed to 5, the grayvalue for the noncommon area is 6.)

with an affine transformation matrix which is used to nor-
malize the local image patches before enforcing the 2D dis-
parity gradient limit and computing the ZNCC scores. In
addition, we use a subpixel level of accuracy for the po-
sition of seed points whereas the disparity map is stored
at the pixel level resolution. Although the proposed im-
provements seem to be minor, they significantly improve
the matching result when carefully implemented.

As before, the initial seed matches, consisting of points
{(xi,x

′

i)}i and matrices Ai, are first scored using the
ZNCC measure. The ZNCC scores are computed from geo-
metrically normalized image patches where the normaliza-
tion is done as follows: (a) a (2W +1)×(2W +1) square
patch centred on the seed point is extracted from the image
which locally has a lower resolution (the local magnifica-
tion factor is given by |detAi|), (b) the corresponding area
in the other image is determined by affinely mapping the
square patch on the other image, (c) the patches from both
images are transformed to (4W+1)×(4W+1) windows by
interpolation, (d) the interpolated windows are decimated to
the size (2W +1)×(2W +1). This process is illustrated in
Fig. 2 and, for a correct match, it should ideally result in
two identical image patches when the affine transformation
model is tenable.

The scoring of seeds is not the only place where geomet-
ric normalization is needed during the propagation. At each
iteration, the whole neighborhood from which new matches
are searched needs to be normalized. Therefore, in order
to reduce the number of interpolations per iteration, we ac-



tually compute the normalized patches corresponding to a
window of size (2(W +N)+1)× (2(W +N)+1) in the
lower resolution image. The normalized neighborhoods are
illustrated in Fig. 3 and they can be treated as in the original
algorithm, i.e., the disparity gradient limit and the ZNCC
measure can be well used after the normalization. However,
the pixels of the normalized patch do not correspond to inte-
ger pixel coordinates in the higher resolution image. Hence,
we use subpixel level of accuracy for the seed matches. The
coordinates are rounded to integer pixel values only when
used to index the disparity map, for example when storing
new matches. Importantly, when new matches are added to
the list of seeds they inherit the affine transformation matrix
from the current seed. This implies that a seed match always
contains an estimate of the local affine transformation and
it is the basis for the geometric normalization.

In the normalization process, as shown in Fig. 2, the im-
age patch of the lower resolution image is first upsampled
and then downsampled. This is necessary in order to cope
with small scale changes between the images, i.e., the up-
sampling is needed to prevent aliasing effects in the interpo-
lation of the higher resolution image and both image patches
have to be processed in a similar way to assure comparabil-
ity. In addition, the decimation of the transformed patches
can be performed efficiently with two one-dimensional anti-
aliasing filters. In fact, despite the inevitable interpolations,
the extended match propagation algorithm is efficient. It is
clear that the overall complexity remains the same and de-
pends only on the number of final matches. In fact, we save
some time by skipping the check of the confidence measure
limit described in Section 2. We additionally found that the
geometric normalization allows using higher threshold for
the ZNCC score and this threshold alone is often sufficient
for preventing the propagation into too uniform areas.

The necessity for the affine normalization is made clear
in Fig. 1, where the poor performance of the original prop-
agation approach is illustrated with the disparity map in
Fig. 1(c). In this example the propagation was started from
a single seed match, denoted by the cross in Figs. 1(a) and
1(b), using the default parameter values (N = 2, ε = 1,
t = 0.01, W = 2, z = 0.5) [9]. The number of pixel cor-
respondences in the final disparity map is 10726 but most
of them are not correct as their Sampson distance [6] to
the ground truth homography is large. On the contrary,
the propagation with affine normalization performs well as
shown Fig. 1(d). There are 261572 matches and the param-
eter values used were N =2, ε=1, W =2 and z =0.8. De-
spite the higher correlation threshold the number of matches
is much larger than in Fig. 1(c) and most of them are correct.
The computation time per match was 1.7ms for Fig. 1(c)
and 3.5ms for Fig. 1(d) when Matlab implementations of
both algorithms were used.
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Figure 2. The geometric normalization of local image patches.
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Figure 3. The normalized image neighborhoods of size (2(W +
N)+1)×(2(W +N)+1) for a seed point (x,x′). Here N = 2,
W = 1, and ·̂ refers to the symbols in the normalized frame. The
ZNCC score for the candidate match (u,u′) is computed using
the black framed windows.

4. Adaptive propagation
In this section we propose our second extension to the

match propagation algorithm which allows the adaptation
of the local affine transformation estimates during the prop-
agation. The adaptation is based on the second order in-
tensity moments which determine the local affine transfor-
mation up to a rotation. The remaining rotational degree of
freedom is determined from the epipolar geometry which is
assumed to be known.

The motivation for proposing an adaptive propagation
technique is to allow propagation into regions where the lo-
cal transformation between the views differs from the ini-
tial one. In fact, in the affine normalization scheme, pro-
posed in Section 3, the estimate of local affine transforma-
tion is inherited from the current seed to its descendants.
This implies that each initial seed match can propagate only
into such regions where the estimated transformation, orig-
inally computed from the affine covariant interest regions,
is valid. In some cases this may be sufficient, for example,
when the global transformation between the views is close
to affine, as in Fig. 1, or when the initial seed regions are
dense enough so that the local transformations in different
parts of the scene can be modelled. However, in some cases
a more powerful propagation strategy would be useful. In
Fig. 5 we have two images of a scene containing two planes,



a map on a table and a calibration object. Here the affine
transformation recovered from one region match, located
in the front and denoted by yellow ellipses, does not ade-
quately model the transformation of the whole plane since
the perspective distortion is significant. In order to address
this kind of situations, we propose the principle of adaptive
propagation in the following.

4.1. Local shape from intensity moments
Let f, f ′ : R

2 → [0, 1] denote the image intensity func-
tions so that f ′(x) = f(A−1

x) where A is a nonsin-
gular 2 × 2 affine transformation matrix. Here we have
dropped the translational part as we assume that the coor-
dinate systems are centred to the points under considera-
tion. Given two positive window functions g and g′ so that
g′(x) = g(A−1

x)/|detA|, we define the windowed sec-
ond moment matrix of f by

Sf,g(x) =

∫
vv

>f(v)g(x − v)dv, (3)

and the matrix Sf ′,g′ of f ′ is defined in a similar way. Since
the affine transformation between the window functions is
the same as between the intensity functions we get

Sf ′,g′(x) = ASf,g(A
−1

x)A>. (4)

By introducing a simpler notation at the origin, S
′ =

Sf ′,g′(0) and S = Sf,g(0), we get from (4) that

A = S
′1/2

RS
−1/2, (5)

where R is an orthogonal matrix which can be determined
from a pair of corresponding directions in the two images
(i.e. from one unit vector correspondence pair). Hence, the
equation (5) implies that the moment matrices could be used
to determine the local affine transformation in a similar way
as the elliptical interest regions were used in Section 3.1.

In general, the problem of using (5) is that if g is fixed
and A is unknown, g′ is also unknown. However, in our
application we usually have a relatively good guess for
the local transformation in the neighborhood of the initial
matches. Hence, at each propagation step, we use the affine
estimate of the current seed in forming the window func-
tions and thereafter the estimate is updated for the new seeds
using (5).

In detail, let us consider one step of the adaptive prop-
agation process with the illustrations in Figs. 2 and 3. As-
sume that the current seed is (x,x′) and the corresponding
transformation estimate is A0. The normalization process is
carried out as described in Section 3.2 and the resulting nor-
malized image patches are shown in Fig. 3. Now, consider
that the normalized cross-correlation of the black framed
subwindows in Fig. 3 exceeds the threshold so that (û, û′),

corresponding to a match (u,u′) in the original images, is a
new seed match. Instead of performing the integration (3) in
the original images we integrate in the normalized domain
and thereafter transform the obtained moment matrices to
the image coordinate frames. If the characteristic function
of a (2W + 1)× (2W + 1) window, centred on û and û

′, is
used as a window function in the normalized patches the
integration in (3) reduces to a simple summation. Then
the obtained moment matrices Ŝ and Ŝ

′ are transformed
back to the original frames by S = Ŝ and S

′ = A0Ŝ
′
A

>
0

.
The new transformation estimate for the new seed match is
then obtained by using (5). Instead of uniform weighting of
the square window by its characteristic function a different
weight function can also be used. For example, a gaussian
window function of size (2W + 1) × (2W + 1) was found
to give good results. The advantage of performing the in-
tegration in the normalized domain is that the values of the
windowing function can be computed in advance since the
domain of integration is always the same. This significantly
improves the efficiency.

The idea behind our approach, presented above, is sim-
ilar in spirit to those presented in [11] and [13]. However,
here the context of application and the implementation are
different. Importantly, the shape adaptation is not based on
the windowed second moment matrix of the intensity gra-
dient as in [11, 13] but on the windowed second moment
matrix of the intensity function itself. In our experiments
we found that, instead of the gradient, the intensity func-
tion provides a more stable basis for estimating the local
affine transformation between a pair of views. This is also
intuitively reasonable since the gradient is more sensitive to
noise. In addition, computing the windowed gradients dur-
ing the propagation would increase the computational load
of the quasi-dense approach.

4.2. Photometric normalization
There is a one important issue related to (3) that should

be taken in to account in a careful implementation of the al-
gorithm. If there additionally is an affine photometric trans-
formation between the images, f ′(x) = λf(A−1

x)+b, the
transformation rule (4) does not hold. This is a drawback
since the ZNCC measure is invariant to affine photometric
transformations and, hence, the adaptive extension might be
a bottleneck in applying the algorithm in varying illumina-
tion conditions. Therefore, instead of applying (4) directly
to the intensity functions we first remove the effect of pho-
tometric transformations by the following local normaliza-
tions

f̃(x) =
f(x) − µ(f)

σ(f)
+ C, (6)

f̃ ′(x) =
f ′(x) − µ′(f ′)

σ′(f ′)
+ C, (7)
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where C is a positive constant, the mean µ(f) =∫
f(x)g(x)dx/

∫
g(x)dx, the standard deviation σ(f) =

(
∫

(f(x)− µ(f))2g(x)dx/
∫

g(x)dx)1/2. The correspond-
ing quantities for f ′ are defined in a similar way using the
window function g′. Here the constant C is added in order
to preserve the positive (semi)definiteness of matrices Sf̃ ,g

and Sf̃ ′,g′ . The value C = 2 was used in all of our experi-
ments. After the normalization we proceed as above using
the normalized intensity functions f̃ and f̃ ′ instead of the
original ones.

4.3. Local orientation from the epipolar constraint
As described above, the windowed second order inten-

sity moment matrices allow to recover the local affine trans-
formation up to a rotation. The unknown rotation in (5) can
be determined from one pair of corresponding unit vectors
[13]. Such corresponding unit vectors can be determined
from corresponding epipolar lines using the concept of joint
orientation of epipoles which determines the mutual posi-
tion of cameras [1]. The details are as follows.

Consider the two view setting illustrated in Fig. 4. There
a 3D point X on a smooth surface is imaged with two pin-
hole cameras placed at O and O

′. The tangent plane of the
surface at X is Γ and its intersection with the epipolar plane,
defined by points X, O and O

′, is the line l̃. Hence, under
the assumption of locally planar surfaces, the epipolar lines
l and l

′ are images of the same 3D line in the neighborhoods
of the corresponding image points x and x

′. Hence, the
epipolar lines give a line correspondence from which cor-
responding directions may be determined up to sign, i.e.,
the corresponding direction for d in Fig. 4 is either +d

′ or
−d

′. The correct choice is of course such that the direc-
tions in both images correspond to the same direction d̃ on
the scene plane. Given the fundamental matrix alone one
may now compute the oriented epipoles e and e

′ so that the
corresponding epipolar lines l = e×x and l

′ = x
′×e

′ have
proper joint orientation, i.e., the vectors d = (l2,−l1)

> and
d
′ = (l′

2
,−l′

1
)> indicate corresponding directions in the

images. Here we assume that the image coordinate bases of
both cameras have equal handedness [1].

5. Experiments
We experimented the proposed extensions to the match

propagation algorithm with real images. In the first experi-
ment (Section 5.1) we had two views of a scene containing
planar surfaces. In the second experiment we used three
views of a complex 3D scene as described in Section 5.2.

5.1. A scene with planar surfaces
In Fig. 5 there are two images of a scene which con-

tains two planes, a map on a table and a calibration plane
orthogonal to the plane of the map. This image pair is
suitable for evaluating the algorithms since the calibration
plane allows to compute the homographies which describe
the mappings between the planes; using the homographies
the found matches can be verified. In addition, it can be seen
that there is a clear projective distortion between the views
so that affine mapping is not a good approximation for the
homographies. In order to assure that the recovered homo-
graphies are accurate we calibrated the intrinsic parameters
of the camera beforehand and removed the radial distortion
from the images.

The results of match propagation, started from a single
seed match, using both the original approach and the pro-
posed modifications are illustrated in Fig. 5. The results in-
dicate that the affine normalization improves the matching
in the neighborhood of the initial match as far as the affine
transformation estimate is valid. Utilizing the epipolar con-
straint reduces the number of false matches, as expected.
The best results are achieved using the adaptive propagation
approach. The results with two different window functions,
uniform and gaussian, are shown and it can be seen that
the gaussian window performs slightly better. The largest
difference between the last two disparity maps is on rela-
tively uniform areas where the matching is more unreliable.
In fact, if the reliability of matches was critical, one could
prevent propagation into too uniform areas by using an ad-
ditional threshold for the variance of the correlation win-
dows.

The coverage of the last two disparity maps in Fig. 5 is
extensive verifying that the adaptive propagation works in
practice. The matching is not completely dense, and there
are quite many unmatched pixels in the upper part of the
image. However, this is mostly due to the different lo-
cal magnification factors in the images, especially in the
back regions of the ground plane. The improvement, illus-
trated in Fig. 5, is achieved without significantly reducing
the efficiency of the approach. The computation times per
match for the subfigures (c)-(h) were 7.2, 5.9, 3.8, 3.3, 4.9
and 3.6 ms, respectively, using our current Matlab imple-
mentations. Here the relatively long computation times of
the original approach are probably due to the fact that the
ZNCC measure is computed many times without obtaining
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Figure 5. Quasi-dense matching of images starting from a single seed. The images of two planes and one detected region match, first
column. The matching result of the original algorithm without and with the epipolar constraint, second column. The matching result using
affine normalization without and with the epipolar constraint, third column. Finally, the result using the adaptive propagation algorithm
with a uniformly weighted window and a gaussian window, last column. The parameter values used for all figures were N = 3, ε = 1,
W = 3 and z = 0.8, and for the original algorithm we had t = 0.01. The matching pixels are here colored according to their Sampson
distance from the known homographies. The values over 5 are suppressed to 5, and the noncommon image area has grayvalue 6.

new matches since the threshold z is high (0.8).

5.2. A complex 3D scene
The algorithms were also tested with a more complex

scene, shown in Fig. 6. Again, we used the calibration
plane for computing the camera poses accurately so that the
known geometry can be used to evaluate the matches. Here
we matched the middle image with the first and third one
using the original and the adaptive approach, as it showed
the best performance in the previous experiment. The ini-
tial region matches were required to satisfy the epipolar
constraint and they are illustrated in the top row of Fig. 6.
Those pixels in the middle image for which a match was
found both in the first and third image are illustrated in the
bottom row of Fig. 6. The three-view matches are colored
according to their Sampson distance from the known trifo-
cal tensor [6]. Since the three-view constraint is stronger
than the two-view constraint the false matches fitting to the
correct geometry are relatively improbable and, hence, this
constraint can be used to evaluate the matches.

In Fig. 6, the number of matches is 69522 for the original
algorithm and 141859 for the adaptive algorithm. The me-
dian values of the distance from the trifocal tensor are 2.0
and 0.72, respectively. Hence, it can be clearly seen that the
adaptive approach provides matches whose coverage and
accuracy are better. Moreover, the original approach fails in
matching the repeating texture on the calibration plane cor-
rectly. In addition, it does not find matches from the ground
plane (the plane of the table) since the viewpoint changes
affect significantly on its appearance. Finally, in order to

demonstrate the quality of the matches, we computed the
3D reconstruction of pixels having a Sampson distance be-
low 0.5 and the top view of the 42353 reconstructed points
is shown in the last subfigure in Fig. 6.

6. Conclusion
In this paper we have proposed two extensions to the

match propagation algorithm which make the algorithm ap-
plicable in wide baseline matching. The first extension in-
corporates an affine normalization step into the basic prop-
agation algorithm. The propagation is initialized by us-
ing affine covariant regions as seed matches. The epipolar
constraint can be additionally utilized in matching if it is
known. In the second extension, the adaptive affine normal-
ization step is introduced for the match propagation in cases
where the epipolar geometry is known. In the experiments
it was shown that the proposed extensions significantly im-
prove the matching result in wide baseline cases. These
improvements are achieved so that the efficiency of the ap-
proach is preserved.
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