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Abstract. This paper proposes a generic self-calibration method for central cam-
eras. The method requires two-view point correspondences and estimates both
the internal and external camera parameters by minimizing angular error. In the
minimization, we use a generic camera model which is suitable for central cam-
eras with different kinds of radial distortion models. The proposed method can be
hence applied to a large range of cameras from narrow-angle to fish-eye lenses
and catadioptric cameras. Here the camera parameters are estimated by minimiz-
ing the angular error which does not depend on the 3D coordinates of the point
correspondences. However, the error still has several local minima and in order to
avoid these we propose a multi-step optimization approach. We demonstrate our
method in experiments with synthetic and real data.

1 Introduction

The radial distortion of camera lenses is a significant problem in the analysis of digital
images [1]. However, traditionally this problem has been somewhat ignored in the com-
puter vision literature where the pinhole camera model is often used as a standard [2].
The pinhole model is usable for many narrow-angle lenses but it is not sufficient for om-
nidirectional cameras which may have more than 180◦ field of view [3]. Nevertheless,
most cameras, even the wide-angle ones, are central which means that the camera has
a single effective viewpoint. In fact, there are basically two kinds of central cameras:
catadioptric cameras contain lenses and mirrors while dioptric cameras contain only
lenses [3]. The image projection in these cameras is usually radially symmetric so that
the distortion is merely in the radial direction.

Recently, there has been a lot of work about building models and calibration tech-
niques for generic omnidirectional cameras, both central and non-central ones (e.g. [4–
6, 1, 7, 8]). In addition, various self-calibration methods have been proposed for omnidi-
rectional cameras [9–11, 3, 12, 13]. Nevertheless, many of these methods still use some
prior knowledge about the scene, such as straight lines or coplanar points [11–13], or
about the camera, such as the location of the distortion centre [9, 10, 3]. In fact, despite
the recent progress in omnidirectional vision, there is still a lack of a generic and robust
self-calibration procedure for central cameras. For example, the method proposed in [3]
uses different camera models for different kinds of central cameras.

In this paper we propose a new general-purpose self-calibration approach for central
cameras. The method uses two-view point correspondences and estimates the camera
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Fig. 1: (a) A generic model for a central catadioptric camera [5]. The Z-axis is the optical axis
and the plane Z = 1 is the virtual image plane. The object point X is mapped to x on the virtual
image plane. (b) The projections (6)-(10) and their approximations with models (12) and (13).

parameters by minimizing the angular error. In other words, we use the exact expression
for the angular image reprojection error [14] and write the self-calibration problem as
an optimization problem where the cost function depends only on the parameters of the
camera. Since this cost function appears to have many local minima we propose a step-
wise approach for solving the optimization problem. The experiments demonstrate that
this approach is promising in practice and self-calibration is possible when reasonable
constraints are provided for the camera parameters. Since the camera model used in the
optimization is generic the proposed method can be applied to a large range of central
cameras.

2 Central Camera Models

In this section we show that a large class of central cameras can be modelled with a
simple model which contains only one additional degree of freedom compared to the
standard pinhole model. This additional degree of freedom is required for modelling
the radial projection.

2.1 Image Formation in Central Cameras

A central camera has a single effective viewpoint which means that the camera mea-
sures the intensity of light passing through a single point in 3D space. Single-viewpoint
catadioptric image formation is well studied [15, 4] and it has been shown that a central
catadioptric projection is equivalent to a two-step mapping via the unit sphere [4, 5].



Hence, as described in [5] and illustrated in Fig. 1(a), a generic model for central
catadioptric cameras may be represented as a composed function

X G
−→ q H

−→ x A
−→ m, (1)

where X = (X ,Y,Z)> is the object point, q is the point projected on the unit sphere and
x = (x,y,1)> is the point on the virtual image plane which is mapped to the observed
image point m = (u,v,1)> by affine transformation A . The two-step mapping H ◦G ,
which maps the object point onto the virtual image plane, is illustrated in Fig. 1(a).
There the object point X is first projected to q on the unit sphere, whose center O is the
effective viewpoint of the camera. Thereafter the point q is perspectively projected to
x from another point Q so that the line through O and Q is perpendicular to the image
plane. The distance l = |OQ| is a parameter of the catadioptric camera. The functions
G , H and A in (1) have the following forms

q = G(X) = X/ ||X|| = (cosϕsinθ,sinϕsinθ,cosθ)> (2)
x = H (q) = (r(θ)cosϕ,r(θ)sinϕ,1)> (3)

m = A(x) = Kx, (4)

where ϕ and θ are the polar angle coordinates of X, r is the radial projection function
and the affine transformation matrix

K =





f s f u0
0 γ f v0
0 0 1



 (5)

contains the conventional parameters of a pinhole camera [2]. The function r does not
depend on ϕ due to radial symmetry and its precise form as a function of θ is determined
by the parameter l, as illustrated in Fig. 1(a).

The model (1), originally presented for catadioptric cameras [5], is applicable also
for central dioptric cameras. For example, when Q coincides with O in Fig. 1(a), the
catadioptric projection model gives the perspective projection

r = tanθ (i. perspective projection), (6)

as a special case. Hence, the pinhole model is included in the generalized model (1).
However, lenses with a large field of view, such as fish-eye lenses, are usually designed
to obey one of the following projection models

r = 2tan(θ/2) (ii. stereographic projection), (7)
r = θ (iii. equidistance projection), (8)
r = 2sin(θ/2) (iv. equisolid angle projection), (9)
r = sin(θ) (v. orthogonal projection), (10)

instead of the perspective projection [8]. In [8] it is shown that the two-parameter poly-
nomial model

r = k1θ+ k2θ3 (11)



provides a reasonable approximation for all the projections (6)-(10). Below we will
show that both the polynomial model and a generalized catadioptric model provide a
basis for a generic one-parameter projection model so that both of these models allow
reasonable approximation of projections (6)-(10).

2.2 Radial Projection Models
The previous works [8] and [5] suggest two different models for the radial projection
function, as discussed above. The first model is the cubic model

r = θ+ kθ3, (12)

and it is obtained from (11) by setting the first-order coefficient to unity. This does not
have any effect on generality since (3) and (4) indicate that a change in the scale of r
may be absorbed into parameter f in K.

The second model is the catadioptric model based on [5] and it has the form

r =
(l +1)sinθ

l + cosθ
, (13)

which can be deduced from Fig. 1(a), where the corresponding sides of similar triangles
must have the same ratio, i.e., r

sinθ = l+1
l+cosθ . In [5] it is shown that (13) is a generic

model for central catadioptric projections; here we show that it is also a reasonable
model for fish-eye lenses. In fact, when l = 0 we have the perspective projection (6),
l = 1 gives the stereographic projection (7) (since tan θ

2 = sinθ
1+cosθ ), and on the limit

l → ∞ we obtain the orthogonal projection (10). Hence, it remains to be shown that (13)
additionally approximates projections (8) and (9).

In Fig. 1(b) we have plotted the projections (6)-(10) and their least-squares approx-
imations with the models (12) and (13). The projections were approximated between
0 and θmax so that the interval [0,θmax] was discretized with 0.1◦ increments. Here the
values of θmax were 60◦, 110◦, 115◦, 115◦ and 90◦, respectively, and the model (13)
was fitted by using the Levenberg-Marquardt method. It can be seen that both models
provide a fair approximation for a large class of radial projections and both of them
could be used in our self-calibration method.

2.3 Backward Models
A central camera can be seen as a ray-based directional sensor. Hence, when the di-
rection of the incoming ray is represented by Φ = (θ,ϕ) the internal properties of the
camera are determined by the forward camera model P which describes the mapping of
rays to the image, m = P (Φ). In our case the forward model P is defined via equations
(2)-(4), where the radial projection function r in (3) is given by (12) or (13). However,
we need to know also the backward model, Φ = P−1(m), and it is computed in two
steps: the inverse of A in (4) is straightforward to compute and the inversion of r is
discussed below.

In the case of model (12), given r and k, the value of θ is computed by solving a
cubic equation. The roots of a cubic equation are obtained from Cardano’s formula [16]
and here the correct root can be chosen based on the sign of k.



In the case of model (13) the mapping from r to θ is computed as follows. We take
squares of both sides in equation (13) which gives

l2r2 +2lr2 cosθ+ r2 cos2 θ = (l +1)2 sin2 θ. (14)

Since sin2 θ = 1− cos2 θ we get a quadratic equation in terms of cosθ, and the solution
for θ is obtained by taking the inverse cosine of

cosθ =
−lr2 ±

√

l2r4 − (r2 +(l +1)2)(l2r2 − (l +1)2)

(r2 +(l +1)2)
, (15)

where the +-sign gives the correct solution for projections such as those in Fig. 1(b).
In summary, based on the discussion above, here both the forward model P and the

backward model P−1 can be written as explicit functions of their input arguments when
the values of internal camera parameters are given (the five parameters in K and one
parameter in r). This is important considering our self-calibration method where the
backward model will be needed for evaluating the cost function to be minimized.

3 Self-Calibration Method

In this section we propose a self-calibration method for central cameras which min-
imizes the angular two-image reprojection error over camera parameters. The method
requires two-view point correspondences and assumes non-zero translation between the
views.

3.1 Minimization of Angular Error for Two Views

Assume that the camera centres of two central cameras are O and O′ and both cameras
observe a point P. In this case, the epipolar constraint yields

q′>Eq = 0, (16)

where q and q′ are the unit direction vectors for −→OP and
−−→
O′P, represented in the coordi-

nate frames of the respective cameras, and E is the essential matrix [2]. The directions
q and q′ can be associated with points on the unit sphere and they correspond to image
points m and m′ via (1).

However, in general, when q and q′ are obtained by back-projecting noisy image
observations they do not satisfy (16) exactly which means that the corresponding rays
do not intersect. Hence, given E and q, q′, the problem is to find such directions q̂ and
q̂′ which correspond to intersecting rays and are close to q and q′ according to some
error criterion. A geometrically meaningful criterion is the angular error [14] which is
the sum of squared sines of angles between q and q̂ and between q′ and q̂′, i.e.,

E(q,q′,E) = min
q̂,q̂′

(

||q̂×q||2 + ||q̂′×q′||2
)

(17)



where q̂′>Eq̂ = 0. This error has an exact closed-form solution [14] and it is

E(q,q′,E) =
A
2 −

√

A2

4 −B, (18)

where
A = q>E>Eq+q′>EE>q′

and
B =

(

q′>Eq
)2

.

The main idea behind our self-calibration approach is the following: given a num-
ber of two-view point correspondences we sum the corresponding angular errors (18)
and use this sum as a cost function which is minimized over the camera parameters. In
fact, the essential matrix may be written as a function of the external camera param-
eters ae, i.e., E = E(ae) [2]. Furthermore, by using the backward camera model P −1

the direction vector q may be represented as a function of the internal camera param-
eters, q = q(Φ) = q(P−1(m)) = q(P−1(m,ai)), where we have explicitly written out
the dependence on the internal parameters ai. Hence, given the point correspondences
{mi,m′

i} we get the cost function

C(a) =
n
∑
i=1

E(qi,q′
i,E) =

n
∑
i=1

E (

q(P−1(mi,ai)), q(P−1(m′
i,ai)), E(ae)

)

, (19)

where a = (ai,ae) denotes the camera parameters.
Minimizing (19) is a nonlinear optimization problem. Given a good initial guess for

a, the solution can be found by a standard local optimization algorithm. However, the
cost function (19) typically has several local minima which makes the problem diffi-
cult [14]. In addition, although there usually is some prior knowledge about the internal
camera parameters, the initialization of the external parameters is difficult. Hence, in
order to avoid local minima, we propose a two-phase optimization approach, where we
first perform minimization over the internal parameters only and use the eight-point al-
gorithm [17] to compute the essential matrix. The outline of the algorithm is as follows.

Generic algorithm for self-calibration
Given n ≥ 8 correspondences {mi,m′

i}, the backward camera model P−1, and an
initial guess for the internal camera parameters ai, estimate the camera parameters
which minimize (19).
(i) Provide a function F which takes ai and {mi,m′

i} as input and gives E as out-
put: compute correspondences qi = q(P−1(mi,ai)) and q′

i = q(P−1(m′
i,ai))

and use them in the eight-point algorithm [17].

(ii) Provide a function G which takes ai and {mi,m′
i} as input and outputs a value

of the error (19): use the function F above to compute E and then simply
evaluate (19).

(iii) Minimize G over the internal camera parameters.



(iv) Initialize the external camera parameters: compute E and then retrieve the
rotation and translation parameters (the four solutions are disambiguated by
taking the orientation of vectors qi, q′

i into account).

(v) Minimize (19) over all the camera parameters. The initial estimate for the
parameters is provided by steps (iii) and (iv) above.

The self-calibration algorithm is described above in a very general form. For ex-
ample, the camera model and the iterative minimization method are not fixed there. In
the experiments we used the generic camera models of Section 2 and the iterative min-
imization in steps (iii) and (v) was performed in Matlab using the function lsqnonlin,
which is a subspace trust region method.

Finally, it should be emphasized that the first four steps in the algorithm are essential
for the performance. In fact, in our simulations we experimentally found that the final
estimate is usually less accurate if the step (iii) is skipped. In addition, the final step (v)
typically gives only slight improvement in the result. Hence, it seems that our approach,
where we first optimize over the internal camera parameters, not only provides a good
initialization for the external parameters but also allows to avoid local minima.

3.2 Constraints on Camera Parameters

In this section, we briefly consider the uniqueness of the minimum of (19). If the point
correspondences {mi,m′

i} are exact and consistent with the camera model P , the min-
imum value of (19) is 0. However, it is not self-evident whether this minimum value
is attained at finitely many points in the parameter space. It is clear that the solution
is not unique in the strict sense since there are four possible solutions for the mo-
tion parameters when E is given up to sign [2]. In addition, it is well known that for
perspective cameras the constraint of constant internal parameters is not sufficient for
self-calibration in the two-view case [2]. Hence, additional constraints are needed and
here we assume that the values of parameters s and γ in (5) are known. In particular, the
values s=0 and γ=1 were used in all our experiments since they are the correct values
for most digital cameras which have zero skew and square pixels.

3.3 Robustness for Outliers

In practice, the tentative point correspondences {mi,m′
i} may contain false matches

which can easily deteriorate the calibration. However, in such cases the algorithm of
Section 3.1 can be used together with the RANSAC algorithm to provide robustness
for false matches [2]. In detail, given n correspondences in total, one may randomly
select subsets of p correspondences, p � n, and estimate the camera parameters for
each subset by the generic algorithm (the step (v) in the algorithm may be omitted here
for efficiency). Thereafter the estimate which has most inliers according to error (18)
is refined using all the inliers. The value p = 15 was used in our experiments and the
RANSAC algorithm was implemented following the guidelines in [2].



3.4 Three views

The calibration algorithm described in Section 3.1 extends straightforwardly to the
three-view case. Using correspondences over three views instead of only two views
increases the stability of the self-calibration. In addition, the constraints for camera pa-
rameters, discussed in Section 3.2, may be relaxed in the three-view case if necessary.

The details of the three-view calibration procedure are as follows. Given the point
correspondences and an initial guess for the internal camera parameters, one may esti-
mate the essential matrix for a pair of views in the same manner as in the two-view case.
However, now there are three different view pairs and each pair has its own essential
matrix. Our aim is to minimize the total angular error which is obtained by summing
together the cost functions (19) for each view pair. The minimization is carried out in a
similar manner as in the two-view case. First, we minimize the total angular error over
the internal camera parameters (we use the eight point algorithm to compute each essen-
tial matrix independently of one another). Thereafter we initialize the external camera
parameters using the estimated essential matrices and minimize the total angular error
over all the camera parameters.

The three-view approach described above does not require that the point correspon-
dences extend over all the three views. It is sufficient that there is a set of two-view cor-
respondences for each view pair. However, in the case of real data which may contain
outliers it is probably convenient to use three-view correspondences in the RANSAC
framework.

4 Experiments

4.1 Synthetic Data

In the first experiment we simulated self-calibration using random two-view and three-
view configurations with synthetic data. We used a data set consisting of points uni-
formly distributed into the volume [−5,5]3\[−2,2]3 defined by the cubes [−5,5]3 and
[−2,2]3, i.e., there were no points inside the smaller cube where the cameras were posi-
tioned. The first camera was placed at the origin and the second and third camera were
randomly positioned so that their distances from the origin were between 1 and 2. In
the three-view case it was additionally required that the distance between the second
and third camera was at least 1. The orientation of the cameras was such that at least
40% of the points observed by the first camera were within the field of view of the other
cameras. For each such configuration the points were viewed by five cameras obeying
projections (6)-(10) and the observed image points were perturbed by a Gaussian noise
with a standard deviation of one pixel. The true values of the camera parameters were
f =800, u0 =500, v0 =500 for all the five cameras. The maximum value of the view an-
gle θ was 60 degrees for the perspective camera, 80 degrees for the orthographic camera
and 90 degrees for the others.

We self-calibrated each of the above five cameras from varying number of point
correspondences using 3000 distinct two-view and three-view configurations. Since we
observed that the step (v) in the calibration algorithm usually gives only a slight im-
provement in the estimate we skipped it for better efficiency. Hence, the minimization



was performed only over the internal camera parameters which were randomly initial-
ized: the estimate for f was uniformly distributed on the interval [600,1000] and the
estimate for the principal point (u0,v0) was uniformly distributed in a 400× 400 win-
dow around the true value. We used both the cubic (12) and catadioptric (13) models
and the initial values k=0 and l =1 were used for all the five cameras.

In the two-view case the self-calibration results are illustrated in Fig. 2 where the
graphs illustrate the errors in the external and internal camera parameters. In addition,
in Fig. 4 there are graphs representing the root-mean-squared (RMS) reprojection error.
This error was calculated by reconstructing each noisy point correspondence in 3D,
reprojecting this point onto the images and computing the RMS distance between the
reprojected and original points. Each point on the plots in Fig. 2 represents the median
value of the 3000 estimates. It can be seen that the motion estimates are reasonable
and the errors decrease when the number of points is increased. However, for some
cameras the errors in the internal parameters do not decrease much. This might indicate
that the constraints s = 0 and γ = 1 are not sufficient for all the cameras in the two-
view case. Actually, this is a known fact for a perspective camera [2]. Finally, it seems
that the catadioptric model works somewhat better than the cubic model for which the
values of the RMS reprojection error are relatively high in the case of the perspective
camera and orthogonal fish-eye camera. However, in general the values of the RMS
reprojection error are in the same order of magnitude as the noise and this indicates that
the optimization has been successful.

In the three-view case the results are illustrated in Fig. 3. As expected, the errors
are smaller than in the two-view case. Again, the catadioptric model shows better per-
formance in general. Overall, the results suggest that the proposed approach allows
the self-calibration of generic central cameras given only a rough initial guess for the
internal camera parameters.

4.2 Real Data
In the second experiment we used two cameras, one was equipped with a conventional
lens and the other with a fish-eye lens. The view pairs taken with these cameras are
shown in Fig. 5. Both cameras were internally calibrated beforehand and the calibration
object, visible in the images, was used to compute the motion between the views. Hence,
in both cases we know the correct values of the camera parameters relatively accurately.
The point correspondences between the view pairs were obtained by matching interest
points using the SIFT descriptor [18, 19]. In Fig. 5, the putative correspondences are
illustrated in the second view, where the flow vectors indicate several false matches.

For the conventional camera the radial distortion was removed from the images
before matching. Hence, the camera was close to an ideal perspective camera with the
internal parameters f = 670, u0 = 328, v0 = 252. The self-calibration was performed
using both the cubic and catadioptric models, which were initialized to the values of
k = 0 and l = 1, respectively. The parameter f was initialized to the value of 500 and
the principal point was initially placed at the image centre. The results of the self-
calibration are shown on the left in Table 1, where the first three columns illustrate
errors in the external parameters and the next three in the internal parameters. It can
be seen that the error in the focal length is large which probably reflects the known
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Fig. 2: Simulation results in the two-view case with the generalized catadioptric model (top row)
and the cubic model (bottom row). The symbols (i)-(v) refer to five cameras obeying projections
(6)-(10) and each point on the plots represents the median value of 3000 estimates. The first
column shows the error in the direction of translation and the second column shows the error in
the rotation axis, both in degrees. The third and fourth column give the errors in the focal length
and principal point in pixels.

fact that the constraints of zero skew and unit aspect ratio are not sufficient for the
full self-calibration of a perspective camera. However, the simulations in Fig. 2 suggest
that the motion variables might be reasonably constrained also in the two-view case
even though the complete self-calibration is ill-posed. For example, the motion estimate
is reasonable also here and the 15-point RANSAC procedure correctly removes the
outliers as illustrated in Fig. 5. In addition, the small median value of the reprojection
error indicates that the optimization has succeeded and the model fits well to data.
However, in order to make the problem well-posed more views or constraints on camera
parameters would be needed.

Our fish-eye camera was close to the equisolid angle model (9) and the calibrated
values for the camera parameters were f =258, u0 =506, v0 =383. The self-calibration
was performed in the same manner as for the conventional camera; the initial value for f
was 500 and the principal point was initially placed at the image centre. The results are
illustrated on the right in Table 1. It can be seen that the error in the focal length is much
smaller than for the conventional camera. The result of self-calibration is additionally
illustrated in Fig. 6 where the central region of the original fish-eye image is warped to
follow the perspective model using both the initial and estimated values for the internal
camera parameters. The scene lines, such as the edges of the doors, are straight in the
latter case. This example shows that a rough initial guess for the camera parameters is
sufficient for self-calibration also in practice.

5 Discussion

Self-calibration of generic cameras is a challenging task in many respects. The prob-
lem posed by the local minima of the cost function is one essential difficulty. In fact,
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Fig. 3: Simulation results in the three-view case. The ordering of the graphs is the same as in
Fig. 2. The errors in the direction of the translation vector and rotation axis are illustrated only
for the second view.
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Fig. 4: The RMS reprojection errors in pixels in the experiments of Figs. 2 and 3. The first two
graphs illustrate the two-view case with the catadioptric and cubic camera projection models,
respectively. The last two graphs show the corresponding errors in the three-view case. Each
point on the plots represents the median value of 3000 estimates.

given some generic camera model it is usually relatively easy to formulate the opti-
mization problem but solving it is difficult without a good initialization. In this work
we have addressed this difficulty by formulating a small-scale optimization problem
which is solved using a multi-step approach. The experiments in Section 4.1 show that
often a relatively rough initial guess for the internal camera parameters is sufficient for
successful self-calibration. However, there is no guarantee that the local minima are
avoided. For example, the curves in Figs. 2 and 3 show the median values of estima-
tion errors among several trials and this implies that in many cases the errors are larger
than those indicated by the curves. In order to avoid such bad estimates one could try
to do the estimation several times using different initial values and different subsets of
point correspondences, even if there are no outliers, and finally check that the obtained
estimate fits well to data. This can be done by checking that the reprojection errors
of reconstructed point correspondences are not much larger than the assumed level of
measurement noise.

Compared to many previous approaches the advantage of the proposed approach is
that the same camera model can be used for a large range of radial distortions. Nev-
ertheless, the iterative nature of our method implies that the problem of local minima



Fig. 5: Self-calibration of a conventional (top) and a fish-eye camera (bottom) using the general-
ized catadioptric camera model. The tentative correspondences are illustrated in the second view
(middle), where the flow vectors indicate several false matches. The last column shows only the
inliers detected during the self-calibration.

Table 1: The errors in the camera parameters for a conventional and fish-eye camera. Here ∆a
denotes the error in the rotation angle, ∆r is the error in the direction of the rotation axis and ∆t is
the translational error, all in degrees. The value ε is the median of the reprojection error in pixels,
i.e., the median distance between the reprojected and observed interest points.

pinhole ∆a
[deg]

∆r
[deg]

∆t
[deg]

∆ f
[pix]

∆u0
[pix]

∆v0
[pix]

ε
[pix]

(12) 0.40 4.8 0.51 120 4.0 6.5 0.09
(13) 0.59 8.2 0.95 200 1.7 4.9 0.10

fish-eye ∆a
[deg]

∆r
[deg]

∆t
[deg]

∆ f
[pix]

∆u0
[pix]

∆v0
[pix]

ε
[pix]

(12) 0.11 1.4 20 8.4 10 12 0.26
(13) 0.21 0.43 5.7 0.49 11 14 0.19

is not completely solved. In fact, if the initialization for the required internal camera
parameters is bad it is more likely that a bad local minimum is found. In this sense, it
would be better to use an approach based on solving a minimal problem, such as in the
recent work [20]. However, also this approach has problems in practice. For example,
the formulation in [20] requires that the distortion center is known and the distortion
model used is not valid for omnidirectional cameras whose field of view exceeds 180
degrees.

In addition to the problem of local minima there are also other difficulties for using
self-calibration in real applications. If the number of images and point correspondences
is small or the motion is ambiguous and the measurements are noisy the self-calibration
problem may not be well-posed. In other words, the global minimum of the cost func-
tion may not give a physically plausible estimate that we are looking for. For example,
if the observed data gives only weak constraints on the camera parameters the itera-



Fig. 6: Correction of the radial distortion for a fish-eye lens. Left: The original fish-eye image in
which the central area is denoted by the circle. Middle: The area inside the circle is transformed
to the perspective model using the initial values for the internal camera parameters. The transfor-
mation is not correct since the scene lines are not straight in the image. Right: The area inside the
circle is corrected using the estimated parameter values. The images of lines are straight.

tive search may find a solution that gives a slight improvement in the cost function
but is very far from the physically correct solution. This same phenomenon has been
observed also in the self-calibration of conventional perspective cameras [2]. At some
level these difficulties are inherent to the problem. However, also the design of the cali-
bration method affects the stability of solution. For example, usually the recommended
approach in geometric estimation problems is to minimize a statistically justified cost
function [2]. Typically this means that the estimation is performed by minimizing the
sum of squared image distances between measured and modelled data points, i.e., by
performing bundle adjustment. Hence, also in our case the solution should be refined
with bundle adjustment. In addition, during the final optimization one should set some
physically reasonable bounds for the camera parameters by using suitable additional
constraints [2]. Overall, the recommendations given in [2] for the self-calibration of
perspective cameras are probably directly applicable also for more generic cameras.

6 Conclusion

In this paper, we have proposed a self-calibration method for central cameras which is
based on minimizing the two-view angular error over the camera parameters. The main
contributions are the following: (1) the generic self-calibration problem was formulated
as a small-scale optimization problem where a single parameter allows to model a wide
range of radial distortions, (2) the optimization problem was solved using a multi-step
approach which allows to avoid local minima even when only a rough initial guess
is provided for the internal camera parameters. The experiments demonstrate that our
method allows self-calibration of different types of central cameras and is sufficiently
robust to be applicable for real data. Nevertheless, as discussed in Section 5, there still
remains many challenging problems to be solved before the self-calibration of generic
central cameras is accurate and robust enough for extensive use in real applications.
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