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Abstract. In this paper, an image fusion algorithm is proposed for a
multi-aperture camera. Such camera is a worthy alternative to traditional
Bayer filter camera in terms of image quality, camera size and camera
features. The camera consists of several camera units, each having ded-
icated optics and color filter. The main challenge of a multi-aperture
camera arises from the fact that each camera unit has a slightly differ-
ent viewpoint. Our image fusion algorithm corrects the parallax error
between the sub-images using a disparity map, which is estimated from
the multi-spectral images. We improve the disparity estimation by com-
bining matching costs over multiple views with help of trifocal tensors.
Images are matched using two alternative matching costs, mutual infor-
mation and Census transform. We also compare two different disparity
estimation methods, graph cuts and semi-global matching. The results
show that the overall quality of the fused images is near the reference
images.
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1 Introduction

Multi-aperture camera refers to an imaging device that comprises more than
one camera unit. The camera produces several sub-images, which are combined
into a single image. The main challenge of the multi-aperture camera arises from
the fact that each camera unit has a slightly different viewpoint. This results to
misalignment of images that needs to be corrected before images can be properly
combined. In practice, the problem is solved by finding the corresponding pixels
from each image.

Multi-aperture cameras can improve the image quality, camera size and cam-
era features over the traditional single-aperture cameras. There already exist
patents of such systems [1, 2]. Some of the largest mobile phone companies have
also patented their versions of the multi-aperture cameras [3–5]. Probably the
most complete implementations of multi-aperture camera modules come from
LinX Imaging [6] and Pelican Imaging [7].

LinX Imaging has successfully developed small-sized multi-aperture cameras
for mobile devices. Camera modules have two, three or four cameras and they



come in various configurations and sizes. Modules use different combination of
color and monochrome cameras. Based on technology presentation in [6], cap-
tured images have higher dynamic range, lower noise levels and better color
accuracy over the traditional mobile phone cameras. The height of the camera
module is nearly half of a typical mobile phone camera module.

PiCam (Pelican Imaging Camera-Array) is another example of working multi-
aperture camera. PiCam module consists of 4 × 4 array of cameras, each having
dedicated optics and color filter. The final image is constructed from the low-
resolution images using superresolution techniques. The image quality is compa-
rable to existing smartphone cameras and the thickness of the camera module
is less than 3 mm. [7]

An example of multi-aperture camera is shown in Figure 1. In this case, three
of the lenses are equipped with red, green and blue filters. The fourth camera
captures the luminance information of the scene. It may be used to increase
the light sensitivity of the camera and to increase the robustness of disparity
estimation. The final image is formed by combining the sub-images into a single
RGB image.

Fig. 1. Image sensing arrangement of the four-aperture camera

The thickness of the camera is closely related to the image quality the camera
produces. Cameras equipped with larger image sensors typically produce better
images. However, the increase in sensor size will also increase the height of the
optics. Multi-aperture camera solves this problem by using a combination of
smaller sensors, each having dedicated optics with reduced optical height. [3]

In Bayer filter cameras, the adjacent pixels capture the light intensity of dif-
ferent color bands. Consequently, the neighboring pixels may interact with each
other. This phenomenon is known as crosstalk and it typically causes desatura-
tion of color. The camera in Figure 1 does not suffer from crosstalk since each
sensor is only measuring a single spectral color. [7]

Chromatic aberration is a type of distortion in which a lens failures to focus
different colors to the same point on the image sensor. This occurs because lens
material refracts different wavelengths of light at different angles. The effect can
be seen as colored and blurred edges especially along boundaries that separate
dark and bright parts of the image. The lenses in the multi-aperture camera
can be much simpler since chromatic aberration does not complicate the optics



design. Besides the improved image quality, a simpler design usually means lower
manufacturing costs. [7]

One of the disadvantages of the current camera phones is that they cannot
produce images with shallow depth of field. Mobile phone applications such
as Google Lens Blur [8] aim to address this weakness. Lens Blur captures the
scene depth from the camera movement and then uses the information for post-
capture refocusing. Multi-aperture camera can acquire depth information via
stereo matching. Depth information is also useful in various other applications
such as background removal and replacement, resizing of objects, depth based
color effects and 3D scanning of objects. [6, 7]

In this paper, we propose an image fusion algorithm for a four aperture
camera in Figure 1. In contrast to PiCam, we cannot match images that are
captured with similar color filters. This complicates the disparity estimation since
corresponding pixels may have completely different intensities in each image.
Therefore, we use a robust matching cost such as mutual information or Census
transform. We improve the robustness of disparity estimation over traditional
two-view stereo methods such as [9, 10] by combining matching costs over four-
views. We further improve the estimation by adding a luminance constraint to
the cost function.

2 Image Fusion Algorithm

In this Section, an image fusion algorithm is proposed for a four-aperture camera.
The processing steps of the algorithm are shown in Figure 2. Algorithm is based
on disparity estimation, in which the aim is to find corresponding pixels from
each image. Disparities are estimated from the multi-spectral images captured
by the four-aperture camera. Parallax error between the images is then corrected
using the disparity map.

2.1 Offline Calibration

For this implementation, it was chosen that I1 is the reference image and it cor-
responds the image captured with green color filter. Images I2 and I3 correspond

Fig. 2. Processing steps of the image fusion algorithm



to red and blue filtered images, respectively. The fourth image is used as a lu-
minance image. The algorithm assumes that the camera movement between the
first and second view is purely horizontal. This is difficult to ensure in practise,
which is why image pair I1 and I2 is rectified. Other images are not rectified
because algorithm utilizes trifocal tensors.

Trifocal tensor Image fusion can be performed by matching each image pair
independently. However, such approach would not utilize the full potential of
multiple views. Robustness of matching increases when matching costs from
different views are combined. This will lead to a more accurate disparity map
as will be demonstrated in Section 3. Consequently, the fused image will have
better quality as well.

In the case of two views, a fundamental matrix is often defined to relate the
geometry of a stereo pair. For three views, this role is played by the trifocal ten-
sor. Trifocal tensor encapsulates all the geometric relations among three views.
It only depends on the motion between the views and internal parameters of
the cameras. Trifocal tensor is expressed by a set of three 3 × 3 matrices de-
fined uniquely by the camera matrices of the views. Tensor can be constructed
from the camera matrices or from the point correspondences. We used the latter
approach because the camera system was uncalibrated. [11]

In practice, one can use the tensor to transfer point from a correspondence
in two views to the corresponding point in a third view. This is known as point
transfer. We define two trifocal tensors for each test scene. First tensor T1 is
computed for the images I1, I2 and I3. Similarly, a second tensor T2 is defined
for the images I1, I2, and I4. Let assume that there is a point p1 = (x, y) in the
first image and its disparity d in relation to second image is known p2 = (x−d, y).
Then, the corresponding points in third and fourth image can be computed using
the tensors T1 and T2 respectively.

2.2 Matching Cost Computation

In order to find the corresponding pixels from each image, one needs a way
to measure the similarity of image locations. It is common to presume that
corresponding pixels have similar intensities in all views. This assumption is often
violated, in the presence of radiometric differences such as noise, specularities and
reflections. Similar problems arise when cameras are equipped with different color
filters. This work utilizes mutual information and Census transform similarity
measures. They both are known to be robust against radiometric differences [12,
13].

To further improve the robustness of disparity estimation we use a lumi-
nance cost CL, which is combined with mutual information or Census transform
costs. Matching cost is computed at each pixel for all candidate disparities in
a given disparity range. Disparity value that minimizes the cost represents the
best match. The cost of assigning disparity d for pixel p is defined as follows:

C(p, d) = CMI/census +K · CL, (1)



where K is a constant, which controls the influence of the luminance cost CL.

Mutual Information (MI) has been used as a similarity measure with local
[13] and global [9, 10] stereo matching methods. The main advantage of MI is
its ability to handle complex radiometric relationships between images. For ex-
ample, MI handles matching image I1 with the negative of image I2 as easily as
simply matching I1 and I2. Mutual information of images I1 and I2 is defined
using entropies:

MII1,I2 = HI1 +HI2 −HI1,I2 , (2)

where HI1 and HI2 are the entropies of individual images and HI1,I2 is their
joint entropy. The idea of using mutual information for stereo matching comes
from the observation that joint entropy is low when images are well-aligned. It
can be seen from previous equation that mutual information increases when joint
entropy is low.

In order to calculate the entropies, one needs to estimate the marginal and
joint probability distributions of underlying images. This can be done by using
a simple histogram of corresponding image parts. Joint distribution is formed
by binning the corresponding intensity pairs into a two-dimensional array. The
marginal distributions are then obtained from the joint distribution by summing
the corresponding rows and columns.

It is possible to apply mutual information to fixed-sized windows [13]. Window-
based approach suffers from the common limitations of fixed-sized windows, such
as poor performance at discontinuities and in textureless regions. To overcome
the difficulties of window-based approach, Kim [9] used mutual information as
a pixel-wise matching cost. The computation of joint entropy HI1,I2 was trans-
formed into a cost matrix hI1,I2(i1, i2), which contains costs for each combination
of pixel intensities I1(p) = i1 and I2(p) = i2. In the case of two views, the cost
matrix is calculated with formula:

hI1,I2(i1, i2) = −
1

n
log((PI1,I2(i1, i2) ∗ g(i1, i2)) ∗ g(i1, i2), (3)

where g(i1, i2) is Gaussian kernel, which is convolved with the joint distribu-
tion PI1,I2(i1, i2). Number of all combinations of intensities is n. Details of the
derivation can be found in [9].

Cost computation is illustrated in Figure 3. The cost matrix is calculated
iteratively using the disparity map from the previous iteration. At each iteration,
a new disparity map is estimated based on the current cost matrix. Usually only
a few number of iterations (e.g. 3 iterations) are needed until the disparity map
no longer improves. First, pixels in the image I2 are remapped based on the
current disparity map. The joint distribution PI1,I2 of corresponding intensities
is then calculated between the image I1 and remapped version of the image I2.
First iteration can use a random disparity map since even wrong disparities allow
a good estimation of the joint distribution due to high number of pixels.



Fig. 3. Computation of mutual information cost matrix hI1,I2

In our case, there are four images. We perform similar computations for other
images, resulting to three different cost matrices hI1,I2 , hI1,I3 and hI1,I4 . Trifocal
tensors are needed in order to remap images I3 and I4. The matching cost of
assigning disparity d for pixel p is defined as follows:

CMI(p, d) = hI1,I2(i1, i2) + hI1,I3(i1, i3) + hI1,I4(i1, i4). (4)

where i1 is the intensity of the pixel p in the first image. Intensities i2, i3 and i4
in other images depend on the disparity d.

Census transform is based on the relative ordering of local intensity values. It
can tolerate all radiometric distortions that preserve this ordering [14]. Census
transform maps the local neighborhood of pixel into a bit string. Pixel’s intensity
is compared against the neighboring pixels and the bit is set if the neighboring
pixel has lower intensity than the pixel of interest. Census transform for a pixel
p can be defined as follows:

Rp = ⊗
[x,y]∈D

ξ(p, p+ [x, y]), (5)

where symbol ⊗ denotes concatenation and D is the window around pixel p.
The comparison operation ξ(p, p+ [x, y]) is 1 if the neighboring pixel has lower
intensity than the pixel p and otherwise 0. In this work, we use a window of 9
x 7 pixels. Each pixel in the window is compared to the center pixel. This will
result to a bit string that consists of 62 bits. Computation is repeated for each
of the four images.

The actual pixel-wise matching cost depends on the Hamming distance be-
tween the corresponding bit strings. Hamming distance is defined by counting
the number of bits that differ in the two bit strings. For instance, the Ham-
ming distance between two identical bit strings is zero since all bits are the
same. Disparity value that minimizes the distance represents the best match.
Let H(Rp,1, Rp,2) denote the Hamming distance between the corresponding bit
strings in images I1 and I2. Since there are four images in this implementation,
the pixel-wise cost is a sum of Hamming distances:

Ccensus(p, d) = H(Rp,1, Rp,2) +H(Rp,1, Rp,3) +H(Rp,1, Rp,4). (6)



Luminance Constraint There is an additional constraint related to the fourth
image, which can be combined with mutual information or Census transform
costs. Let us assume that there are four corresponding points p1, p2, p3 and p4
in each image. Because the fourth image represents the luminance, the corre-
sponding points should satisfy the following equation:

Î4(p4) = G · I1(p1) +R · I2(p2) +B · I3(p3), (7)

where point’s intensity is denoted by I(p). Coefficients G, R and B in the previ-
ous equation depend on the color filters of the cameras. In case there is a large
difference between the left and right side of the equation, it is likely that points
are not correspondences. Based on this assumption, the luminance cost can be
written as:

CL = |I4(p4)− Î4(p4)|. (8)

2.3 Disparity Estimation

We evaluate two different disparity estimation methods, graph cuts and semi-
global matching. These methods aim to find correct disparities for every pixel
in the image by using matching costs and smoothness assumptions. The idea
is to favor disparity configurations in which disparity varies smoothly among
neighbouring pixels.

Graph cuts method performs a global optimization process over the whole
image. We employ the multi-label optimization library developed by Veksler et
al. [15]. Global energy is minimized with an expansion move algorithm using the
truncated absolute difference as a smoothness cost. Truncated absolute difference
gave the best overall performance over Potts model.

Semi-global Matching (SGM) approximates the global energy by pathwise
optimization from all directions through the image. It approximates 2D smooth-
ness constraint by combining many 1D constraints. This work implements the
semi-global block matching algorithm that is part of the OpenCV library. It is
a variation of the original SGM algorithm in [10]. In contrast to graph cuts, the
SGM performs post-processing steps such as subpixel interpolation, left-right
consistency check and speckle filtering.

2.4 Parallax Correction

After the disparity estimation, the parallax error between the images can be
corrected. In practise, pixels in the red filtered image I2 and blue filtered image
I3 are remapped using the calculated disparity map. The green filtered image I1
is used as a reference so there is no need to remap the image. Whereas image
I2 can be directly remapped using the disparity map, trifocal tensor is needed
to remap image I3. After remapping, the corresponding pixels will have the
same image coordinates. In case the point does not correspond to any particular



pixel, the pixels intensity is computed from neighboring pixels using bilinear
interpolation.

An RGB image is then constructed by simply combining images I1, I2 and
I3. In this implementation, the luminance image I4 is not used when forming
the final image. Pixels that are located near the borders of the image may not
be visible in all the images. These areas are removed from the final image based
on maximum disparity parameter.

3 Experiments

The performance of the image fusion algorithm was evaluated using a test camera
system. The evaluation aims to find the best combination of similarity measures
and disparity estimation methods for the image fusion. Input images were cap-
tured with a traditional Bayer matrix camera, which was moved between the
shots. In order to simulate the presence of different color filters, the original
24-bit RGB images were split to separate color channels. Luminance image was
created from the original RGB image by weighting each color component by
different amounts.

Test scenes are shown in Figure 4. Tea, Flowers and Grass datasets were
captured using the same camera arrangement as illustrated in Figure 1. The
baseline was approximately 12 mm for each pair of horizontal and vertical camera
positions. We also used the standard Middlebury stereo datasets Teddy, Cones
and Venus in which cameras are parallel to each other [16, 17]. Ground truth
disparity maps were available for the images 2 and 6 in each dataset. In order
to perform comparison to ground truth, we used images 2 and 6 as a first and
second input image. Improved fused image could have be obtained if adjacent
images were used. Image sizes and disparity ranges are listed in Table 1.

Fig. 4. Reference views for the Teddy, Cones, Venus, Tea, Flowers and Grass datasets

Fused images were compared against the original RGB images captured by the
camera system. We also measured the similarity of the images using the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM). SSIM values are
computed for each channel of the image. Value of 1 represents the perfect match.
The accuracy of the disparity estimation was evaluated by counting the number
of invalid disparities in the disparity map. Disparities were not evaluated in
occluded areas since occlusion handling was not implemented. Disparity was
classified as invalid if its value differs more than 1 pixel from the ground truth.
Smoothness parameters of the semi-global matching and graph cuts methods
were manually tuned for the mutual information and Census transform costs.



Table 1. Image sizes and disparity ranges in pixels

Tea Flowers Grass Teddy Cones Venus
Image size 1000x745 1150x860 1024x783 450x375 450x375 434x383
Disparity range 64 32 32 64 64 32

Parameters were kept constant for Tea, Flowers and Grass datasets. Different,
although constant parameters were used for Middlebury datasets.

Table 2 shows the statistics for both similarity measures when graph cuts
method is used. Census transform outperforms the mutual information in all
test cases if error percentages are considered. There are no significant differences
in PSNR and SSIM scores.

Table 2. Results of graph cuts method

Mutual Information Census

Errors PSNR SSIM (rgb) Errors PSNR SSIM (rgb)
Teddy 11.01 37.97 0.86; 1.00; 0.81 7.60 37.57 0.87; 1.00; 0.81
Cones 7.11 33.97 0.83; 1.00; 0.79 4.92 34.42 0.85; 1.00; 0.79
Venus 2.80 39.56 0.89; 1.00; 0.83 1.49 39.26 0.89; 1.00; 0.83
Tea - 39.47 0.95; 1.00; 0.88 - 39.58 0.95; 1.00; 0.88
Flowers - 39.44 0.94; 1.00; 0.86 - 39.36 0.94; 1.00; 0.86
Grass - 33.97 0.82; 1.00; 0.84 - 34.12 0.83; 1.00; 0.85

The results of semi-global matching are shown in Table 3. As with graph cuts,
the Census transform performs better than the mutual information. SGM further
improves the accuracy of disparity estimation over graph cuts. PSNR and SSIM
scores are also better. The main improvements come from the sub-pixel accurate
disparity estimation and left-right consistency check. The resulting disparity map
and fused image for the Teddy dataset is shown in Figure 5.

Table 3. Results of semi-global matching

Mutual Information Census

Errors PSNR SSIM (rgb) Errors PSNR SSIM (rgb)
Teddy 10.92 38.43 0.88; 1.00; 0.81 6.81 38.32 0.89; 1.00; 0.81
Cones 6.84 34.95 0.86; 1.00; 0.79 4.67 35.10 0.87; 1.00; 0.79
Venus 2.96 41.22 0.91; 1.00; 0.83 1.30 40.40 0.90; 1.00; 0.83
Tea - 40.45 0.96; 1.00; 0.89 - 40.36 0.96; 1.00; 0.89
Flowers - 40.05 0.94; 1.00; 0.87 - 40.12 0.95; 1.00; 0.87
Grass - 34.19 0.82; 1.00; 0.84 - 35.01 0.86; 1.00; 0.87

The advantages of using trifocal tensor and four different views are best demon-
strated with disparity maps. The left most disparity map in Figure 6 is generated
using only one pair of stereo images, graph cuts and Census transform. In this
example, the green filtered image is matched to red filtered image. The second
image is matched using green, red and blue filtered images and trifocal tensor.
The third image uses all four input images but does not take advantage of the
luminance constraint. Adding the luminance constraint to the cost function will
further improve the disparity map as shown in the last image. Consequently, the



Fig. 5. The result of semi-global matching and Census transform on Teddy dataset. Red
areas in the error map represent erroneous disparities and black areas are occlusions.

disparity map will also produce the best fused image. Smoothness parameter was
tuned for each test so that the disparity map would be as accurate as possible.

Fig. 6. Disparity maps generated using two, three and four views

Even though the disparity maps, which are computed using Census transform
are more accurate, the differences in the fused images are quite imperceptible.
Some of the errors in the disparity map are only slightly inaccurate. Moreover,
it can be noted that even though the image fusion is based on the disparity map,
the errors in the disparity map do not necessarily propagate to the fused image.
For example, there are erroneous disparities in the right side of the teddy bear
in Figure 5 but there are no color errors in the corresponding areas in the fused
image. This is true for many other areas in all of the datasets.

On the other hand, even the ground truth disparity map does not give the
perfect output image because occlusions are not considered. In fact, for all Mid-
dlebury datasets it holds that the estimated disparity map gives better results
than the ground truth map. In the estimated disparity map, the occluded ar-
eas are interpolated from the occluder rather than from the occludee. From the
viewpoint of the first view, this will result to somewhat incorrect disparity map.
However, such disparity map works better for the image fusion.

In general, color errors are most noticeable in occluded areas and near dis-
continuities. This is expected because proper occlusion handling is not imple-
mented. Figure 7a shows a smaller image patch chosen for the closer inspection
(blue rectangle). The red flower on the foreground occludes some of the grass on
the background. These areas are not visible in the blue filtered image. Conse-
quently, the corresponding areas in the fused image have turned blue. The color



error results from the fact that missing color values in the blue filtered image
are taken from the pixels that belong to red flower.

All tests were performed with a desktop PC that has Intel Core i5 3.20 GHz
CPU and 8 GB of RAM. Computational time highly depends on the chosen
disparity estimation method, image size and disparity range. Not surprisingly,
the graph cut method is significantly slower than the semi-global matching.
For example, the average running time of the graph cuts method with Census
transform is 69 seconds for the Tea dataset and 55 seconds for the Grass dataset.
The corresponding times for the semi-global matching are 8.4 s and 4.9 s.

The result of synthetic refocusing on Grass dataset is shown in Figure 7(b-c).
The underlying disparity map was computed using SGM and Census transform.
The overall quality of the depth of field effect is good. The refocusing ability
depends on the accuracy of the disparity map. There are small inaccuracies in
the disparity map near the edges of the flower (red rectangle). As a result, some of
these areas are unrealistically blurred in the refocused image (yellow rectangle).
Errors are most visible in the middle of the image where foreground is in focus.

Fig. 7. Synthetic refocusing on Grass dataset. Details from the reference image (green),
fused image (blue), foreground in focus image (yellow) and disparity map (red).

4 Conclusion

An image fusion algorithm was designed and implemented for a four-aperture
camera. According to experiments, the semi-global matching with Census trans-
form gave the best overall performance. The quality of the fused images is near
the reference images. Closer inspection of the fused images reveals small color
errors, typically found near the object borders. Future improvements, such as
occlusion handling would significantly increase the quality of fused images.

It was also demonstrated that the robustness of disparity estimation increases
when matching costs from multiple views are combined. Event though this work
is focused on image fusion, similar approach could be used in other multi-spectral
matching problems. One could also add more cameras to the system without
significantly increasing the computation time. Disparity estimation would stay
the same, only the matching costs would be different. Moreover, there are no
limitation on how cameras are arranged since algorithm utilizes trifocal tensors.
Our test setup did not show all the advantages of the actual four-aperture cam-
era because test images were captured with a Bayer filter camera. However, the



promising test results imply that further research and development of the algo-
rithm is desirable. The four-aperture camera has potential to become a serious
competitor to the traditional Bayer matrix cameras in portable devices.
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