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Abstract. Current evaluation metrics and benchmarks for multi-view
stereo reconstruction methods mainly focus on measuring the accuracy
and completeness and they do not explicitly measure the compactness,
and especially the compactness-accuracy trade-off of the reconstructed
models. To answer this issue, we present an evaluation method that com-
pletes and improves the existing benchmarks. The proposed method is
capable of jointly evaluating the accuracy, completeness and compactness
of a three-dimensional reconstruction which is represented as a triangle
mesh. The evaluation enables the optimization of both the whole recon-
struction pipeline from multi-view stereo data to a compact mesh and
the mesh simplification. The method takes the ground truth model and
the reconstruction as input and outputs an accuracy and completeness
value as well as the compactness measure for the reconstructed model.
The values of the evaluation measures are independent of the scale of
the scene, and therefore easy to interpret.

Keywords: Multi-view stereo evaluation, compactness-accuracy trade-
off, mesh optimization

1 Introduction

Multi-view stereo reconstruction methods, which create three-dimensional scene
models solely from photographs, have improved a lot during the recent years
[15, 17]. The focus of research has been shifting from basic algorithms to system
aspects and large-scale models [1, 16, 18]. Currently there are automatic recon-
struction pipelines which are able to produce compact mesh models of both
outdoor and indoor environments from images [4, 19, 11, 12, 2, 3]. In addition,
several companies, such as Google, Nokia HERE, and Acute3D, have shown
interest and efforts towards city-scale models.

The compactness of mesh models is essential for storing and rendering large-
scale reconstructions. In particular, for mobile device applications, the models
should be light-weight and streamable, yet realistic and accurate. Thus, in order
to advance the development of image-based modeling techniques further, there
is a need for evaluation metrics and benchmarks that enable quantitative eval-
uation of trade-offs between the compactness and accuracy of the reconstructed
models.



In fact, the recent progress of multi-view stereo has been largely driven by
benchmark datasets, which have enabled quantitative comparisons of different
methods. The Middlebury [14] and EPFL [15] datasets have been widely used,
and recently a similar dataset with more scenes was proposed in [8]. However,
the evaluation metrics used in these standard benchmarks have solely focused
on measuring the reconstruction quality, i.e. accuracy and completeness, and do
not explicitly measure the compactness of the models. Therefore the previous
evaluation metrics can not be used for evaluating compactness-accuracy trade-off
and are hence not suitable for jointly optimizing the accuracy and compactness
of the results of the reconstruction pipeline.

The problem related to the lack of suitable evaluation metrics is reflected
by the fact that most of the recent papers studying compactness aspects of
reconstructions (e.g. [4, 11, 12, 2]) do not perform quantitative evaluations of the
compactness or compactness-accuracy trade-off. In fact, in the papers [4, 2] the
results are evaluated only visually.

In this paper, we address the aforementioned problem by proposing an eval-
uation method which is able to illustrate both the accuracy, completeness and
compactness of the reconstructions with respect to the ground truth model. The
method measures the accuracy and completeness jointly with the Jaccard index
between the voxel representations of the ground truth model and the reconstruc-
tion. The compactness of the reconstruction is measured with a compression ratio
representing the ratio of the number of vertices in the ground truth and the re-
construction. The relation between earlier evaluations and the proposed one is
illustrated in Figure 1.

The proposed method is particularly suitable for evaluating the full recon-
struction pipeline from images to a compact mesh but it can also be used to
evaluate the following sub-tasks separately: (a) point cloud generation from a
set of photographs, (b) surface mesh generation from a point cloud, and (c) sur-
face mesh simplification. Further, the proposed evaluation metrics are not scale
dependent and therefore the results are easy to interpret for different ground
truth models. The proposed method is also versatile and flexible because both
the ground truth model and evaluated reconstructions can be either point clouds
or triangle meshes.

The rest of the paper is organized as follows. First, Section 2 presents the
most essential related work. Then the evaluation method is descibed in more
detail in Section 3. Evaluation results are presented and discussed in Section 4
and Section 5 concludes the paper.

2 Related Work

The first widely used benchmark dataset for evaluating MVS algorithms was
the Middlebury Multi-View Stereo Data [14]. The data consists of two different
scenes, both having three sets with a varying number of low-resolution images.
The evaluation is available in the Internet1 where anyone can submit their own

1 http://vision.middlebury.edu/mview/eval/



Density 
estimation 

Subsampling 

Ground truth data 

Reconstruction 
Voxelization 

Accuracy 
calculation 

Ac
cu

ra
cy

 

Compactness 

1 

Simple Complex 

Ground truth data 

Reconstruction 

Voxelization 

Accuracy 
calculation 

Ac
cu

ra
cy

 

Compactness 

1 

Simple Complex 

Voxel grid 
initialization 

Ja
cc

ar
d 

in
de

x  

Compression ratio 

1 

Ac
cu

ra
cy

 e
rr

or
 

Completeness error 

820k triangles 

3.2k triangles 

Fig. 1. Two mesh evaluations plotted with the current evaluation metric [8] (left) and
with the proposed one. The Jaccard index joins the accuracy and completeness of the
current metric and that enables the compression ratio, illustrating the compactness, to
be shown in the same graph. According to the current evaluation metric the meshes
are almost equal even though the latter mesh has over 250 times less triangles.

result for evaluation and compare the performance of their method with dozens
of other MVS algorithms. Later, Strecha et al published the EPFL evaluation
benchmark [15] consisting of more scenes with higher resolution2. The evaluation
is no longer available, but the laser scanned ground truth models for two scenes
are still downloadable on the web page. The recently published DTU dataset [8]
further improved the existing benchmarks with totally 80 datasets covering a
wider range of 3D scenes.

The current evaluation benchmarks evaluate the accuracy and completeness
of the reconstructions. In [8], accuracy is measured as the distance from the
reconstruction to the ground truth, and the completeness is measured from the
ground truth to the reconstruction. Therefore, changes in the compactness of
the reconstruction cannot be explicitly observed. The proposed method focuses
on the compactness evaluation but still measures the accuracy and completeness
jointly with the Jaccard index. As far as we know, this evaluation is the first
of its kind, and thus, brings a new aspect for reconstruction evaluation in the
future research challenges.

The main parts of a typical reconstruction pipeline from MVS data to a
compact mesh, that need to be evaluated, are the point cloud creation and the
meshing. In the pipeline, the consistency data of photographs is first converted
into a three-dimensional point cloud using e.g. PMVS [6]. Then the point cloud is
transformed into a surface mesh using methods like Poisson Surface Reconstruc-
tion (PSR) [9] or energy minimization approach [10]. Thus, both phases affect
the compactness of the final reconstruction and can be optimized separately by
the proposed evaluation metric.

The meshing process, if not already optimised, could be followed by mesh
simplification [5] which tries to optimize the mesh by converting several trian-

2 http://cvlabwww.epfl.ch/data/multiview/
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Fig. 2. An overview of the proposed evaluation pipeline with an example data. The
ground truth and the reconstruction are converted to voxel representations. The Jac-
card index is the ratio of intersection and union of the voxelizations. The compression
ratio represents the ratio of the number of vertices in the ground truth and the recon-
struction.

gles into one which follow the original surface as well as possible. One simple
approach, presented in [13], clusters the vertices of the triangle mesh and then
triangulates the cluster centres to form a new mesh with fewer faces. On the
other hand, one of the top performing decimation methods, presented in [7],
simplify the surface mesh by iterative contraction of vertex pairs (edges) so
that the geometric error approximation, represented using quadric matrices, is
maintained. However, although widely used, the method in [7] is almost twenty
years old. With the proposed method, the mesh decimation algorithms can be
quantitatively evaluated, which facilitates further developments.

3 Evaluation method

3.1 Overview

The proposed evaluation method takes the ground truth and the reconstruc-
tion as input and outputs two evaluation values: the Jaccard index J and the
compression ratio R. The evaluation pipeline with an example data is presented
in Figure 2. The input data can be meshes or point clouds. The Jaccard in-
dex illustrates the accuracy and completeness of the reconstruction, indicating
the proportion of the ground truth mesh which is covered by the reconstruction
within a certain threshold. The index is calculated using the voxel representa-
tions of the ground truth and the reconstruction and the threshold is the width
of a voxel. The compression ratio illustrates the compactness of the reconstruc-
tion representing the ratio of the number of vertices in the ground truth and the
reconstruction.

The proposed evaluation method consists of three phases: (1) the initializa-
tion of the voxel grids of the ground truth and the reconstruction, (2) transform-
ing the ground truth and the reconstruction into voxel representations and (3)
the actual calculation of the evaluation values. The following sections give more
detailed descriptions of the phases.



3.2 Voxel grid initialization

The resolution of the voxel grids is defined by the width of a voxel and the size
of the bounding box covering both the reconstruction and the ground truth. The
width of a voxel is defined by the average distance between the ground truth
vertices. That is, the width is twice as long as the median distance between a
point and its k :th nearest neighbor. The value of k defines the sensitivity of the
evaluation. Thus, too large voxel width smooths the details of the reconstruction
and too small width causes holes in the voxelization of the ground truth. How-
ever, we found a value that can be kept as a default width for datasets for which
the ground truth has a uniform vertex/point density. In all our experiments, the
value of k was fixed to 10.

The bounding box is turned into a grid of voxels by dividing its dimensions
with the defined voxel width. The grid is presented in an integer coordinate
frame where every voxel has integer index coordinates. This grid is used in the
voxel representations of the ground truth and the reconstruction.

3.3 Converting a mesh to a voxel representation

At first, both the ground truth and the reconstruction are converted to point
clouds. The vertices of the ground truth mesh form the ground truth point
cloud which is assumed to be dense, so that the average distance between points
is below the voxel width. The mesh reconstruction is converted to a point cloud
by sampling points on the triangles so that the density of the points matches the
density of the ground truth vertices. Then, the point clouds are mapped into the
integer coordinate frame of the voxel grid. The voxels are labelled as occupied if
at least one point is inside the voxel or as unoccupied otherwise.

3.4 Calculation of evaluation values

The Jaccard index is calculated by comparing the voxel representations of the
ground truth and the reconstruction. Lets denote the voxel grids of the ground
truth and the reconstruction with Vg and Vr, respectively. Now, the Jaccard
index J is defined with the equation:

J =
|Vg ∩Vr|
|Vg ∪Vr|

, (1)

where |·| means the number of voxels. Thus, the value of |Vg∩Vr| is the number
of voxels which are occupied both in Vg and Vr and |Vg∪Vr| is the total number
of occupied voxels in both grids. The Jaccard index is in the interval [0,1].

The compression ratio R is defined with the equation:

R =
NGT

NREC
, (2)

whereNGT is the number of vertices/points in the ground truth model andNREC

is the number of vertices/points in the evaluated point cloud or mesh. Thus, the
compression ratio illustrates the ratio of memory usage of the compared models.



4 Experiments

4.1 Overview

The experiments were carried out in three phases. First, the proposed evaluation
method was tested with the range scanned data from the Stanford 3D Scanning
Repository3. Then the results of the proposed method were compared with those
of the DTU benchmark dataset in [8] and finally, a couple of evaluations were
made with the EPFL dataset in [15]. The experiments are described in the
following sections.

4.2 Stanford range scan dataset

In the first phase, the proposed method was tested with the range scanned
data of the Stanford bunny. Notice that this kind of data does not contain the
computer vision aspect but can still be used for benchmarking meshing and
mesh simplification methods. The bunny data consists of ten scans which were
transformed into the same coordinate frame to form a single point cloud. Then,
the point cloud was turned into a triangular mesh using the Poisson Surface
Reconstruction [9] (PSR) and our implementation of [10] (LAB). PSR was used
with the default parameters except the Octree Depth which was set to 14. The
parameters for LAB were αvis = 32, λqual = 5 and σ = 0.001. The meshes
were then gradually decimated in Meshlab4 using the Quadric Edge Collapse
Decimation [7] (QECD) by halving the amount of triangles in every step. Meshes
were also decimated with the Clustering Decimation [13] (CD) so that the step
sizes were roughly the same as in QECD. All the meshes were evaluated with the
proposed method. The results are presented in Figure 3. The x-axis illustrates the
compactness as the compression ratio which represents the ratio of the number
of vertices in the ground truth and the reconstruction (see Eq.2). Notice the
logarithmic scale on the x-axis. The y-axis is the Jaccard index calculated with
Equation 1. In addition to the meshes, also the point cloud, from which the
meshes were created, was evaluated. That is presented as a single dot (PC) in
the figure.

The figure clearly shows the difference between the decimation methods.
That is, with CD the Jaccard indices of the meshes drops much earlier than with
QECD. Also, when looking at a few left most meshes, i.e. the most complex ones,
the LAB meshes have somewhat better Jaccard index and compression ratio in
comparison with the PSR meshes.

The main reason for the Jaccard index difference between the evaluated point
cloud and the mesh reconstruction is the fact that the evaluated point cloud is
the ground truth model. In addition, the ground truth has some holes which do
not appear in the reconstructions, and therefore, they also drop the index a bit.
PSR tends to round the sharp edges of the reconstruction, and therefore, the
LAB meshes have a somewhat better Jaccard index.

3 http://graphics.stanford.edu/data/3Dscanrep/
4 http://meshlab.sourceforge.net/
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Fig. 3. Evaluation result of the Stanford Bunny. LAB and PSR refer to the mesh
creation methods, i.e. [10] and [9], respectively. Subscripts QECD and CD refer to the
used decimation methods, that is [7] and [13], respectively. PC is the point cloud which
was used to create the meshes. The black circle indicate the decimated mesh presented
in Figure 4.

Figure 4 shows the ground truth point cloud, the voxel presentation of it, the
voxel presentation of the LAB mesh, the PSR and LAB meshes and a simplified
version of the LAB mesh decimated with QECD. The voxel presentations of the
ground truth and the reconstruction look very similar, because the reconstruction
was created from the ground truth data. The voxelization of the ground truth
is dense enough to preserve the details of the model but still sparse enough to
make the voxelization uniform regardless of the minor misalignment issues of
the scans. The decimated mesh has lost some details but has still relatively high
Jaccard index as indicated with the black circle in Figure 3.

4.3 DTU multi-view dataset

In the second experiment, we illustrate the difference between the results of the
proposed evaluation method and those of DTU benchmark [8]. We took the point
cloud and mesh reconstructions (created with PMVS [6] and PSR [9], respec-
tively) from the DTU package (House, scan no. 025) and did the decimations for
the mesh with QECD [7] and CD [13], like with the range data in Section 4.2, and
evaluated the meshes both with the proposed method and DTU method. The
meshes were evaluated against the structured light reference (STL) provided by
DTU. The results are presented in Figure 5. In DTU evaluations the accuracy
and completeness are illustrated with mean distances in millimetres from the
reconstruction to STL and from STL to the reconstruction, respectively.

As the results show, both evaluations are able to illustrate the difference
between the decimation methods, but DTU does not explicitly show the com-
pactness of the reconstructions. Also notice that DTU values are in millimeters,
and thus, scale dependent and more difficult to interpret. In addition, due to the
distance differences between the values, the interpretation of DTU result is not
possible without a closer look of the first values.

Both methods give better accuracy or Jaccard index for the point cloud (PC)
than the meshes. That happens because the mesh reconstructions contain both



Fig. 4. Bunny voxelizations and mesh reconstructions. Top: the ground truth point
cloud (left) and voxel representations of the ground truth and the LAB mesh recon-
struction. Bottom: The triangle mesh of the reconstruction created with PSR [9] (left)
and LAB [10] and the triangle mesh decimated from the LAB mesh by QECD.

correct and incorrect surfaces that exist neither in the structured light reference
nor the point cloud, as illustrated in Figure 6. In other words, the ground truth
scans are incomplete. Due to PSR meshing, the incorrectly reconstructed areas
are mainly located at the outer boudaries of the reconstruction (black ellipses).
However, PSR can also fill holes correctly (white ellipses).

The metric used in DTU benchmark is not able to detect pure compactness
change. For example, regardless of the number of triangles (if at least two), the
accuracy and the completeness of a rectangular wall do not change. That is, the
more planar surfaces in the scene the less the compactness affects the evaluation
results of DTU benchmark.

4.4 EPFL multi-view dataset

In the third phase, we performed evaluations using the two publicly available
models from EPFL dataset [15]; Fountain-P11 and Herz-Jesu-P8. Point cloud
reconstructions were first created using the PMVS program [6]. The number of
points in the point clouds were then reduced to about 500k points in order to
run our implementation of [10] in reasonable time. The same reduced point cloud
was used in all mesh constructions and evaluations. Now, the evaluation results
were obtained like with the range data in Section 4.2. The parameters for PSR
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Fig. 5. Comparison of DTU evaluation (left) [8] and the proposed one (right). The
original mesh provided in DTU dataset is created with [9] (PSR) and the decimations
were made with [7] (QECD) and [13] (CD). PC is the point cloud which was used to
generate the original mesh.

Fig. 6. Voxel presentations of the House. Top: Voxelization of the ground truth (left)
and the PMVS point cloud. Bottom: the PSR triangle mesh of the reconstruction
(left) and its voxelization. Ellipses highlight the areas which contain surfaces that are
incorrectly (black) or correctly (white) reconstructed in the mesh (bottom) but do not
appear either in the ground truth or the point cloud (top).
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Fig. 7. Evaluations of Fountain-P11 (top) and Herz-Jesu-P8 (bottom) datasets. Left:
The evaluations of the ground truth meshes (GT) decimated with [7] (QECD) and
[13] (CD) and the evaluations of the ground truth vertices lying in the field of view
of at least two or three cameras. Right: The evaluations of the LAB [10] and PSR [9]
reconstructions decimated with QECD and CD and the evaluations of the point clouds
which were used to generate the corresponding meshes.

and LAB were the same as in Section 4.2 except σ in LAB which was now fixed
to 0.01. The point cloud (PC) which was used to create the meshes was also
evaluated. The results are presented in Figure 7 (right).

In addition to the reconstruction evaluations, we performed the same dec-
imations and evaluations for the ground truth meshes. Also, the point clouds
containing only those vertices of the ground truths which are in the field of view
of at least two or three cameras were evaluated. These point clouds illustrate
the theoretical maximum part of the ground truth model which could be re-
constructed using MVS methods. The results are presented in Figure 7 (left).
Like the range data results, the results clearly show the difference between the
decimation methods (QECD vs CD) as well as mesh creation methods (LAB
vs PSR). The difference between the mesh and point cloud reconstructions is
explained mainly by the sparsity of the point cloud. In addition to the sparsity,
the difference between the point cloud reconstruction and the ground truth point
cloud where points are in the field of view of three cameras (GTPC, pvis>=3),
is explained by the noise, holes and missing regions in the PMVS point cloud
(bottom left vs bottom right in Figure 8). The holes and missing regions result
from self occlusions and certain textureless areas. Also, a possible misalignment
between the ground truth model and images may cause errors in the PMVS
point cloud and thus also in the mesh reconstruction.



Fig. 8. Voxel presentations of the Fountain-P11. Top: Voxelization of the ground truth
(left) and the reconstruction. Bottom: Voxelization of the ground truth vertices which
are in the field of view of at least three cameras (left) and the voxelization of the
PMVS point cloud. Notice the sparsity, noise, holes and missing regions on the right
voxelizations compared with voxelizations on the left.

5 Conclusion

In this paper, we presented a method for the evaluation of multi-view stereo al-
gorithms and triangle mesh decimations. The method enables the evaluation of
the compactness-accuracy trade-off of the reconstructed models and thus com-
pletes and improves the existing evaluation benchmarks from Middlebury [14],
by Strecha et al. [15] and Jensen et al. [8]. The proposed method facilitates
optimization of both the reconstruction pipeline from MVS data to a compact
triangle mesh and the mesh simplification. The method takes the ground truth
model and the reconstruction as input and outputs the accuracy and the com-
pleteness of the model, presented with the Jaccard index, and the compactness
measure. As presented in the experiments, the method can clearly illustrate the
accuracy and compactness differences of certain meshes created with different
meshing and decimation algorithms. In addition, the values of evaluation mea-
sures are independent of the scale of scene and can be used for any dataset with
a ground truth model.
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