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Abstract. We present an algorithm that simultaneously calibrates a
color camera, a depth camera, and the relative pose between them. The
method is designed to have three key features that no other available
algorithm currently has: accurate, practical, applicable to a wide range
of sensors. The method requires only a planar surface to be imaged from
various poses. The calibration does not use color or depth discontinu-
ities in the depth image which makes it flexible and robust to noise. We
perform experiments with particular depth sensor and achieve the same
accuracy as the propietary calibration procedure of the manufacturer.
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1 Introduction
Obtaining depth and color information simultaneously from a scene is both
highly desirable and challenging. Depth and color are needed in applications
ranging from scene reconstruction to image based rendering. Capturing both
simultaneously requires using two or more sensors. A basic device for scene re-
construction is a depth and color camera pair. Such a camera pair consists of a
color camera rigidly attached to a depth sensor (e.g. time-of-flight (ToF) camera,
laser range scanner, structured light scanner).

In order to reconstruct a scene from the camera pair measurements the sys-
tem must be calibrated. This includes internal calibration of each camera as
well as relative pose calibration between the cameras. Color camera calibration
has been studied extensively [1, 2] and different calibration methods have been
developed for different depth sensors. However, independent calibration of the
cameras may not yield the optimal system parameters, and a comprehensive cal-
ibration of the system as a whole could improve individual camera calibration
as it allows to use all the available information.

Previous work. A standard approach is to calibrate the cameras indepen-
dently and then calibrate only the relative pose between them [3–5]. This may
not be the optimal solution as measurements from one camera can improve the
calibration of the other camera. Moreover, the independent calibration of a depth
camera can require a high precision 3D calibration object that can be avoided
using joint calibration.

Fuchs and Hirzinger [6] propose a multi-spline model for ToF cameras. Their
model has a very high number of parameters and it requires a robotic arm to



know the exact pose of the camera. Lichti [7] proposes a calibration method
for an individual laser range scanner using only a planar calibration object. It
performs a comprehensive calibration of all parameters. However, it relies on
the varying response of the scanner to different surface colors to locate corner
features on the image.

Zhu et al. [8] describe a method for fusing depth from stereo cameras and
ToF cameras. Their calibration uses the triangulation from the stereo cameras as
ground truth. This ignores the possible errors in stereo triangulation and mea-
surement uncertainties. The different cameras are thus calibrated independently
and the parameters obtained may not be optimal.

Motivation. As a motivation for our work, we propose three requirements
that an optimal calibration algorithm must have. To the best of our knowledge,
no available calibration algorithm for a depth and color camera pair fulfills all
three criteria.

Accurate: The method should provide the best combination of intrinsic and
extrinsic parameters that minimizes the reprojection error for both cameras over
all calibration images. This may seem like an obvious principle but we stress it
because partial calibrations, where each camera is calibrated independently and
the relative pose is estimated separately, may not achieve the best reprojection
error.

Practical : The method should be practical to use with readily available ma-
terials. A high precision 3D calibration object is not easy/cheap to obtain and a
robotic arm or a high precision mechanical setup to record the exact pose of the
camera pair is usually not practical, whereas a planar surface is usually readily
available.

Widely applicable: To be applicable to a wide range of depth sensors, one can-
not assume that color discontinuities are visible on the depth image. Moreover,
some depth sensors, like the one used for our experiments, may not provide accu-
rate measurements at sharp depth discontinuities. Thus, neither color nor depth
discontinuities are suitable features for depth camera calibration. The method
should use features based on depth measurements that are most reliable for a
wide range of cameras.

2 The depth and color camera pair
Our setup consists of one color camera and one depth sensor rigidly attached
to each other. Our implementation and experiments use the Kinect sensor from
Microsoft, which consists of a projector-camera pair as the depth sensor that
measures per pixel disparity. The Kinect sensor has gained much popularity
in the scientific and the entertainment community lately. The complete model
includes 20 + 6N parameters where N is the number of calibration images. The
details of the model are described below.

Color camera intrinsics. We use a similar intrinsic model as Heikkilä and
Silven [1] which consists of a pinhole model with radial and tangential dis-
tortion correction. The projection of a point from color camera coordinates
xc = [xc, yc, zc]

> to color image coordinates pc = [uc, vc]
> is obtained through



the following equations. The point is first normalized by xn = [xn, yn]> =
[xc/zc, yc/zc]

>. Distortion is then performed:

xg =

[
2k3xnyn + k4(r2 + 2x2n)
k3(r2 + 2y2n) + 2k4xnyn

]
(1)

xk = (1 + k1r
2 + k2r

4)xn + xg (2)

where r2 = x2n + y2n and k is a vector containing the four distortion coefficients.
Finally the image coordinates are obtained:[

uc
vc

]
=

[
fcx 0
0 fcy

] [
xk
yk

]
+

[
uc0
vc0

]
(3)

The complete color model is described by Lc = {fcx, fcy, uc0, vc0, k1, k2, k3, k4}.

Depth camera intrinsics. In our experiments we used the increasingly pop-
ular Kinect sensor as a depth camera [9]. However, the method allows any kind
of depth sensor to be used by replacing this intrinsic model. The Kinect consists
of an infrared projector that produces a constant pattern and a camera that
measures the disparity between the observed pattern and a pre-recorded image
at a known constant depth. The output consists of an image of scaled disparity
values.

The transformation between depth camera coordinates xd = [xd, yd, zd]> and
depth image coordinate pd = [ud, vd] follows the same model used for the color
camera. The distortion correction did not improve the reprojection error and the
distortion coefficients were estimated with very high uncertainty. Therefore we
do not use distortion correction for the depth image.

The relation between the disparity value d and the depth zd is modeled using
the equation:

zd =
1

α(d− β)
(4)

where α and β are part of the depth camera intrinsic parameters to be calibrated.
The model for the depth camera is described by Ld = {fdx, fdy, ud0, vd0, α, β}.

Extrinsics and relative pose. Figure 1 shows the different reference frames
present in a scene. Points from one reference frame can be transformed to another
using a rigid transformation denoted by T = {R, t}, where R is a rotation
and t a translation. For example, the transformation of a point xw from world
coordinates {W} to color camera coordinates {C} follows xc = Rcxw + tc.
Reference {V } is anchored to the corner of the calibration plane and is only
used for initialization. The relative pose Tr is constant, while each image has its
own pose Tc, resulting in 6 + 6N pose parameters.

3 Calibration method
We use a planar checkerboard pattern for calibration which can be constructed
from any readily available planar surface (e.g. a flat table, a wall). The checker-
board corners provide suitable constraints for the color images, while the pla-
narity of the points provides constraints on the depth image. The pixels at the
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Fig. 1: Reference frames and transformations present on a scene. {C} and {D}
are the color and depth cameras’ reference frames respectively. {V } is the ref-
erence frame anchored to the calibration plane and {W} is the world reference
frame anchored to the calibration pattern.

borders of the calibration object can be ignored and thus depth discontinuities
are not needed. Figure 2 shows a sample image pair used for calibration. Figure

Fig. 2: Sample calibration images. Note the inaccuracies at the table’s edge.

3 shows the steps of the calibration and its inputs. An initial estimation for the
calibration parameters is obtained by independently calibrating each camera.
The depth intrinsic parameters Ld and the relative pose Tr are then refined us-
ing a non-linear optimization. Finally, all parameters are refined simultaneously.

Corner based calibration. The calibration of a color camera is a well stud-
ied problem, we use Zhang’s method [2, 10] to initialize the camera parameters.
Briefly, the steps are the following. The checkerboard corners are extracted from
the intensity image. A homography is then computed for each image using the
known corner positions in world coordinates {W} and the measured positions
in the image. Each homography then imposes constraints on the camera param-
eters which are then solved with a linear system of equations. The distortion
coefficients are initially set to zero.

The same method is used to initialize the depth camera parameters. However,
because the checkerboard is not visible in the depth image, the user selects the
four corners of the calibration plane (the whole table in figure 2). These corners
are very noisy and are only used here to obtain an initial guess. The homogra-
phy is thus computed between {V } and {D}. This initializes the focal lengths,
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Fig. 3: Block diagram of the calibration algorithm. Left of dashed line: initial-
ization. Right of dashed line: non-linear minimization.

principal point, and the transformation Td. Using these initial parameters we
obtain a guess for the depth of each selected corner. With this depth and the
inverse of the measured disparity an overdetermined system of linear equations
is built using (4), which gives an initial guess for the depth parameters (α and
β).

Relative pose estimation. The independent calibrations give an estimation
of the transformations Tc and Td. However, the reference frames {W} and {V }
are not aligned. By design we know that they are coplanar. We can use this
information by extracting the plane equation in each reference frame and using
it as a constraint. We define a plane using the equation n>x− δ = 0 where n is
the unit normal and δ is the distance to the origin.

If we divide a rotation matrix into its colums R = [r1, r2, r3] and know that
the parameters of the plane in both frames are n = [0, 0, 1]> and δ = 0, the
plane parameters in camera coordinates are:

n = r3 and δ = r>3 t (5)

where we use Rc and tc for the color camera and Rd and td for the depth camera.
As mentioned by Unnikrishnan and Hebert [4] the relative pose can be ob-

tained in closed form from several images. The plane parameters for each im-
age are concatenated in matrices of the form: Mc = [nc1,nc2, ...,ncn], bc =
[δc1, δc2, ..., δcn], and likewise for the depth camera to form Md and bd. The
relative transformation is then:

R′r = MdM
>
c and tr = (McM

>
c )−1Mc(bc − bd)> (6)

Due to noise R′r may not be orthonormal. We obtain a valid rotation matrix
through SVD using: Rr = UV > where USV > is the SVD of R′r.

Non-linear minimization. The calibration method aims to minimize the
weighted sum of squares of the measurement reprojection errors. The error for
the color camera is the Euclidean distance between the measured corner position
pc and its reprojected position p′c. Whereas for the depth camera it is the differ-
ence between the measured disparity d and the predicted disparity d′ obtained
by inverting (4). Because the errors have different units, they are weighted using



the inverse of the corresponding measurement variance, σ2
c and σ2

d. The resulting
cost function is:

c = σ−2c

∑[
(uc − u′c)2 + (vc − v′c)2

]
+ σ−2d

∑
(d− d′) (7)

Note that (7) is highly non-linear. The Levenberg-Marquardt algorithm is
used to minimize (7) with respect to the calibration parameters. The initializa-
tion gives a very rough guess of the depth camera parameters and relative pose,
whereas the color camera parameters have fairly good initial values. To account
for this, the non-linear minimization is split in two phases. The first phase uses
fixed parameters for the color camera Lc and external pose Tc, and optimizes the
depth camera parameters Ld and the relative pose Tr. A second minimization is
performed over all the parameters to obtain an optimal estimation.

Variance estimation. An initial estimate of the color measurement variance
σ2
c is estimated from the residuals after the first independent calibration. An

estimate of the disparity variance σ2
d is obtained from the disparity residuals

after the first non-linear minimization. It is noted that, because Lc and Tc are
fixed, the color residuals do not need to be computed and σ2

d plays no role in this
minimization. The second minimization stage, when all parameters are refined,
is then run iteratively using the previously obtained residual variances as the
measurement variances for the next step until they converge.

4 Results
We tested our calibration method with an off-the-shelf Kinect device. The device
consists of a color camera, an infrared camera and an infrared projector arranged
horizontally. The electronics of the device compute a depth map for the infrared
image based on the observed pattern from the projector. We ignore the infrared
image and use only the depth information and treat it as a generic depth and
color camera pair. We used a dataset of 55 images, 35 were used for calibration
and 20 for validation. Both sets cover similar depth ranges (0.5m to 2m) and
a wide range of poses. For the validation set, (7) was minimized only over the
external pose Tc to find the best pose for the previously obtained calibration.

Parameters and residuals. The obtained calibration parameters and their
uncertainties are presented in Table 1. Figure 4 presents histograms of the resid-
uals for the validation set. The formulation of our cost function (7) allows us
to use the uncertainty analysis presented by Hartley and Zisserman [11]. They
show that the covariance of the estimated parameters ΣP can be obtained di-
rectly from the Jacobian of the cost function J and the covariance of the mea-
surements ΣX using:

ΣP =
(
J>ΣXJ

)−1
(8)

Depth uncertainty. The disparity errors are well modeled by a gaussian distri-
bution. Using (4) and the estimated disparity variance, we obtained numerically
the expected variance in depth for each disparity value. Separate statistics are
computed for each depth present in the validation set to obtain an experimental



Table 1: Obtained calibration parameters. Error estimates correspond to three
times their standard deviation.

Color internals

fcx fcy uc0 vc0 k1 k2 k3 k4
532.90 531.39 318.57 262.08 0.2447 -0.5744 0.0029 0.0065
±0.06 ±0.05 ±0.07 ±0.07 ±0.0004 ±0.0017 ±0.0001 ±0.0001

Depth internals Relative pose (rad, mm)

fdx fdy ud0 vd0 α β θr trx try trz
593.36 582.74 322.69 231.48 -0.00285 1091.0 0.024 -21.4 0.7 1.0
±1.81 ±2.48 ±1.34 ±1.59 ±0.00001 ±1.0 ±0.003 ±1.5 ±1.5 ±1.9
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Fig. 4: Obtained error residuals and depth uncertainty.
depth variance. Both curves are shown in Figure 4c. The experimental curve
shows the expected increase in variance as the depth increases. The final drop
in variance is due to low sample count at the end of the range.

Comparison with manufacturer calibration. The manufacturer of the
Kinect sensor, PrimeSense, has a proprietary camera model and calibration pro-
cedure. They provide an API to convert the disparity image to a point cloud
in world coordinates. To validate our calibration against the one from the man-
ufacturer, we took an image from a slanted planar surface that covers a range
of depths. The disparity image was reprojected to world coordinates using our
model and the manufacturer’s API. A plane was fitted to each point cloud and
the distance of the points to the plane was computed. The manufacturer’s re-
projection had a standard deviation of 3.10mm from the plane, while ours was
3.00mm. This proves that our calibration of the depth camera has comparable
accuracy to that of the manufacturer.

Colorized point cloud. The fully calibrated system can be used to obtain
a colored point cloud in metric coordinates. For illustration purposes, Figure 5
shows an example scene and a reprojection from a different view point.

5 Conclusions

The results show that our algorithm performed adequately for the chosen camera
pair. In addition, we believe that our algorithm is flexible enough to be used
with other types of depth sensors by replacing the intrinsics model of the depth



Fig. 5: Sample scene. Color image, depth map, and change of view point.

camera. The constraints used can be applied to any type of depth sensor. Future
work can include the calibration of a ToF and color camera pair.

We have presented a calibration algorithm for a depth and color camera pair
that is optimal in the sense of the postulated principles. The algorithm takes
into account color and depth features simultaneously to improve calibration of
the camera pair system as a whole. It requires only a planar surface and a simple
checkerboard pattern. Moreover, the method is flexible to be used with different
types of depth sensors. Finally, our method showed comparable accuracy to the
one provided by the manufacturer of a particular depth camera.
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