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Abstract— Automated cell classification in Indirect Im-
munofluorescence (IIF) images has potential to be an important
tool in clinical practice and research. This paper presents
a framework for classification of Human Epithelial Type 2
cell IIF images using convolutional neural networks (CNNs).
Previuos state-of-the-art methods show classification accuracy
of 75.6% on a benchmark dataset. We conduct an exploration of
different strategies for enhancing, augmenting and processing
training data in a CNN framework for image classification. Our
proposed strategy for training data and pre-training and fine-
tuning the CNN network led to a significant increase in the
performance over other approaches that have been used until
now. Specifically, our method achieves a 80.25% classification
accuracy. Source code and models to reproduce the experiments
in the paper is made publicly available.

I. INTRODUCTION

The analysis of Indirect Immunofluorescence (IIF) images
are important in the diagnosis and monitoring of disease
progression in patients with autoimmune diseases. The IIF
images of Human Epithetial Type 2 (HEp-2) cells have been
used to detect antinuclear antibodies (ANA) in human serum.
The presence of these antibodies are strong markers for
predicting and diagnosing autoimmune diseases. Type of the
antibody and its binding to specific part of the cell results
different nuclear patterns of fluorescence on the HEp-2 cells
[1]. The identification of these IIF patterns has significant
importance in making correct diagnosis.

Recently, automated analysis of indirect immunofluores-
cence images has received increasing attention because of
the disadvantages of manual inspection such as its subjective
nature and cost. The interest of image classification com-
munity in this problem is attracted with publicly available
datasets and competitions and corresponding workshops [2].
The first edition of the HEp-2 cell dataset (ICPR2012)1 was
released in year 2012. This publicly released dataset contains
a set of manually annotated training images associated with
segmentation masks (Figure 2). A set of test images is
also released, with the manual annotations and segmentation
masks. The second edition of the dataset (used in contests
in ICIP2013 and ICPR2014)2 is released with only training
images. The test set is privately maintained by the organiz-
ers. ICPR2012 dataset allows comparison of HEp-2 image
classification algorithms, and majority of existing approaches

N. Bayramoglu (nyalcinb@ee.oulu.fi), J. Kannala
(jkannala@ee.oulu.fi) and J. Heikkilä (jth@ee.oulu.fi)
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Fig. 1. Sample images from ICPR2012, ICPR2014, and SNPHEp-2
datasets.

have evaluated their performance on this dataset. Therefore,
in order to make comprehensive and fair comparisons, we
performed experiments on the ICPR2012 dataset.

In this paper, we study automated classification of HEp-
2 cell images with Convolutional Neural Networks (CNNs).
The main focus of the paper is to analyze data preprocessing,
normalization and augmentation approaches for HEp-2 cell
image classification.

II. RELATED WORK

HEp-2 image classification problem has been studied in
many recent papers [3], [4], [5], [6], [7], [8]. Most of the
methods attempt to utilize texture information. The first prize
winner [9] in the 2012 HEp-2 cells classification contest [2]
employed Local binary pattern (LBP)-based method [10]. To
date, the approach proposed by Qi et al.[6] achieved the best
average classification accuracy on the ICPR2012 dataset by
utilizing multi-resolution texture descriptor again based on
LBP.

Recently, neural networks achieved a great success in
object classification [11]. Specifically, Convolutional Neural
Network (CNN) based approaches showed significant im-
provements over state-of-the-art recognition and classifica-
tion approaches. Unlike hand-designed features like SIFT
[12], CNNs learn image features from training data. It
has been also shown that learnt image features with CNN
architectures are often more discriminative than hand crafted
image descriptors and perform better [13]. Today, there
are numerous attempts to solve various computer vision
problems using CNNs due to its remarkable achievements
on several large scale image datasets [11]. It has also
been applied to biomedical applications with success. For
example, Ciresan et. al [14] detect mitosis in breast cancer
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histology images and won the related contest. On the other
hand, CNN is applied to HEp-2 cell image classification
problem before only in a few studies [2], [15].

Despite CNN’s success, there are several challenges in
generalizing CNN frameworks to different applications such
as biomedical images. First, CNNs typically require lots
of training data due to large number of parameters to be
learned. However, public databases in biomedical imaging
applications are usually small due to the fact that annotation
of such data requires expertise in that field. Second, the small
interclass variation and high intraclass variation could be
present in biomedical images as in HEp-2 datasets; therefore,
optimizing CNN’s hyper-parameters for small training data
leads to overfitting and bias.

In this work, we study mentioned drawbacks of CNNs by
experimentation. We apply CNNs to a small HEp-2 dataset
published by [2] and compare our results with the state-of-the
art. We explore the impact of data normalization, preprocess-
ing and augmentation methods in HEp-2 cell classification.
The most similar study to ours is described in [15], however,
the focus in [15] is to optimize network hyper-parameters
whereas we focus on the data itself. Our framework achieves
a better classification accuracy than the previous state-of-the-
art results on the ICPR2012 HEp-2 dataset [2].

III. OUR WORK

Color and Intensity: In fluorescent imaging, despite the exis-
tence of RGB image databases, pattern information is usually
carried in a single (green) channel. We tested our framework
both with color images and green channel images. Brightness
and contrast properties vary greatly among database images.
This could be due to the “photobleaching effect” and could
be also due to the differences in labeling process and image
acquisitions. Previous studies adopt different strategies to
normalize image intensity. Scaling intensities between 0 and
1 and histogram equalization are the most common methods.
In our study, we compare four different intensity schemes:
i) original raw data, ii) histogram equalization, iii) scaling
between 0 and 1, and iv) zero mean and unit variance
normalization (MVN). Usually, normalization step is not
an essential part of CNN based classifiers as the networks
have capacity to handle variations as long as the training
set has enough samples to represent these variations. Oth-
erwise, intensity normalization may influence classification
performance greatly.
Data Augmentation: Increasing the number of training ex-
amples is useful for small training sets in CNN frameworks.
Most works perform data augmentation only artificially by
employing affine transformations. We augment the training
set in three ways: i) by affine transformations (rotations,
flipping, scaling, etc.), ii) by importing real data from similar
datasets, and iii) by adding intensity variations of the same
sample.

Images are first flipped horizontally and then both original
and flipped images are rotated. We rotate cell images around
their centers with angles sampled uniformly between 0◦ and
360◦. Borders in the rotated versions of input images require
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Fig. 2. a) A sample image from the ICPR2012 benchmark, b) segmentation
mask, c) green channel, d) intensity normalized green channel, e) resampled
image into a square size, f) to avoid border issues in the rotated images,
largest rotated rectangle within the input image (red) is cropped, g) flipped
horizontally, h) sample of a specimen image.

special intention due to discontinuities. Zero padding and
inpainting techniques creates unrealistic images that could
diminish the performance of data augmentation instead of
enhancing. Therefore, we cropped rotated images in such
a way that the cropped image corresponds to the largest
rotated rectangle within the input image (Figure 2(f)). This
transformation introduces scale and translation variations in-
herently. Augmenting training data with such transformations
in CNN frameworks is useful in order to compensate for data
variations between test and training sets.

We expand the ICPR2012 training set with the ICPR2014
and the SNHEp-2 [8] datasets (Figure 1). Table I describes
the compositions of test and training sets. ICPR2014 dataset
is about ten times larger than the ICPR2012 but it has a dif-
ferent cell categorization. Fine speckled and coarse speckled
classes in ICPR2012 are merged and represented as a new
class called speckled in ICPR2014. In addition, two new
categories golgi and nuclear membrane is introduced and
cytoplasmic category is removed. Therefore, we add images
only from the common classes of the ICPR2014 dataset,
homogeneous, nucleolar and centromere (7833 samples), to
the ICPR2012 training set. SNHEp-2 dataset, which has a
similar size with the ICPR2012, comprised of five categories
that exist in the ICPR2012. Therefore, SNHEp-2 dataset is
entirely added to our training set. Addition of these images
increased the training size considerably (721 vs. 9639).



Finally, we augment our training set by presenting exactly
the same training examples with different intensity normal-
izations. In addition to the original raw images (Figure 2(c)),
we add histogram equalized images (Figure 2(d)) to the
training set. In the ICPR2012 dataset, individual cell images
(Figure 2(a)) are actually cropped from a bigger specimen
image (Figure 2(h)) which is comprised of multiple cells.
Specimen images and individual cell locations are also pro-
vided by the benchmark. This enables us to perform another
intensity correction. We compute histogram equalization on
the specimen image and crop individual cell images. As a
result, one sample is presented with three different intensities
in the populated training set: i) raw pixel data; ii) histogram
equalization before cropping, and iii) histogram equalization
after cropping.
Pre-training and Fine Tuning: Fine tuning is the process
of transferring learned parameters from pre-trained models to
new ones. We pre-train our model on a larger dataset, then we
fine tune the network parameters on the ICPR2012 training
set. To avoid overfitting, we utilized all available HEp-2
image data also by including images from cell categories
that do not exist in ICPR2012 from the ICPR2014 dataset.
That is, we trained our network with 9 classes. Previously
mentioned affine transformations are also applied to this
larger pre-training set.

IV. EXPERIMENTS AND RESULTS

The ICPR2012 dataset contains 28 HEp-2 specimen im-
ages (comprised of several cells) almost equally distributed
among different classes were acquired by a fluorescence mi-
croscopy. Manual segmentation and annotation of individual
cells were performed by specialists. After the segmentation,
the ICPR2012 dataset contains 1, 455 cell images in total
with six classes namely: homogeneous, coarse speckled, fine
speckled, nucleolar, centromere, and cytoplasmic. Figure 1
shows sample images from the dataset. The dataset is divided
into test (734 cell images) and training (721 cell images) sets.
Since specimen images contain different number of cells, the
distribution of cell patterns in the final dataset is imbalanced
(Table I). Although it is a small set, there is a great variability
among cell intensities and patterns within the same class.

In this work, we use Caffe [16] library to extract CNN-
based features. We experiment with the architecture based
on Alex Krizhevsky’s cuda-convnet model [17]. The model
composes of three convolutional layers, pooling layers, and
rectified linear unit (ReLU) nonlinearities layers with a
linear classifier on top of it all (Figure 3). Network layers
and parameters are shown in Table II. These settings are
deliberately kept fixed for all experiments to observe ef-
fects of changes in the training data. Despite having only
three convolutional layers, the classification capacity of this
network is sufficient for classifying our data since in our
experiments we observed that the classification accuracy
for the training set often reaches close to 100%. However,
overfitting may still be a problem. Therefore, to avoid
overfitting, the model is regularized with weight decay w =
0.0004. Additionally, we applied dropout regularization [18]

which prevents complex node connections. While dropout
has shown superior performance in [18], it does not have
positive effect in our experiments. Therefore, we report our
results without dropout regularization. Similar behavior with
dropout regularization in HEp-2 image classification is also
reported in [15].

The network is trained using the minibatch stochastic
gradient descent with a momentum factor of 0.9. Each
iteration operates on a minibatch of 256 images that are
sampled randomly from the training set. The network is
trained for 12,000 iterations with a learning rate of 0.001.
For pre-training, fine tuning, and heavily populated data we
use 120,000 iterations. All the images are resized to 64×64
both in training phase and testing phase (Figure 2(e)).

In our first experiment, we compared color images and
green channel images. Figure 4(a) shows average classifi-
cation accuracy of ICPR2012 test and training data in case
of RGB images and green channel images. There is a clear
difference between the results that shows the superiority of
the green channel images over RGB. The reason may be
due to the existence of intra-correlations between channel
maps. Therefore, we used only green channel images in the
rest of the experiments. Figure 4(b) shows performance of
different intensity corrections. While histogram equalization
and MVN improves the performance, the scaling approach
has a negative effect. This observation is consistent with the
common issue of having low-contrast images in biomedical
imaging. In addition, scaling operation seems to introduce
some numerical instability as the test set accuracy shows in-
stant changes and training set reached its maximum accuracy
much later than the others. On the other hand, both histogram
equalization and MVN enhances contrast and brightness.
Therefore, the intensity imbalance among samples are re-
duced and the network learns invariant properties.

We next investigated data augmentation. Results of the
evaluations on the three datasets are shown in Figure
5(a). First we populate the ICPR2012 training set with
the SNHEp-2 data (Exp2- blue curve). Then we expand
the set with the ICPR2014 samples (Exp3-red curve). This
time we add ICPR2014 samples only from the common
cell categories (i.e. homogeneous, nucleolar, centromere).
After augmenting the training set with the SNHEp-2 data,
the accuracy is improved around 10% (Exp2) and an addi-
tional 10% improvement is gained after the introduction of
the ICPR2014 samples (Exp3). Although augmenting with
ICPR2014 samples makes the training set more imbalanced
in numbers, the overall effect is positive. This indicates the
significance of having more samples during learning. Note
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TABLE I
ICPR2012, ICPR2014, AND SNHEP-2 BENCHMARK PROPERTIES

Number of Images
in ICPR2012

Pattern Test Train Total
Homogeneous 180 150 330
Coarse speckled 101 109 210
Fine speckled 114 94 208
Nucleolar 139 102 241
Centromere 149 208 357
Cytoplasmic 51 58 109
Total 734 721 1455

No. of Images
in ICPR2014

Pattern Train
Homogeneous 2494
Speckled 2831
Nucleolar 2598
Centromere 2741
NuMem 2208
Golgi 724
Total 13596

No. of Images
in SNHEp-2

Pattern Test Train Total
Homogeneous 188 172 360
Coarse speckled 187 166 353
Fine speckled 191 188 379
Nucleolar 139 194 382
Centromere 149 149 332
Total 937 869 1806

TABLE II
MODEL DESCRIPTION OF THE NETWORK.

Layer Type Num. of Features Filter Size Pooling (Kernel/Stride) Non-Linearity Initial Weight
Convolutional 32 5× 5 MAX., 3× 3, 2 ReLU N (0; 0.0001)
Convolutional 32 5× 5 AVG., 3× 3, 2 ReLU N (0; 0.01)
Convolutional 64 5× 5 AVG., 3× 3, 2 ReLU N (0; 0.01)

Fully Connected 6 - - - N (0; 0.01)
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Fig. 4. Comparison of (a) color and (b) intensity normalization schemes.

that in all experiments, histogram equalization is applied to
both training and test sets.

After populating the training set with real samples, we
apply artificial augmentation by presenting same training
sample with different intensity normalizations (see Figure
5(b)). Specifically, our expanded training set (Exp4-Train
Multiple Intensity-All) has the following composition: a)
original ICPR2012 train set (721 samples), b) histogram
equalized ICPR2012 train set before cropping (721 samples)
and c) after cropping (721 samples), d) original SNHEp-
2 (1,806 samples), e) histogram equalized SNHEp-2 (1,806
samples), f) original ICPR2014 (common categories, 7,833
samples), and g) histogram equalized ICPR2014 (common
categories, 7,833 samples). Finally, there are 21, 441 samples
in the training set. The classification performance is shown
in Figure 5(b) with green curve (Exp4). Compared to our
baseline (Exp3-red curve) which is the single intensity set,
this arrangement does not bring clear improvements. One
extra experiment is presented in Figure 5(b) with blue curve
(Exp5-Multiple Intensity-ICPR2012). This time we have only
ICPR2012 train set represented with several intensities. Inter-
estingly, this composition boosts the performance of our clas-
sification model another 5%. Note that, in all experiments,
the same single intensity test set (ICPR2012-Test) normalized
with histogram equalization is used.

In Figure 6(a)-6(b), we compare training set performance
augmented by all kind of transformations including rotations
and flipping on top of multiple intensities against the baseline
which does not include any artificial augmentation. We
experiment here with 472,080 training samples obtained by
horizontal flipping 11, 802 images of the previous augmenta-
tion and then rotating all with an angle step of 18◦. Maximum
rectangular area within the rotated image is cropped as
shown in Figure 2(f) and resized to 64 × 64. We report
results for iterations up to 120, 000 as the training size is
now much bigger than before. Figure 6(b) magnifies the
early iterations for easy interpretation. As expected, the
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Fig. 5. Average classification accuracy comparison for different data
augmentation proposals. a) comparison of additional real samples, b)
comparison of multiple intensity samples.

acceleration of training set accuracy is slower but rather
high (94, 23%). On the other hand, the maximum of 78, 20%
average classification accuracy is observed on the test set.
This performance for the ICPR2012 is better than all other
results reported in the literature (Table III).

Finally, in the pre-training process, we used a larger
dataset by adding all categories from the ICPR2014. The
same network used before is employed except the output
of the last fully-connected layer. It is fed into a 9-way
softmax layer with the multinomial logistic regression as
the loss function, to produce a probability distribution over
the 9 classes. Network parameters pre-trained on the larger
dataset are directly transferred for fine-tuning, including the
last fully-connected layer. In other words, for fine-tuning we
also adopt 9-way softmax layer. The fine-tuning and related
pre-training with all available data (including also additional
classes) is applied in a similar setting as in the previous
experiment which achieved the 78, 20% accuracy. The effects
of pre-training and fine-tuning on CNN performance are
shown in Figure 6(c). As we expected, pre-training with

additional classes, followed by fine-tuning, brings another
boost in performance. Finally, the average classification
accuracy reaches up to 80, 25% at iteration 110, 000. The
confusion matrix at this point is reported in Table IV. Note
that, despite the high performance in five categories, the
classification accuracy is rather low for the fine speckled
category. Most samples in this category are classified as
homogeneous. Previous works also report similar errors [7],
[6]. The reason could be the similarities in the appearance
of these classes (see Figure 1).

Table III compares our final result with the previous state-
of-the-arts on the ICPR2012 benchmark. Our data augmenta-
tion and fine-tuning approach improves the previous state-of-
the-art result by 5%. These results highlight four important
points: (i) augmenting training data with real images is most
beneficial, (ii) also augmentation with synthetic data using
intensity transformations and geometric transformation is
helpful, (iii) contrast normalization is substantially benefi-
cial (e.g. histogram equalization), (iv) pre-training with all
available data, including also additional classes, and followed
by problem specific fine-tuning is useful.

V. CONCLUSION AND FUTURE WORK

We conduct experiments on the ICPR2012 HEp-2 bench-
mark to analyze the effects of data pre-processing, augmenta-

TABLE III
COMPARISON OF OUR AVERAGE CLASSIFICATION ACCURACY WITH

OTHER METHODS ON THE ICPR2012 DATASET

Method Classification
accuracy

Human expert [2] 73.3%
2012 contest winner [2] 68.7%
2012 contest CNN [2] 59.8%
Faraki et al. [19] 70.2%
Larsen et al. [5] 71.5%
Shen et al. [20] 74.4%
Gao et al.(CNN) [15] 74.8%
Theodorakopoulos et al. [7] 75.1%
Schaefer et al. [21] 75.3%
Qi et al. [6] 75.6%
Ours 80.3%

TABLE IV
CONFUSION MATRIX OF OUR CLASSIFICATION METHOD ON ICPR2012

HEP-2 DATASET WITH AVERAGE CLASS ACCURACY OF 80.25%

Pattern Homoge–
nous

Coarse
Speckled

Fine
Speckled

Nucle–
olar

Centro–
mere

Cytop–
lasmic

Homoge–
nous

97.78% 0% 1.11% 1.11% 0% 0%

Coarse
Speckled

13.86% 73.27% 0.99% 1.98% 8.91% 0.99%

Fine
Speckled

80.70% 1.75% 11.40% 2.63% 3.51% 0%

Nucle–
olar

0.72% 0% 0.72% 94.96% 3.60% 0%

Centro–
mere

0% 0% 0% 2.68% 97.32% 0%

Cytop–
lasmic

0% 1.96% 0% 0% 1.96% 96.08%
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Fig. 6. a) Evaluation showing the average classification accuracy over all types of transformations in the dataset compared against the dataset without
transformations, 12× 104 iterations, b) magnified version of a, c) pre-training and fine tuning.

tion, and pre-training within a CNN based framework. Since
it is not easy to design an optimal CNN model in theory we
focus on the data itself. We demonstrate how training data
affects classification accuracy of cell classification. We find
that additional real data-augmentation is incredibly helpful
and domain specific pre-training still maintains an advantage
and we provide the state-of-the-art performance. Most of
our observations confirm recent findings about the benefits
of data augmentation in CNN models. But unlike most
previous studies, where affine transformations and contrast
augmentation were randomly added to an image, we directly
add each transformed copy to the training set. On the other
hand, we believe that overfitting could still be a problem
and additional gains can be achieved if there were more real
HEp-2 cell image data available. Source code and models
to reproduce the experiments in the paper is made publicly
available on the project webpage (http://www.ee.oulu.fi/
˜nyalcinb/papers/bibe2015).
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