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1 Introduction

With our eyes we gather a lot of information from our surroundings. Human
vision is of course more than just eyes collecting fotons since our ability to in-
terpret visual information is remarkable. We can observe for instance distances,
directions, shapes and colours. One goal of computer vision is to develop meth-
ods that would make it possible to obtain this kind of information automatically
from digital images. In this work we will concentrate on computational methods
that are needed to determine the three dimensional structure of a scene from
two dimensional images.

Building the three dimensional reconstruction of a scene from multiple views
is an important problem in computer vision. The multiple view geometry has
been extensively studied during the last years, but there is still no universally
applicable solution to the reconstruction problem. Though there exists a lot of
3D-modeling systems they usually require special scene set ups, special hard-
ware, or manual feature extraction [6]. However, the techniques able to solve the
structure from motion problem would have many applications. One application
example could be an autonomous robot that moves in a changing environment
and observes its surroundings by a camera.

In this report we consider the problem of determining the metric structure
of a scene from two views. The starting point is that we have two images of a
scene taken by two cameras at different positions. We assume the cameras are
calibrated pinhole cameras and the scene structure is initially unknown. Our
approach is to search a set of interest points from the images and compute the
three dimensional coordinates for them.

The reconstruction problem can be divided in three different stages. The
first stage is to automatically extract point matches between the images and is
discussed in Section 4. The second stage is to estimate the two view geome-
try, incorporated in the fundamental matrix, using the point matches. Several
methods for the fundamental matrix estimation are considered in Section 5. The
final stage considers back-projecting the matched image points to reconstruct
the 3D structure (Section 6).

By combining and implementing different techniques proposed in the com-
puter vision literature we outline a procedure for making a rough reconstruction
from two views. The methods studied were implemented in MATLAB.

2 Camera Model

Conventional digital cameras can usually be well modeled by the pinhole camera
model that is just a central projection from the world points to the image plane.
The pinhole camera geometry is shown in Figure 1. The origo of the camera
coordinate system is the centre of the projection, also known as the camera
centre. The z-axis is perpendicular to the image plane and points to the front
of the camera. The point where the z-axis intersects the image plane is called
the principal point and the distance between the camera centre (C) and the
principal point (c¢) in the world coordinate frame is the focal length.

The central projection can be represented as a linear transformation in ho-
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Figure 1: Pinhole camera model.

mogenous coordinates

h=PM=K(R t) : (1)

- N

where the transformation matrix P is called the camera projection matrix and
M is a 4-vector representing the homogenous coordinates of a point M in the
world coordinate frame (we use ~ to denote the homogenous representation). The
image of M is m and its homogenous pixel coordinates, m = (u v 1)T, can be
computed from (1). The 3 x 4 matrix P is decomposed into two matrices. Here
the 3-vector t and rotation matrix R relate the camera position and orientation
to the world coordinate system,

Xcam = Rxworld + t. (2)

The matrix (R t) in (1) transforms the world coordinates to the normalized
image coordinates by assuming that the focal length is 1. The matrix

fmy —fmycot  ug Qy, —aucotl ug
K= 0 fmy/sinf vy | = 0 a,/sinf wg (3)
0 0 1 0 0 1

contains the camera internal parameters and transforms the normalized image
coordinates into the pixel image coordinates [2]. The parameter f means the
focal length, 0 is the angle between the pixel coordinate axis, m, and m, are
the number of pixels per unit distance in image coordinates in the directions of
u and v. The image of the principal point is (ug, vo).
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Figure 2: Epipolar geometry. C and C’ are the camera centres and I and I’
are the image planes of the cameras. World point M is projected to points m
and m’. The corresponding epipolar lines are lyy and 1.

3 Two View Geometry

The two view geometry, also called as epipolar geometry, is illustrated in Figure
2. The planes I and I’ are the image planes of the cameras with camera centres
C and C'. The line joining the two camera centers intersects the image planes in
epipoles e and e’. Each world point M together with the camera centres defines
a plane, where also the image points m and m’ must lie. This coplanarity
constraint characterizes the two view geometry and it can be represented with
the essential matrix E by formula

#TEx =0, (4)

where x and x’ are the normalized image coordinates corresponding to m and
m’. The essential matrix is defined by

E = [t|xR, (5)

where translation vector t and the rotation matrix R are as in (2) with the
first camera coordinate frame taken as the world coordinate frame. [t]x is a
skew symmetric 3 X 3 matrix representing the cross-product with the vector t
([t]xx = t x x). Because the rank of [t]« is 2, the essential matrix is also a rank
2 matrix.

Equation (4) can be represented in the pixel image coordinates with the
camera matrices K and K’ since

0=%TEx =m' "K' "TEK " = m'TFrm. (6)

The 3 x 3 matrix F defined above is called the fundamental matrix. The funda-
mental matrix is a rank 2 matrix and it is generally defined up to a scale factor.
Therefore it has 7 independent parameters. For each point m in the first image
there is a line 1/, in the second image where the corresponding point m’ lies.



The epipolar line 1., goes through the epipole €', because it is the projection of
the line joining points C and m. Likewise for each point in the second image
there is a corresponding epipolar line in the first image. The lines 1, and 1/,
are related to the fundamental matrix by the equations [1]

I =Fnm, lw =FTm'. (7
For the epipoles e and €’ we have
Fé=0, FT&=0. (8)

In order to determine the structure of a scene from two views we must
solve the translation and rotation between the cameras. However, the structure
can be determined only up to a similarity transformation. If we have enough
point correspondences between the images, at least 7 in general position, we
can estimate the fundamental matrix. If the cameras have been calibrated, the
camera matrices K and K’ are known, we can compute the essential matrix
from (6). The translation and rotation can then be extracted from E up to
an overall scale, which cannot be determined. Finally we have the camera
projection matrices P and P’ and we can back-project the image points to their
corresponding 3D-points.

4 Image Matching

Suppose we have two different images of a single scene and we want to deter-
mine the structure of the scene. Before the unknown epipolar geometry can be
estimated we have to first extract some point correspondences from the images.
This is called image matching. Seven matches is the minimum for the F-matrix
estimation, but there should be considerably more in order to minize the effect
of noise and erroneous matches. We use the correlation and relaxation tech-
nique proposed by Zhang et al. to obtain the initial point matches [2, 3]. After
we have estimated the fundamental matrix, we use the epipolar geometry to
obtain a more reliable set of matches. That is produced by the multi-resolution
matching technique proposed by Brandt and Heikkonen in [7]. The main ideas
behind these techniques are shortly reviewed in the following two sections.

4.1 Initial Matches by Correlation and Relaxation

First, feature points corresponding to high curvature points are extracted from
the views. This is done by the modified version of the Harris corner detector
[2, 3]. After the corner points have been extracted from both images match
candidates are obtained with the classical correlation technique. The corre-
spondence of corner points is measured by computing the correlation between
correlation windows around the corner points. The corner pairs having a corre-
lation score high enough are considered as match candidates. Because in general
there can be large image torsions, the correlation windows must be rotated and
the correlation computed with several rotation angles. The angle which gives
the highest correlations in average will be chosen and only the candidates with
this particular angle will be considered in the relaxation process. For a corner

point m; in the first image several candidate points m/, in the second image
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may be found with the correlation technique. For choosing the best candi-
dates Zhang proposes a relaxation procedure that utilizes the information of
the corner point neighborhoods. It is based on the reasonable assumption that
if (m, m’) is a good match the corner points near m in the first image should
have a counterpart near m’ in the second image, see [2] and [3] for details.

The correlation—relaxation technique has been implemented in the software
ImageMatching available on the Internet [12]. This software can also be used
to estimate the F-matrix robustly with the Least-Median-of-Squares (LMedS)
method and, after that, to obtain a new set of matches containing less false
matches. The result of the match extraction with the ImageMatching software
is shown in Figures 3 and 4, where we have a pair of images of a house taken by
the same camera from two different positions. In Figure 3 the matched points
have been plotted to the first image and in Figure 4 to the second. In the latter
figure the positions of the corresponding points in the first image are also shown.
From the trajectories it is possible to identify the false matches. For example
in Figure 4 there are two false matches in the lower right corner. There are 363
matches in total of which 10 are clearly incorrect.

4.2 Multi-Resolution Matching Utilizing Epipolar Geom-
etry

After we have the final estimate for the fundamental matrix, we utilize it and
its covariance matrix in image matching. The estimation of the F-matrix and
its covariance will be concerned in Section 5. By using the epipolar geometry in
image matching we try to obtain a large set of matches without false matches.
In the reconstruction it is important that the essential parts of the images are
densely covered with matches. This is because the reconstruction is computed
by back-projecting the matched points. There are three stages in the method:
(1) image rectification, (2) wavelet based matching and (3) handling of multiple
match candidates. Next we give an overview, how the multi-resolution algorithm
works in different stages. For a detailed study see [7]. In Figure 5 there is a
plot of the final matches found by the multiresolution method. There are 801
matches and only one false was found (in the lower right corner).

4.2.1 Image Rectification

If the images to be matched are taken from widely differing viewpoints the scene
may not look the same in both images. With the correlation method image
torsions were taken into account by rotating correlation windows. Here we have
another approach. Using the fundamental matrix we compute 2D projective
tranformations H and H’ which transform the epipolar lines to run horizontally
in both images. Furthermore corresponding epipolar lines will have same y-
coordinate after the transformation. Consequently, the disparities between the
transformed and resampled images are in the x-direction only. Transformation
H’ for the second image is computed as explained in [1], Section 10.12. Then
H is obtained from

H=H\H'([&|xF +e'&"), (9)



Figure 3: Matched points, obtained by ImageMatching, in the first image.

Figure 4: Matched points from the second (x) and the first (o) image plotted in
the second image. Points are obtained by ImageMatching-software.

where e and € are the epipoles and Ha has three free parameters,

b
H) = 1 (10)
0

SO R
—= o0

Hartley and Zisserman propose that Hpa should be chosen by minimizing the
disparity between transformed images [1]. This is done by minimizing the sum
of squared distances

> d*(Hin,, H'f'y), (11)



Figure 5: Final matches from the second (x) and the first (o) image plotted in
the second image. Matches are obtained by the multi-resolution method.

where (m;, m’;) are the initial matches. However we noticed that when the scene
has considerable depth variation and the disparity between images is large this
criterion can lead to severe distortion of the first rectified image. When the
epipolar lines are almost horizontal better results are obtained when Hp is
chosen by minimizing the disparity between the rectified and original image.
This is done by minimizing the following sum of squared distances

ZdQ(Hrh,-,rhi). (12)

(2

This is a linear least-squares minimization problem of three parameters, H is
given by (9), and can be easily solved.

Image rectification, with the two different ways to compute the transforma-
tion H, is illustrated in Figures 6 to 8. There is less distortion in the latter
rectified image pair and the multi-resolution method found 436 matches. From
the first rectified image pair it found only 34 matches.

4.2.2 Wavelet-Based Matching

Before the image rectification the corner points were extracted from the images
with the Harris detector. After the corner extraction and rectification the images
are decomposed to four resolution levels (original and three lower resolution
levels) with wavelet decomposition. Then for each corner point in the first
rectified image we compute the most probable point (15) on the epipolar line
in the second rectified image . We take two correlation windows, a smaller
template window around the corner and a bigger search window around the
most probable point. Then we compute correlation between the template and
the search window at each pixel shift. Correlation is computed first at the
lowest resolution level. Then the local maxima, whose correlation coefficient is
greater than 0.8, are extracted from the correlation image. In higher resolutions



Figure 7: Rectified image pair. The rectifying transformation for the first image
is obtained by minimizing the disparity between rectified images.

Figure 8: Rectified image pair. The rectifying transformation for the first image
is obtained by minimizing the disparity between the original and rectified image.



the correlation is computed only at the neighbourhoods of these maxima. The
points which have significant correlation at each resolution level are considered
as match candidates. If there are several candidates the best is chosen using the
disparity information contained in the fundamental matrix covariance.

4.2.3 Handling of Multiple Candidates

The uncertainty of epipolar lines can be characterized with the covariance ma-
trix of the fundamental matrix. Brandt and Heikkonen have used the uncer-
tainty of epipolar lines in characterizing the goodness of match candidates. The
discussion here follows those represented in [7] and [2].

Let mg = (uo, vo)T be a point in the first image and its covariance matrix
Cm,- The corresponding epipolar line in the second image is I’ = Fnig and the
first-order approximation for its covariance is obtained from [2]

oy . on” Cm, 02
Cy, _3_FCF6_F +F< of 0 F (13)

where F in the first term is treated as a vector of 9 elements, 02 = (0,0)T. The
first order approximation for the fundamental matrix covariance C is computed
as in (26).

Because any point m’ = (u/,v’)T on the epipolar line 1) = (13,15, 15)T satisfies
'l = /150 +14 = 0 we may use the parameterization ' 1y = (11 /15,15/15)"
for the epipolar line. The first order approximation for the covariance of 1j) is
computed in the same way as (13)

~ ~ T
ol . ol

Ci, = 31, Co (14)

Now ig may be considered as a random 2-vector having a Gaussian distribution
with covariance Ciz,' The probability distribution of possible epipolar lines given
mg can be understood as a two-dimensional Gaussian kernel in the dual space
centered at the point 1. The estimated epipolar line 1j = Fmy is therefore
the mean of the distribution. (Points in the dual space correspond lines in the
original space and vice versa [1].)

Let m’ be a match candidate for mg. The goodness of this candidate can be
characterized with the above Gaussian density in the dual space. m’ corresponds
to a line in the dual space and we use the integral of the Gaussian density
over this line as a measure for the goodness of the candidate. The greater the
value the better the candidate. There are also other ways to characterize the
candidates as described in [7].

With Cib it is also possible to compute the most probable point m/, in the
second image. This is the point where the point correspondence for m{; will most
likely lie. m! corresponds to a line in the dual space, which has the direction
of the largest variance of the Gaussian density. Therefore the point m/, can be
obtained from (see [7])

m=1)x (vT 0)7, (15)

where v is the eigenvector of Cib corresponding to the largest eigenvalue.

UIf 14 = 0 we may use (I,/1;,14/1)T or (1 /15,15/15)T

10



5 Estimation of the Fundamental Matrix

It is possible to compute the fundamental matrix from seven point correspon-
dences. Then there may exist one or three real solutions [1]. In practice we
have much more point correspondences. Because of noise in the measured im-
age points the point correspondences m and m’ will not satisfy (6) exactly. The
goal of the estimation is to find the matrix that best approximates the true so-
lution according to a given criterion. Several methods using different criterions
have been proposed [1, 2, 4].

5.1 Linear Least-Squares Technique

Denoting by F;; the coefficients of F and by (u;,v;,1)T and (u},v},1)T the
homogenous image coordinates of m and m’ the equation (6) may be rewritten
as

alfy =0 (16)
with

! ! !
a = [uug, viu, uh, uvl, vvl, vl u, v, 1]

fy = [Fi1, Fi2, Fi3, Fo1, Fao, Fas, F31, F39, F33] (17)

The scalar equation (16) is linear and homogenous in fg. Thus eight correspon-
dences allow us to determine F up to a nonzero scalar factor. With more than
eight correspondences any linear least-squares technique can be used to solve fy
from
Anfo =0 (18)
where n is the number of point correspondences and
aj
A, =

Sy

a

In the singular value decomposition A, = UDVT, the solution vector fg that
minimizes || A,fg || subject to || fg ||=1 is the last column of V [1].

The advantage of the linear least-squares technique is that it leads to a
noniterative computation method. However it is quite sensitive to noise, even
with large data sets [2]. One reason to this is that the det(F) = 0 constraint is
not necessarily satisfied. This constraint can be enforced by replacing F with
the closest singular matrix F under a Frobenius norm. ¥ is found using the
singular value decomposition [2].

Another improvement to the linear least squares method is the normalization
of the image coordinates as described in [1]. The normalization actually leads
to a great improvement in the stability of the least squares problem and since
the added complexity of the algorithm is insignificant, the normalization should
be always done when linear least-squares technique is used.

5.2 Minimization of Geometric Distance

A problem with the above least-squares technique is that it does not minimize
a geometric distance. The maximum likelihood estimate for the fundamental

11



matrix under the assumption of Gaussian image errors is obtained by minimizing
the reprojection error

!

3 d? (i, vhy) + d2 (i, fyy) (20)

where m; and m] are the measured correspondences and 1h; and ] are esti-

mated noise free correspondences that satisfy ﬁl;TFIﬁi = 0 exactly for some
rank-2 matrix F [1]. The problem with this error function is that in order to
estimate r; and ) we have to estimate the noise free 3D-points M, at the
same time with the fundamental matrix. To reduce the dimensionality of the
minimization problem and to make the implementation simpler we use the first-
order approximation for the reprojection error in (20). The cost function for
the minimization of the first-order geometric error is

(f) Frn,)2
2 (Fry)? + (Fiy,)3 + (FTm))} + (FTm})3’ (21)

(2

where (Frhi)? represents the square of the j-th entry of the vector Fm; [1]. With

this cost function we do not need to estimate the 3D-coordinates M; because
the noise free image coordinates ; and m] do not appear in equation 21. Thus
a minimization problem with 7 + 3n degrees of freedom is reduced to one with
only 7 degrees of freedom.

Another possible geometric quantity to be minimized is the distance between
points and their corresponding epipolar lines. This leads to a following cost
function

> d®(fn;, F ) + d* (), Frn,) (22)

Although this cost function is reported to give slightly inferior results to (21) it
is used in the LMedS-implementation by Zhang, see Section 5.5.1.

5.3 Parameterization of the Fundamental Matrix

In order to minimize a nonlinear cost function like (21), we need a parame-
terization for the fundamental matrix that enforces the rank-2 constraint. We
use the minimum parameterization of 7 parameters in order to compute the
fundamental matrix covariance as described in next section. The problem is
to find a parameterization that would be applicable with all possible camera
configurations [5]. One possible parameterization is

a b —ax — by
F= ¢ d —cx — dy (23)
—az’' — ¢y —br' —dy' (ax+by)z’ + (cz + dy)

where z and y are the coordinates of the first epipole and z’ and y’ the coor-
dinates of the second. The scalars a,b,c and ¢ are defined up to a scale factor,
and we can obtain a minimal parameterization by dividing (23) with the largest
of them. When the epipoles are at infinity above parameterization can not be
used. One must thus switch between different choices of the two rows and two
columns of the F-matrix to use as the basis. Along with four choices of which

12



of a,b,c and ¢ to set to 1, there are a total of 36 maps to parameterize the
fundamental matrix.

However, in [4] Zhang and Loop proposed a technique for estimating the
fundamental matrix with a single parameterization like that in (23). The tech-
nique needs an initial estimate for the fundamental matrix and we use that given
by the LMedS-method. The idea behind the technique of Zhang and Loop is
to find a projective transformation in each image such that in the transformed
image space the first element of the fundamental matrix has the largest value
and the epipoles are not at infinity. The fundamental matrix is estimated in
the transformed space and then transformed back to the original space. The
projective transformations are found by using the initial F-matrix estimate as
explained in [4].

5.4 The Covariance of the Fundamental Matrix

The fundamental matrix can be thought as a random vector f; of R?7 whose
mean is the exact value we are looking for. Each estimation is a sample of
f; and its uncertainty can be characterized with the covariance matrix Cg,.
Csurka et al. proposed in [5], how an approximation for Cg, can be computed.
In Section 4.2.3 we explained how the uncertainty of the fundamental matrix
can be utilized in image matching.

As explained above in Section 5.2, we estimate the fundamental matrix by
minimizing a cost function e which is of the form 2

n

G(ﬁl, f7) = Z 622 (m’ia m/ia f7)7 (24)
i=1
where th = (mj,mj,...,my,, m)). Here n is the number of matches (m;, m})

in the images. In [5] it is shown that an approximation for Cg, is obtained from

2€mi
Ce = —2H T 25
jicd n_7 ( )

where €ni, is the value of € at the minimum and H = g—ig the Hessian of €
with respect to f; at the minimum. Cg, is thus computed7using €min and H
which are given as a by-product of the fundamental matrix estimation. When
the fundamental matrix is considered as a vector of 9 elements the first order
approximation for the 9 x 9 covariance matrix Cg is computed from

F FT
CF:d—C d

—_— 2
df; 7 df, (26)

The 9 x 7 Jacobian dF/df; is computed by differentiating the nine elements of
(23) with respect to the seven parameters (parameter a is set to 1).

5.5 Robust Methods

In practice the point correspondences that are used to estimate the fundamental
matrix contain not only noise but also false matches and badly localized matches.
2

€; is called the residual of match 7 and € is the sum of squared residuals.

13



Especially the presence of false matches will completely spoil the estimation
process if we directly apply the methods described above. The methods, that
are not so easily affected by false matches, are called robust. There are different
robust methods for the fundamental matrix estimation, for example the M-
estimators, the Least-Median-of-Squares (LMedS) method and the Bayesian
method [2, 8]. We used the LMedS-method to obtain an initial estimate for the
fundamental matrix and then the Bayesian method for the final estimate.

5.5.1 Least-Median-of-Squares-Method

The LMedS-method for robust fundamental matrix estimation is implemented
in the ImageMatching software [12] and described in [2]. The method tries to
find the fundamental matrix that minimizes the median of squared residuals,
not the sum of squared residuals as described in Section 5.2.

Given n point correspondences, (m;, m}), a Monte Carlo type technique is
used to draw m random subsamples of 7 different point correspondences. For
each subsample, indexed by J, the fundamental matrix F; is determined. Then
for each F; the median of the squared residuals, M, is computed from

My = E.Ileldiag[dZ(ﬁli’ F}‘fh;) + d2(ﬁl;’ FJﬁli)] (27)
Note that here the residual is the distance between a point and the corresponding
epipolar line. The LMedS-estimate is the F; that minimizes M.

5.5.2 Bayesian Method

After we have the initial estimate for the fundamental matrix we use the Bayesian
weighting principle proposed in [8] to obtain the final estimate. The idea be-
hind the Bayesian weighting is to fit two normal distributions to the residual
distribution with the maximum likelihood method. One distribution is for the
relevant matches and the other for the false matches. The assumption that the
residuals of relevant matches are normally distributed is reasonable because the
residual is a physical quantity (in our case the first order approximation for
the reprojection error) and the image errors are caused by many independent
sources. The justification of the normal distribution assumption for the false
matches is not so obvious, but it seems to give quite good results. The following
mathematical formulation of the Bayesian weighting principle was first given in
[8]-

Given a fundamental matrix estimate F, let the random variables €. and
€ correspond to the residuals of relevant and false matches. The variables
are assumed to follow normal distribution, i.e. €z ~ N(u, 5,07 ¢) and € ¢ ~
N (s g, 0¢ 1) The corresponding density functions of the residuals are p(e|S;)
and p(e|St), where S, and St are the sets of relevant and false matches.> The
density function of the residual of the whole set of matches is

p(€e) = Pep(e|St) + Prp(e|Sk) (28)

where P, and Pr = 1 — P, are a priori probabilities of the relevant and false
matches. The parameters of (28) can be obtained by maximizing the following

3The subscript F is omitted for clarity

14



likelihood function "

L= Hp(€i|PraMra0raNfan)’ (29)
i=1
where n is the number of matches. This optimization problem is relatively
easily solved with standard optimization tools. When the maximum likelihood
estimate for the distribution parameters is found, the Bayes rule can be used to
compute a posteriori probability

P.p(e|Sy)

P(S;e) = P.p(e|Se) + Prp(€| Sr)

(30)

P(S;|e;) tells the probability for a match with residual €; to be relevant. It
is also obvious that the relevant matches should have a greater weight in the
fundamental matrix estimation. Therefore Brandt and Heikkonen suggested
that when the fundamental matrix is estimated by minimizing a cost function
like (21) the residuals should be weighted with the posteriori probabilities. Thus
a new estimate for the fundamental matrix is computed by weighting the new
residual by a posteriori probability of the old residual, i.e.

min ) P(Sle; p)er s, - o

Frew

This leads to an iterative process, where a new fundamental matrix estimate is
computed until the Frobenius norm of the difference between two subsequent
matrices is unchanged.

In our implementation we use the LMedS-estimate as an initial value for
the Bayesian method. The fundamental matrix is estimated using the minimal
parameterization described in Section 5.3. The Bayesian weighting seems to
slightly improve the estimate given by the LMedS-method. Another advantage
of the Bayesian method is that the computation of the fundamental matrix
covariance is possible as described in Section 5.4. This is not directly possible
with the LMedS-method.

We tested our implementation with four image pairs for which the true
fundamental matrix was known through camera calibration. The test images
were obtained from the INRIA-Syntim database [11]. In Table 1 there are the
average differences between the true and estimated fundamental matrices (the
difference is computed as explained in [2] pp. 116). For three image pairs the
Bayesian method improves the result of LMedS, but for one pair the difference
between the true and estimated matrices is large. One explanation could be
that the number of matches was relatively low in this pair. The result of the
fundamental matrix estimation for the first image pair (House) is illustrated
in Figures 9-11. In Figure 9 is the first image and three chosen points. The
epipolar lines corresponding to these points are plotted in Figures 10 and 11.

The result of estimating the fundamental matrix and its covariance is also
illustrated in Figures 12 and 13. Three points are chosen from the first image
and the corresponding epipolar lines are plotted to the second image. The most
probable point (15) is also plotted to the second image. The hyperbolas on both
sides of the epipolar lines are the 97 % confidence intervals computed from the
covariance matrix [2]. The small error bounds indicate that the estimation has
succeeded.

15



Figure 9: The first image and three chosen points. Copyright of the image pair
belongs to INRIA Syntim.

Figure 10: The second image and epipolar lines. Solid line from LMedS-
estimate, dashed from calibrated F-matrix.

Figure 11: The second image and epipolar lines. Solid line from Bayes-estimate,
dashed from calibrated F-matrix. 16



image pair | LMedS Bayes
House 8.17 5.89
Color 291 8.25
Sport 3.63 3.35
Tot 7.00 5.71

Table 1: The result of F-matrix estimation with the LMedS- and Bayesian-
methods

Figure 13: The corresponding epipolar lines and their error bounds. The most
probable position of the corresponding point is marked with ‘x’.

17



6 Structure Computation

When the fundamental matrix is estimated it is possible to compute the cam-
era projection matrices P and P’. They can be determined up to a similarity
transformation if the camera calibration matrices K and K’ are known. Other-
wise the camera projection matrices can be determined only up to a projective
transformation and a projective reconstruction is possible. The projective re-
construction and the original scene are projectively equivalent. For example
angles, parallelism and ratios of lengths and areas may not be preserved in the
projective reconstruction but concurrency and collinearity are preserved.

If the camera calibration matrices are known, an estimate Egq for the essential
matrix may be computed from (6) after the fundamental matrix is estimated.
The actual essential matrix has only 5 degrees of freedom (three for translation
and three for rotation minus one for overall scale), whereas the fundamental
matrix has seven. The additional constraints for the essential matrix cause its
two nonzero singular values to be equal [1]. Our estimate Eg, obtained from
(6), does not necessarily satisfy the additional constraints. Therefore we set the
two singular values of Ey equal to their mean and obtain a new estimate E that
is the best approximation to Eg, in the sense of Frobenius norm, satisfying the
constraints for an essential matrix [9].

The rotation R and translation t between the cameras can be determined
from the essential matrix E. This can be done easily with singular value decom-
position and is described in [1]. We choose the first camera coordinate frame as
the world coordinate frame and fix the overall scale by setting the distance be-
tween the camera centres to 1, i.e. ||t|| = 1. Then we have the camera projection
matrices P = K(I 0) and P/ = K'(R t) up to a similarity transformation.

Next we compute the three dimensional correspondences for each match in
the images. Since there are errors in the image measurements there will not
exist a point M that exactly satisfies 1 = PM and m’ = P'M. Therefore we
find a point M that minimizes the sum of squared reprojection errors

p(m,m’) = d?(m, ') + d*(m’, m’), (32)

where r and ' are the images of M and satisfy A Fh =0 exactly. The
minimization of reprojection error was already discussed in Section 5.2, but here
we assume the estimated fundamental matrix and camera projection matrices
to be error free. We minimize (32) by first finding the points h and m’ (for
details see [1], Algorithm 11.1). We find two corresponding epipolar lines 1 and
I’ that minimize
d*(m,1) + d*(m/,1'). (33)
m and m’ are the points on the epipolar lines 1 and 1’ that are closest to points
m and m’. Minimization of (33) can be reduced to finding the real roots of a
polynomial of degree 6 since the epipolar lines 1 and 1’ can be parameterized
with a single parameter when the fundamental matrix is known.
When solving M we use cross product to eliminate the homogenous scale
factors. By writing out equations m x (PM) = 0 and i x (P'M) = 0 we get
two linearly independent equations from each. These can be written in the form

AM =0, (34)
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where
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Here p} and p} are the rows of P and P’; (u,v) and (u’,v’) are the coordinates

of th and i’. The system of equations (34) is redundant and M can be solved
as the right null vector of A. Thus we obtain the three dimensional coordinates
corresponding to a match (m, m’).

The results of computing the scene structure as described above are shown
in Figures 14 to 17. The images in Figures 12 and 13 were taken with a digital
camera, whose internal parameters are known. The result of reconstruction
is illustrated in Figures 14 and 15. The reconstruction was computed after the
effect of lens distortion was removed from the images. This was possible because
the distortion parameters for the camera were known. The median and average
value of the reprojection error among all matches were 1.33 and 1.34.

The image pair Sport, obtained from INRIA-Syntim database with the cal-
ibration data and already introduced in Table 1, is shown in Figure 16. We
computed two reconstructions of it, one with the calibrated F-matrix and the
other with the estimated F-matrix, Figure 17. The median and average of the
reprojection error were 0.31 and 0.50 with the calibrated F-matrix and 2.05 and
1.90 with the estimated F-matrix.

The real cameras are not exactly pinhole cameras. The deviation from the
pinhole model is called lens distortion and can be observed in Figure 17. The
back wall of the latter reconstruction is not straight although it evidently should
be. Curiously the reconstruction with the estimated F-matrix seems better.
However, because neither the orientation of walls and the optical axis of the
first camera nor the accuracy of camera calibration are known it is difficult to
draw any conclusions.

7 Conclusions

In this report we have reviewed different methods for the various tasks in au-
tomatic scene reconstruction. As shown in the previous section some quite
interesting results were obtained. We discussed the fundamental matrix esti-
mation a lot because it is a crucial part in the reconstruction process. The
proposed methods are capable to robust estimation of the epipolar geometry.
However, if the image correspondences do not contain enough depth variation
or there are too few of them, the estimation may fail and the reconstruction is
impossible. Thus the performance of the automatic reconstruction depends also
on the scene. The result is better with richly textured scenes, because then the
number of found correspondences between the views is greater in general.

The main drawback of our approach is the sparseness of the recovered depth
information. When single points are matched between the views, the depth
information can be computed only for the corresponding world points and the
result is often a very sparse reconstruction. The advantage of our approach is
that it is computationally fast. If one wants to compute a dense reconstruction
a possible approach would be to first compute dense disparity maps for the
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Figure 14:

Left: Front view of the reconstructed 3D-points.

Right: The measured image points and projected 3D-points plotted to the same
image.

Figure 15: Top view of the reconstructed 3D-points
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Figure 16: Image pair Sport and the matches obtained by the multi-resolution
method. Copyright of the image pair belongs to INRIA-Syntim.
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Figure 17: Top views of the two reconstructions from image pair Sport. On the
left is the reconstruction computed by using the estimated F-matrix and on the
right is the reconstruction computed by using the calibrated F-matrix.
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images. These algorithms are computationally heavier, but for example Alvarez
et al. have reported good results with this approach [10].
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