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ABSTRACT   

In geometric calibration of stereoscopic cameras the object is to determine a set of parameters which describe the 
mapping from 3D reference coordinates to 2D image coordinates, and indicate the geometric relationships between the 
cameras. While various methods for stereo cameras with ordinary lenses can be found from the literature, stereoscopic 
vision with extremely wide angle lenses has been much less discussed. Spherical stereoscopic vision is more and more 
convenient in computer vision applications. However, its use for 3D measurement purposes is limited by the lack of an 
accurate, general, and easy-to-use calibration procedure. Hence, we present a geometric model for spherical stereoscopic 
vision equipped by extremely wide angle lenses. Then, a corresponding generic mathematical model is built. Method for 
calibration the parameters of the mathematical model is proposed. This paper shows practical results from the calibration 
of two high quality panomorph lenses mounted on cameras with 2048x1536 resolutions. Here, the stereoscopic vision 
system is flexible, the position and orientation of the cameras can be adjusted randomly. The calibration results include 
interior orientation, exterior orientation and the geometric relationships between the two cameras. The achieved level of 
calibration accuracy is very satisfying.    

Keywords: spherical stereoscopic vision, panomorph lens, general geometric and mathematical model, parameter 
calibration 
 

1. INTRODUCTION  
Stereoscopic vision is a relatively mature field in computer vision, and the stereo method has been investigated in the 
literature. Most of these studies use ordinary lenses with a limited field of view (FOV). The geometry of ordinary 
cameras can be well approximated by the pinhole camera model. As is well known, the 3D-information can only be 
computed points which are simultaneously observed by both cameras. Hence, a blind area exists, as shown in Figure 1. 
However, using a pair of panomorph or fish-eye images the overlap region of the FOV can be expanded to the entire area 
covered by the two cameras [1]. Recently, spherical stereoscopic vision is more and more common in computer vision 
applications especially for automatic driving assistance [2] [3], UAV altitude estimation [4], forest inventory [5], city 
modeling [6] and 3D measurement [7] applications. But, it use for 3D measurement purposes is limited by the lack of an 
accurate, generic, and easy-to-use calibration procedure.   

 
Figure 1. Using two normal cameras, the 3D information can only be captured by the overlapped gray region, and a 

blind area (shown in gray) exists between these regions.  
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A generic geometric model of spherical stereoscopic vision system has been built to describe the transformation process 
of one real world point to a pair of corresponding image pixels. The proposed geometric model is depicted in Figure 3: 

 
Figure 3. A general geometric model for spherical stereoscopic vision. 

 

It is organized by Real World Coordinate ሺࢃࢄ, ,ࢃࢅ ,ࢄሻ, Camera Coordinate ሺࢃࢆ ,ࢅ ,࢞ሻ, Sensor Plane Coordinate ሺࢆ ,࢛ሻ and Image Pixel Coordinate ሺ࢟  is the corresponding ࡾࡼ and ࡸࡼ .ሻ. Here P is one object point in the real world࢜
pixels in left and right image, respectively. If camera follows pinhole model, ࡸࡼᇱᇱᇱ and ࡾࡼᇱᇱᇱ will be the corresponding 
image pixels of P. ࡸࣂ  and ࡾࣂ is the incidence angle,  ࡸ࣒ and ࡾ࣒ is the azimuth angle of P in images. Here, ࢞ࢊ and ࢟ࢊ 
represents the physical dimensions of each pixel in horizontal and vertical dimensions. The camera center ࡻ and its 
distance form the image plane is the focal length f. ሺ࢛,  ሻ  is the principal point of the image. Based on this generic࢜
geometric model, a mathematical model is derived to set up the relationship between the parameters. 

 

3. MATHEMATICAL MODEL FOR SPHERICAL STEREOSCOPIC VISION 
In the field of computer vision, perspective projection model is widely used to solve the correspondence problem 
between the 3D object points and 2D image points. However, extremely wide angle lenses are designed to cover the 
whole hemispherical field in front of the camera and the FOV is usually more than or equal to 180º. It is impossible to 
project the hemispherical field of view on a finite sensor plane by a perspective projection. Therefore, the traditional 3D 
measurement model of the binocular system[16] is invalid to the spherical stereoscopic vision system which is built with 
panomorph or fish-eye lenses. 

As shown in Figure3, the real world coordinate system is not identical with camera coordinate system. The motion 
between these coordinate systems is given by a rotation R and translation t. Transform the object ࡼ ൌ ሺࢃ࢞, ,ࢃ࢟ ᇱᇱᇱࡼ to ࢀሻࢃࢠ ൌ ሺ࢞, ,࢟ ܲ :which is on the camera  ࢀሻࢠ ൌ ܴܲᇱᇱ    (1)                                                                                        ݐ
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If the stereoscopic vision system is built by perspective cameras, by similar triangles, the point ሺࢉ࢞, ,ࢉ࢟ ࢀሻࢉࢠ  in the 

camera coordinate frame will be projected to the point ࡼᇱᇱᇱ ൌ ሺ࢞, ࢀሻ࢟ ൌ ቀࢌ ࢉࢆࢉ࢞ , ࢌ ࢀቁࢉࢠࢉ࢟
 in the image coordinate frame. In 

terms of homogeneous coordinates this perspective projection can be represented by a 3×4 projection matrix,  

ቆ1ݕݔቇ ൌ 0݂0    0݂0    001    000൩ ቌݔݕݖ1 ቍ                                                                           (2)  

To make our mathematical model more universal to various sorts of spherical stereoscopic vision systems built by 
panomorph or fish-eye lenses, in this paper, we adopt another generic camera model, not the same as (2), to different 
types of extremely wide angle lenses based on our previous studies, which is published and discussed on [13][14]. ܲᇱᇱᇱ ൌ ቀݕݔቁ ൌ ሻߠሺݎ ൬ܿݏ ݊݅ݏ߰ ߰൰                                                                           (3)  

Here, r is the distance between the image point and the principal point, θ is the angle between the principal axis and the 
incoming ray, and ࢾ ൌ ሺࣂ,  is the direction of the incoming ray. The projections of extremely wide angle lenses are ࢀሻ࣒
considered as a general form: ݎሺߠሻ ൌ ݇ଵߠ  ݇ଶߠଷ  ݇ଷߠହ  ݇ସߠ  ݇ହߠଽ   (4)                                                           ڮ

For computations, we need to fix the number of terms in (4). Experiments prove that the first five terms, up to the ninth 
power of θ, give enough degrees of freedom for good approximation of different projection curves. Thus, the radially 
symmetric part of the camera model contains the five parameters, , , , ,   .ڮ

To obtain a widely applicable model, there are also two distortion terms as follows: 

one distortion term acts in the radial direction ∆ሺߠ, ߮ሻ ൌ ሺ݈ଵߠ  ݈ଶߠଷ  ݈ଷߠହሻሺ݅ଵܿ߰ݏ  ݅ଶ߰݊݅ݏ  ݅ଷܿ2߰ݏ  ݅ସ2߰݊݅ݏሻ                                  (5)  

and the other in the tangential direction ∆௧ሺߠ, ߮ሻ ൌ ሺ݉ଵߠ  ݉ଶߠଷ  ݉ଷߠହሻሺ݆ଵܿ߰ݏ  ݆ଶ߰݊݅ݏ  ݆ଷܿ2߰ݏ  ݆ସ2߰݊݅ݏሻ                              (6)  

where the distortion functions are separable in the variables θ and ψ. 

By adding the distortion terms to (3), we obtain the distorted coordinates ࢊࡼᇱᇱᇱ ൌ ሺࢊ࢞,  :by ࢀሻࢊ࢟

ௗܲᇱᇱᇱ ൌ ܲᇱᇱᇱݑሺ߰ሻ  ∆ሺߠ, ߰ሻݑሺ߰ሻ  ∆௧ሺߠ, ߰ሻݑటሺ߰ሻ                                                   (7)  

Here, ࢛࢘ሺ࣒ሻ and ࣒࢛ሺ࣒ሻ are the unit vectors in the radial and tangential directions. 

The final step is to transform the sensor plane coordinates ࢊࡼᇱᇱᇱ  into the image pixel coordinates ࡼന ൌ ሺ࢛. ࢀሻ࢜ . By 
assuming that the pixel coordinate system is orthogonal, we get the pixel coordinates from: ധܲ ൌ ቀݒݑቁ ൌ ݉௨ 00 ݉௩൨ ቀݔௗݕௗቁ  ቀݑݒቁ                                                                 (8)  ሺ࢛,  is the principal point and m୳and m୴give the number of pixels per unit distance in horizontal and vertical ࢀሻ࢜
directions, respectively. 

At this point, the transformation process from one 3D object point to a 2D image pixel can be considered as complete. 
However, if the image pixel ࡼന is given, we still can’t only rely on the backward model to uniquely determine the 3D 
object point P. Since all of the 3D points which have the same projection point ࡼന will lie on the ray ࢾ ൌ ሺࣂ,  In .ࢀሻ࣒
order to determine the object point P uniquely by triangulation, the geometric relationships between the two cameras of a 
spherical stereoscopic vision system need to be determined. 

For any arbitrary point P, if its non-homogeneous coordinates in the real world coordinates, left camera coordinates and 
right camera coordinates are: ࢝ࢄ, hence: ܺ , ࢘ࢉࢄ andࢉࢄ ൌ ܴ௪՜ܺ௪  ௪՜      ,      ܺݐ ൌ ܴ௪՜ܺ௪     ௪՜                                            (9)ݐ
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eliminate ࢃࢄ ܺ ൌ ܴ௪՜ ሺܴ௪՜ሻିଵܺ  ௪՜ݐ െ ሺܴ௪՜ሻିଵݐ௪՜                                              (10)  

The geometric relationships between two cameras can be described as: ܴ ൌ ܴ௪՜ ሺܴ௪՜ሻିଵ ݐ ൌ ௪՜ݐ െ ሺܴ௪՜ሻିଵݐ௪՜                                                                  (11)  

To sum up, all of the internal and external parameters of our stereo camera system have been presented. 

 

4. CALIBRATING THE GENERAL MODEL 
This section describes a procedure for estimating the parameters of the general model for the spherical stereoscopic 
vision. The calibration method is based on viewing a calibration pattern which contains control points in fixed positions. 
We propose two kinds of flexible calibration patterns which have aspect ratios 16:9 and 4:3, and can be displayed on a 
flat screen conveniently by using the full screen viewing mode of Acrobat Reader. In addition, a good accuracy can be 
achieved if circular control points are used [14]. 

There are M control points observed in N views. For each view, there is a rotation matrix ࡾ and a translation vector ࢚ 
describing the position of the camera with respect to the calibration pattern such that ܺ ൌ ܴܺ  ݆   ,ݐ ൌ 1, ….  ,                                                               (12)  

We choose the calibration plane to lie in the XY-plane and denote the coordinates of the control point i with ࢄ ൌሺࢄ, ,ࢅ ሻࢀ. The corresponding homogeneous coordinates in the calibration pattern are denoted by ࢞ ൌ ሺࢄ, ,ࢅ ሻࢀ, and 
the observed coordinates in the view j by  ൌ ൫࢛, ,࢜ ൯ࢀ

. 

Step 1: Initialization of internal parameters 

At first, we use a simplified version of our multi-parameters camera model which contains only six non-zero internal 
parameters, i.e. the parameters ሺ, , ,࢛ ,࢜ ,࢛  ሻ . These parameters are initialized using a priori knowledge about࢜
the camera. The initial values for  and   can be obtained by fitting the model ࢘ ൌ ࣂ  ࣂ  to the desired 
projection curve of one of the perspective projection, stereographic projection, equidistance projection, equisolid angle 
projection or orthogonal projection with f=1. With a full-fame lens, the best thing is probably to place the principal point ሺ࢛,  .to the image center. In pixel coordinates, the yield of view of a panomorph lens is mapped inside an ellipse ࢀሻ࢜
We can use the reported values of the pixel dimensions to obtain initial values for ࢛ and ࢜.  

With the above internal parameters, we may back-project the observed points  onto the unit sphere centered at the 

camera origin. For each  the back–projection gives the direction ࢾ ൌ ൫ࣂ, ࢀ൯࣒
 and the points on the unit sphere are 

defined by  ൌ ൫࢙ ࣒ ࢙ ࣂ , ࢙ࢉ ࣒ ࢙ ࣂ , ࢙ࢉ ࢀ൯ࣂ
. 

Step 2: Computation of homographies 

Since the mapping between the points on the calibration plane and on the unit sphere is a central projection, there exists a 
planar homography ࡴ so that 

ݍݏ  ൌ ݔܪ                                                                                         (13)  

Here, s is a proportionality factor. We compute the initial estimate for ࡴ from the correspondences  ՞ ࢞  by the 
linear algorithm with data normalization [18]. 

Step 3: Initialization of external parameters 

The initial values for the external camera parameters are extracted from the homographies ࡴ. It holds that 
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ݍݏ ൌ ݔܪ ൌ ܪ ൮ܻܺ01 ൲                                                                           (14)  

ݍݏ ൌ ൣ ܴ    ݐ൧ ൮ܻܺ01 ൲       ,      ܴ ൌ   ଷ൧                                                           (15)ݎ  ଶݎ   ଵݎൣ

ݍݏ  ൌ ൣ ܴ    ݐ൧ ൮ܻܺ01 ൲ ൌ ൧ݐ  ଶݎ   ଵݎൣ ൮ܻܺ01 ൲                                                             (16)  

Which implies ࡴ ൌ ሾ࢘   ࢘  ࢚ሿ , Hence, ݎଵ ൌ ߣ ݄ଵ,           ݎଶ ൌ ߣ ݄ଶ,            ݎଷ ൌ ଵݎ ൈ ݐ           ,ଶݎ ൌ ߣ ݄ଷ                                    (17)  

Where ࣅ ൌ േฮࢎฮି
. The sign of ࣅ can be determined by requiring that the camera is always on the front side of the 

calibration plane. However, the obtained rotation matrices may not be orthogonal due to estimation errors. Hence, the 
singular value decomposition is used to compute the closest orthogonal matrices in the sense of Frobenius norm which 
are then used for initializing each ࡾ. 
Step 4: Minimization of projection error 

If own full camera model with more than six parameters is used the additional camera parameters are initialized to zero 
at this stage. As we have the estimates for the internal and external camera parameters, we may compute the imaging 
function च for each camera, where a control point is projected to ෝ  ൌ चሺࢄሻ. The camera parameters are defined by 
minimizing the sum of squared distances between the measured and modeled control point projections ∑ ∑ ݀ሺ ݉, ෝ݉ሻଶெୀଵேୀଵ                                                                        (18)  

using the Levenberg-Marquardt algorithm. 

Step 5: Computation of the geometric relationships between two cameras 

In the course of calibrating procedures, the calibration pattern is stationary, and the location of the spherical stereoscopic 
vision system is constantly changing to view the pattern in different places. In each view, we will obtain 
corresponding࢝ࡾ՜ࢉ ࢘ࢉ՜࢝ࡾ ,   and ࢚࢝՜ࢉ , ࢘ࢉ՜࢚࢝   to describe the situation of the left and right camera, respectively. 
Although these above mentioned parameters in different positions are not the same, but the geometric relationship 
between the left and right camera, ࢉࡾ՜࢘ࢉ and ࢉ࢚՜࢘ࢉ, is unique. Each group of ࢉࡾ՜࢘ࢉand ࢉ࢚՜࢘ࢉ can be obtained by (10) 
and (11).  

 

5. CALIBRATING THE GENERAL MODEL 
In this section, calibration result of the spherical stereoscopic vision system is presented. The system is constructed by a 
pair of network camera (AXIS P1346-E) with panomorph lens (YF360A-SA2), as shown in Figure2. The camera has a 
resolution of 2048×1536 pixels. The lens has a 182⁰ field of view and a total focal length of 1.15mm. A calibration 
pattern with aspect ratios 4:3 has been projected on a screen by projector. Figure 4 is the one pair of images captured by 
the panomorph lenses for the calibration of the spherical stereoscopic vision system. There is an ellipse area inside the 
image frame. Here, we used 13 pairs of images of the calibration pattern to calculate the internal and external parameters. 
There were 13×12×16 observed control points in total and they were localized by computing their gray-scale centroids. 
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Figure 4. Images captured by the two panomorph lenses for the calibration of the spherical stereoscopic vision system 

 

The internal parameters calibration result is illustrated in Table 1 which shows the RMS residual errors in pixels and the 
values of the parameters. 

TABLE 1. Internal parameters calibration result 

 Left         Right 

camera    camera 

 Left         Right 

camera    camera

 Left         Right 

camera    camera 

RMS residual 

errors in pixels 

 

0.8280    0.7925 

 ݇ସ  

0.2928     0.5353 

 ݅ସ 

 

-0.0335   -0.3155 ݇ଵ 0.8343    0.9091 ݇ହ -0.0827  -0.1636 ݉ଵ -0.0086   -0.0342 ݇ଶ 0.4563    0.5495 ݈ଵ 0.1290     0.0223 ݉ଶ -0.0766   -0.0718 ݉௨ 294.9848    299.9514 ݈ଶ 0.0278   -0.0618 ݉ଷ -0.0548   -0.1503 ݉௩ 233.4001    232.5818 ݈ଷ 0.0458    0.0979 ݆ଵ -0.0643    0.3218 ݑ 501.9822    490.7397 ݅ଵ 0.1263    0.0001 ݆ଶ 0.0597    -0.7726 ݒ 423.0243    421.4076 ݅ଶ 0.1893    0.0183 ݆ଷ 0.0627     0.7126 ݇ଷ -0.3847    -0.6620 ݅ଷ 0.1061    0.0180 ݆ସ -0.0528   -0.0703 

 

There are thirteen groups of  ࢝ࡾ՜ࢉ ࢘ࢉ՜࢝ࡾ ,   and ࢚࢝՜ࢉ , ࢘ࢉ՜࢚࢝   which can be estimated by applying the calibration 
algorithm described in section 4. However, the relative orientation of the two cameras is identical. According to formula 
(10), the rotation matrix is ܴ՜ ൌ ൭ 0.999958352554411 െ0.00300252146825658 െ0.015853020566748510.00297405722117520 0.999963824514041 െ0.004869516313495690.03588690772341046 0.00482849421023068 0.999971014560481 ൱ 

, and the translation matrix is ݐ՜ ൌ ሺെ24.3253948571628 െ1.10224564788995 5.99123314154657ሻ 

6. CONCLUSION 
The conventional pinhole camera model cannot be applied to spherical stereoscopic vision constructed by extremely 
wide angle lenses, because such as panomorph and fish-eye lens may have a wider than hemispherical FOV. In this 
paper, a spherical stereo calibration technique is proposed to cope with this problem. A general system model has been 
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presented, which is generic, easily expandable and precise. The calibration method is based on viewing a planar 
calibration pattern with circle control points. In addition, a flexible binocular spherical stereo stereoscopic vision system 
has been built. The experiment shows that the achieved level of accuracy for internal and external parameters is 
satisfying. The results are promising considering especially the aim of using binocular spherical stereo stereoscopic 
vision system in measurement purposes.  
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