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1. Derivations

Schmidt [2] presents an in-depth analysis of the Field-of-Experts model for a single channel image using Gaussian
Scale Mixtures as experts. Many parts of the analysis apply to our extension to intensity and depth images. Here
we show the derivation of the equations that need to be extended to account for the two channels. For reference,
we expand here Eq. (1) from our main paper using GSM as expert functions

p(x;θ) =
1

Z(θ)
e−ε||x||

2/2
K∏
k=1

N∏
i=1

J∑
j=1

αij · N (h>i u(k) + g>i v(k); 0, σ2
i /sj). (1)

1.1. Learning

To train the model using contrastive divergence we need the derivatives of the model’s likelihood with respect
to the model parameters. As in Section 5 of [2], it is advantageous to look at the FoE model density in terms of
its energy

p(x;θ) =
1

Z(θ)
exp(−E(x;θ)), (2)

E(x;θ) =
ε

2
||x||2 −

K∑
k=1

N∑
i=1

log φ(h>i u(k) + g>i v(k);αi). (3)

To ensure that the learned weights for the GSM are always positive and sum to one, we perform the following
variable replacement

αij =
ωij∑J
j=1 ωij

where ωij = exp(α̂ij) (4)

and we learn α̂ij instead of the original αij . The GSM experts can be written concisely as vector products

φ(h>i u(k) + g>i v(k); α̂i) =
1∑J

j=1 wij

J∑
j=1

wij · N (h>i u(k) + g>i v(k); 0, σ2
i /sj) (5)

= (ω>i 1)−1ω>i ϕ(h>i u(k) + g>i v(k)), (6)
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where ωi = [ωi1, . . . ωiJ ]>, 1 denotes the J-dimensional 1-vector, and ϕ(x) = {N (x; 0, σ2
i /sj)|j = 1, . . . , J} is a

vector-valued function where we denote vectors of element-wise derivatives with ϕ′(x),ϕ′′(x), etc.
The log-likelihood of the model is defined over the training data X = {x(1), . . . ,x(T )}, where each x(t) is an

i.i.d. image with an intensity and a depth channel, i.e. x> = [u>v>]. The log-likelihood function is

`(θ) = log

T∏
t=1

p(x(t);θ) =

T∑
t=1

log p(x(t);θ) =

T∑
t=1

− logZ(θ)− E(x(t),θ). (7)

As shown in [2], the derivative w.r.t the model parameters θ = {hi,gi, α̂i|i = 1, . . . , N} required for contrastive
divergence are

∂`(θ)

∂θ
= −T ∂ logZ(θ)

θ
−

T∑
t=1

∂E(x(t);θ)

∂θ
(8)

= T

[〈
∂E(x,θ)

∂θ

〉
p

−
〈
∂E(x,θ)

∂θ

〉
X

]
(9)

where 〈·〉X and 〈·〉p are the expected values over the training data set and a hallucinated data set drawn from
distribution p. We rely on sampling to draw these samples and approximate the expected derivative, as in [2].

The derivative of the energy w.r.t. the GSM parameters is

∂E(x;θ)

∂α̂ij
= −

K∑
k=1

∂ log φ(h>i u(k) + g>i v(k); α̂ij)

∂α̂ij
(10)

=
ωij
ωTi 1

[
K −

K∑
k=1

N (h>i u(k) + g>i v(k); 0, σ2
i /sj)

φ(h>i u(k) + g>i v(k); α̂ij)

]
. (11)

The derivative w.r.t. to the intensity filter coefficients is

∂E(x;θ)

∂him
= −

K∑
k=1

∂ log φ(h>i u(k) + g>i v(k); α̂ij)

∂him
(12)

= −
K∑
k=1

ω>i ϕ
′
i(h
>
i u(k) + g>i v(k))

ω>i ϕi(h
>
i u(k) + g>i v(k))

[
u(k)

]
m
, (13)

where [·]m is the mth element of the vector. And likewise for the depth coefficients

∂E(x;θ)

∂gim
= −

K∑
k=1

ω>i ϕ
′
i(h
>
i u(k) + g>i v(k))

ω>i ϕi(h
>
i u(k) + g>i v(k))

[
v(k)

]
m
. (14)

1.2. Sampling the Prior

As suggested by Welling et al . [3] we introduce a discrete hidden random vector z ∈ {1, · · · , J}N×K , where entry
zik indicates the active scale for expert i on clique k. By definition the distribution of each variable corresponds
to the GSM mistrue weight, i.e. p(zik) = αizik . Because we can ignore the Gaussians that are not active, the joint
probability of the image and this hidden random vector is then

p(x, z;θ) =
1

Z(θ)
e−ε||x||

2/2
K∏
k=1

N∏
i=1

αizik · N (h>i u(k) + g>i v(k); 0, σ2
i /szik). (15)

To obtain samples from the prior we alternate between sampling the conditional distributions p(z|x;θ) and
p(x|z;θ). In the former case, the variables zik are independent given the image, so the conditional probability
simplifies to
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p(z|x;θ) ∝ αizik · N (h>i u(k) + g>i v(k); 0, σ2
i /szik). (16)

The conditional probability p(x|z;θ) can also be expressed as a multivariate Gaussian. We first express the
per-clique filtering operations as filters on the entire image

p(x|z;θ) ∝ e−ε||x||
2/2

K∏
k=1

N∏
i=1

exp

(
−szik

2σ2
i

(h>i u(k) + g>i v(k))
2

)

∝ exp

(
− ε

2
x>x− 1

2

K∑
k=1

N∑
i=1

szik
σ2
i

(
h>i u(k) + g>i v(k)

)2)

∝ exp

(
− ε

2
x>x− 1

2

K∑
k=1

N∑
i=1

szik
σ2
i

(
u>(k)hih

>
i u(k) + v>(k)gig

>
i v(k) + u>(k)hig

>
i v(k) + v>(k)gih

>
i u(k)

))

∝ exp

(
− ε

2
x>x− 1

2

N∑
i=1

(
u>

K∑
k=1

szik
σ2
i

h′ikh
′>
ik u + v>

K∑
k=1

szik
σ2
i

g′ikg
′>
ik v + u>

K∑
k=1

szik
σ2
i

h′ikg
′>
ik v + v>

K∑
k=1

szik
σ2
i

g′ikh
′>
ik u

))

∝ exp

(
− ε

2
x>x− 1

2

N∑
i=1

(
u>HiZiH

>
i u + v>GiZiG

>
i v + u>HiZiG

>
i v + v>GiZiH

>
i u
))

(17)

where h′ik is defined so that h′>ik u is the result of applying filter hi to clique k of the intensity channel u, and g′ik
is defined likewise for the depth channel. Zi = diag{szik/σ2

i } are diagonal matrices with entries for each clique.
Hi and Gi are a filter matrices corresponding to a convolution with filter i of the intensity and depth channels
respectively, i.e. H>i u = [h′>i1 u, . . . ,h

′>
iKu]> = [h>i u(1), . . . ,h

>
i u(K)]

>. Not only is this more efficient to implement
through image convolutions, but it also allows the filter matrices to be combined

p(x|z;θ) ∝ exp

(
− ε

2
x>x− 1

2

[
u> v>

] N∑
i=1

[
HiZiH

>
i HiZiG

>
i

GiZiH
>
i GiZiG

>
i

] [
u
v

])

∝ exp

(
− ε

2
x>x− 1

2

[
u> v>

] N∑
i=1

[
Hi

Gi

]
Zi
[
H>i G>i

] [u
v

])

∝ exp

(
−1

2
x>

(
εI +

N∑
i=1

WiZiW
>
i

)
x

)

∝ N

x;0,

(
εI +

N∑
i=1

WiZiW
>
i

)−1 , (18)

where we use W>
i = [H>i G

>
i ]> to reach an equation that has the same form as that used by Schmidt [2, 1] for

sampling. As in their case, we can further rewrite the covariance matrix as the matrix product

Σ =

(
εI +

N∑
i=1

WiZiW
>
i

)−1
=

[W1, . . . ,WN , I
]

Z1 . . . 0

. . .
...

... ZN
0 . . . εI



W>

1
...

W>
N

I



−1

=
(
WZW>)−1 (19)

and sample y = N (0, I) to obtain a sample x from p(x|z;θ) by solving the least-squares problem

WZW>x = W
√
Zy (20)

as was shown in [1].
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1.3. Conditional sampling

The formulas obtained on the previous section provide the theoretical framework for sampling. However, we
often have information for some of the elements of x and we only want to sample the rest. In this case we need
to sample the conditional probability p(xA|xB , z;θ), where xB and xA are the known and unknown elements of
x respectively. This is useful both for learning, where extreme values are less constrained in boundary pixels, and
during inference, where, for example, only certain areas of the image need to be inpainted.

We note that x is logically divided into two parts, u for intensity and v for depth, however, the grouping
together of the variables for each channel is arbitrary. We reorder x to group the known and unknown variables
instead, i.e. x′ = [x>A,x

>
B ]>. For this we use a permutation matrix P so that x′ = Px and PP> = P>P = I. This

reordering does not affect the shape of the probability distribution, i.e. p(x′;θ) ∝ N (x′;0,Σ′). By definition, this
new covariance matrix is

Σ′ = 〈x′x′>〉 = 〈Pxx>P>〉 = P〈xx>〉P> = PΣP> (21)

Using the result from Eq. (19) we can expand this and define Σ′ in terms of submatrices

Σ′ = P
(
WZW>)−1 P> =

(
PWZW>P>

)−1
=

[
A C
C> B

]−1
(22)

where A and B are a square matrices with the same number of rows as xA and xB respectively. We can now
obtain the conditional distribution of the unknown variables given those that are known

p(xA|xB , z;θ) ∝ N (x′;0,Σ′) (23)

∝ exp

(
−1

2

[
xA
xB

]> [
A C
C> B

] [
xA
xB

])
(24)

∝ exp

(
−1

2

(
xA + A−1CxB

)>
A
(
xA + A−1CxB

))
(25)

∝ N
(
xA;−A−1CxB ,A

−1) (26)

This allows for the same efficient sampling scheme. The sampling of the scale vector z remains as before, i.e.
p(z|xA,xB ;θ) = p(z|x;θ).
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