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ABSTRACT

Patch cloud based multi-view stereo methods have proven to
be an accurate and scalable approach for scene reconstruction.
Their applicability, however, is limited due to the semi-dense
nature of their reconstruction. We propose a method to gener-
ate a dense depth map from a patch cloud by assuming a pla-
nar surface model for non-reconstructed areas. We use local
evidence to estimate the best fitting plane around missing ar-
eas. We then apply a graph cut optimization to select the best
plane for each pixel. We demonstrate our approach with a
challenging scene containing planar and non-planar surfaces.

Index Terms— Computer vision, Stereo image process-
ing

1. INTRODUCTION

Video-plus-depth has become a leading standard for the rep-
resentation and transmission of scenes in 3DTV [1]. As a
transmission format it lends itself to high compression rates
due to the correlation between the color and depth images.
Moreover, it is the format used for depth image-based render-
ing, which has promising applications for the 3DTV industry,
such as free viewpoint rendering.

However, not all 3D reconstruction methods produce fully
dense depth maps. Textureless regions are often not recon-
structed due to the lack of photometric constraints. Further-
more, using individual depth maps to reconstruct the scene
can lead to inconsistencies across the different depth maps.
This is a concern for multi-view stereo methods which use
several cameras simultaneously to estimate the scene struc-
ture.

One common approach of state-of-the-art methods is to
reconstruct the scene using primitives in a global reference
frame (e.g. patches in [2]). This ensures scene consistency
across all the views. However, when the scene is reprojected
onto the source cameras, not all pixels are assigned a depth,
mainly due to missing surfaces, resulting in semi-dense depth
maps. Even more recent works that improve Furkawa and
Ponce’s algorithm (e.g. [3]) are not able to produce dense re-
constructions. We propose an algorithm to estimate the depth
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of the remaining pixels after the initial 3D reconstruction as-
suming a planar surface model for the textureless surfaces.

2. PREVIOUS WORK

Recently, several multi-view stereo methods have emerged
which assume that the scene has piecewise planar structure
[4, 5, 6]. The strongest assumption is that the world has a
Manhattan structure [4]. This means that only three perpen-
dicular plane directions are allowed. Gallup et al. [7] use
the Manhattan world assumption to extend the stereo plane-
sweeping approach. They estimate the world reference frame
rotation and then make a plane sweep along the three different
directions. The results show an improvement over the tradi-
tional plane-sweep algorithm but is limited by the assumption
of orthogonal plane directions. Moreover, the computation of
individual depth maps does not guarantee scene consistency.

Furukawa et al. propose an another approach based on the
Manhattan world assumption [4]. They begin with a multi-
view consistent reconstruction of textured surfaces using a
state-of-the-art method [2]. They then extract the dominant
plane directions from the patch cloud and finally construct a
depth map by labeling the pixels with a set of axis-aligned
planes. They show very good results for architectural scenes
but their approach is not designed to handle non-planar sur-
faces.

Sinha et al. enforce planar constraints on the scene sur-
face but allow for arbitrary plane directions [5]. They first re-
cover reliable points and 3D line segments using multi-view
methods, and use them to create a set of plane hypothesis.
Evidence is collected for the planes and a final depth map is
generated by labeling the pixels with the plane labels. Al-
though their approach is flexible in the plane direction, they
do not take non-planar surfaces into consideration.

Finally, Gallup et al. recently presented a method that uses
planar models but considers non-planar surfaces on the scene
[6]. They use traditional multi-view stereo methods to gen-
erate a dense depth map for the scene. Plane hypothesis are
generated using RANSAC and the 3D points. A labeling stage
assigns pixels to planes and includes a non-planar label. To
improve efficiency, a classifier is applied to detect non-planar
surfaces incorrectly assigned as planar. An important differ-
ence between this method and our own is that we only com-



Algorithm 1 Plane hole filling algorithm

1: Project patches to image
2: plane list← ∅
3: for all hole ∈ depth map do
4: local plane list← ∅
5: for all patch ∈ boundary(hole) do
6: if patch matches plane in local plane list then
7: Update matching plane with patch
8: else
9: Add patch to plane list

10: end if
11: end for
12: for all plane ∈ local plane list do
13: Refine parameters
14: Calculate global inliers
15: end for
16: Merge local plane list with plane list
17: end for
18: Select best planes
19: Compute cost function
20: Graph cut labeling
21: Fill depth map

pute depth values for missing pixels in the depth map and
existing depth values are not replaced. This eliminates the
possibility of reducing the quality of the depth map by incor-
rectly assigning a region as planar. Moreover, we use a local
approach to detect the plane parameters around each missing
region which ensures that the estimated plane parameters are
coherent with the local surface.

3. DENSE DEPTH MAPS FROM PATCH CLOUDS

The algorithm takes as input a set of images, their correspond-
ing projection matrices, and a semi-dense 3D patch cloud.
The projection matrices can be obtained through any of the
existing structure-from-motion algorithms. The patch cloud
is produced by a semi-dense multi-view stereo method like
Furukawa and Ponce’s [2]. It is worth noting that Furukawa
and Ponce’s multi-view stereo method is publicly available
and has demonstrated its applicability to large scale scenes
as well as for synchronized multi-view video. Each patch
produced by this method consists of a 3D position, a normal
direction, and the indices of images that observe the patch.
The algorithm produces a dense depth maps for each image
suitable for transmission and processing (e.g. free viewpoint
video). Our method is summarized in Algorithm 1.

3.1. Initial depth map

An initial depth map is generated for an image by projecting
all visible patches onto the camera’s image plane and taking
the depth of the nearest patch. That is, the center of each

patch is projected and a 3x3 pixel neighborhood is set to the
patch’s depth if no other patch is closer. This generates a
semi-dense depth map with holes where no patches could be
reconstructed. These are usually regions of very low texture
that cannot be reliably matched. An example of a depth map
generated in this way is shown in figure 1b.

A list is constructed that indicates which patch generated
the depth for each pixel so that we refer to a patch by its 2D
pixel location in the image.

3.2. Plane hypotheses

The algorithm assumes that textureless surfaces can be ap-
proximated by a plane. It is expected that some patches will
be reconstructed on the plane from areas of moderate texture
or the intersection of the plane with other surfaces. Since each
reconstructed patch defines a plane we have as many plane
hypotheses as there are patches. However, testing all planes
would be prohibitevely expensive, thus we seek to refine the
list of hypotheses to the most likely ones. For this we first
use a local approach to find the plane parameters and then a
global measure to rank the estimated planes.

Pixels with no depth information are grouped into con-
nected regions called holes. Each hole is processed individu-
ally to produce a list of plane hypotheses. It is expected that
at least some part of the hole boundary will contain recon-
structed patches lying on the plane. Thus, the patches on the
boundary of the hole are used to estimate the plane parame-
ters. A patch is considered on the boundary of the hole if it
projects to a pixel on the boundary.

Because many patches describe very similar planes, the
plane hypotheses are clustered to eliminate redundant planes.
Planes are merged in the same cluster if the angle between
their normals and the difference between their distances from
the origin are smaller than a given threshold. The members’
parameters are averaged to obtain the cluster’s normal and
distance from the origin.

3.3. Local plane refinement

The parameters of the patches produced by the multi-view
stereo stage are inherently noisy and can be refined by con-
sidering neighboring patches. We wish to leverage this spa-
tial information in the local neighborhood of the hole because
those patches are more likely to belong to the plane we are
seeking. The refinement stage first finds inlier patches for the
initial plane through region growing around the hole bound-
ary and then performs least-squares plane fitting in order to
extract the refined plane parameters.

We use only the patch position, because the normal is con-
siderably noisier. A patch with position p is an inlier for a
plane if the distance to the plane is below a threshold δp:

|nT p− d| ≤ δp (1)



where n is the unit normal of the plane, d is the distance from
the origin, and δp accounts for noise.

To leverage local information a region growing approach
to inlier selection is used. The hole boundary patches that
satisfy equation (1) are used as seeds. Pathces on the bound-
ary of the region are iteratively tested and added to the region
if they satisfy equation (1). In this manner the region con-
tains only pixels that are connected to the hole. Once locally
connected inliers are extracted, a plane is fitted to their 3D
locations using least-squares.

3.4. Global plane ranking

Once the plane parameters have been refined, all patches vis-
ible in the image are tested against equation (1). A smaller
δp is used because we now have more accurate plane parame-
ters. The number of patches that satisfy equation (1) indicates
how much evidence there is for that plane. Testing all patches
allows us to take into account evidence for the plane that may
not be spatially connected to the hole (e.g. due to occlusions
or obstacles).

The local plane lists for the holes are merged into a single
list. Planes estimated from different holes that have similar
parameters are removed and only the one with a higher global
inlier count is kept. Depending on the complexity of the scene
and the available processing power, the final list of planes can
be too big for timely processing. The planes can be sorted by
their global inlier counts and only the N first are kept, where
N is the number of planes that we can process in later stages.
This ensures that processing power is spent only on the most
relevant plane hypotheses.

3.5. Photometric consistency

A per-pixel cost function is defined for each plane that models
the photometric consistency of the images. A pixel in the ref-
erence image p has a cost defined for each plane hypothesis h
and each image j in the dataset. A homography Hh

j is used
to find the corresponding coordinates in image j. Once corre-
sponding coordinates are computed the colors are compared.

To compute the cost function over a set of images the me-
dian over the absolute color differences is used.

Ch(p) = Med j(||Ij(Hh
j p)− Iref (p)||) (2)

Per-pixel cost functions are considerably affected by oc-
clusions. Gallup et al. [7] make the observation that if a point
is occluded when the camera moves in a given direction, the
point is usually not occluded when the camera moves in the
opposite direction. We incorporate this knowledge by per-
forming principal component analysis on the camera centers
to estimate the dominant translation direction. The image set
is then divided into two groups: before and after the reference
image along the dominant direction (equivalent to the left and
right groups in [7]). The final cost is the minimum of the two
groups for each pixel.

3.6. Pixel labeling

We assign a plane label to each pixel using a graph cut min-
imization [8]. The energy function contains a per pixel data
term Ed(hp) and a pairwise smoothness term Es(hp, hq):

E =
∑
p

Ed(hp) + λ
∑

p,q∈N(p)

Es(hp, hq) (3)

where hp is the plane hypothesis assigned to pixel p andN(p)
denotes the 4 connected neighborhood of pixel p.

The data term is the cost function from equation (2). Be-
cause the labels correspond to planes and have no specific
ordering or numeric value, the Potts model is used for the
smoothness term. A uniform cost is assigned if the labels are
different:

Ed(hp) = Ch(p) (4)

Es(hp, hq) =

{
0 hp = hq

1 else
(5)

Once each pixel has been labeled with a plane hypothesis,
those pixels that were missing depth information can now be
assigned a depth by finding the intersection of the optical ray
with the plane.

4. EXPERIMENTAL RESULTS

The proposed algorithm was tested using the publicly avail-
able monkey sequence.1 This is a set of 89 images taken with
a handheld camera of a teddy monkey in front of a planar
background. Figure 1a shows a source frame from the se-
quence.

The publicly available PMVS2 software [2] was applied
to the dataset to extract the patch cloud. The initial depth
map obtained from the patch cloud is shown on figure 1b.
After applying the hole filling algorithm the two planar sur-
faces present in the image were succesfully detected and as-
signed perpendicular normals. The final dense depth map is
presented in figure 1c. The holes were assigned depth values
that are coherent with the scene structure and the initial depth
map. Note how the white marquee of the background on the
lower right was assigned the proper depth even though it has
no visible texture. Even regions that are not planar but have
a continuous surface, like the monkey were completed with
acceptable depth values.

Figure 2 shows the results for another frame. In this case
only the background plane is visible and the textureless area
covers a much bigger region of the image. The background
plane was correctly recovered. Almost all patches behind
the monkey were filtered out by the visibility analysis of the
PMVS software. Only one spurious background patch was
marked as visible through the missing regions in the top of
the monkey.

1http://www.robots.ox.ac.uk/˜awf/ibr/



(a) Source image (b) Depth map after patch projection (c) Depth map after hole filling

Fig. 1: Results for an image with two planes.

(a) Source image (b) Depth map after patch projection (c) Depth map after hole filling

Fig. 2: Results for an image with one plane.

5. CONCLUSIONS

The proposed algorithm is capable of using the recovered
3D information from textured regions to estimate the depth
of non-textured surfaces. It uses a piecewise planar sufrace
model to complete the semi-dense depth map produced by
state-of-the-art multi-view stereo methods. It can handle mul-
tiple planes in the scene and uses a local region growing ap-
proach to find the best fitting plane around depth map holes.
It was shown to perform adequately in the presence of planar
and non-planar surfaces simultaneously.
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