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A Generic Camera Model and Calibration Method for Conventional,
Wide-Angle, and Fish-Eye Lenses

Juho Kannala and Sami S. Brandt

Abstract

Fish-eye lenses are convenient in such applications where a very wide angle

of view is needed but their use for measurement purposes has been limited by

the lack of an accurate, generic, and easy-to-use calibration procedure. We hence

propose a generic camera model, which is suitable for fish-eye lens cameras as

well as for conventional and wide-angle lens cameras, and a calibration method for

estimating the parameters of the model. The achieved level of calibration accuracy

is comparable to the previously reported state-of-the-art.
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I. INTRODUCTION

The pinhole camera model accompanied with lens distortion models is a fair approximation

for most conventional cameras with narrow-angle or even wide-angle lenses [1], [6], [7]. But

it is still not suitable for fish-eye lens cameras. Fish-eye lenses are designed to cover the whole

hemispherical field in front of the camera and the angle of view is very large, about 180◦.

Moreover, it is impossible to project the hemispherical field of view on a finite image plane by

a perspective projection so fish-eye lenses are designed to obey some other projection model.

This is the reason why the inherent distortion of a fish-eye lens should not be considered

only as a deviation from the pinhole model [14].

There have been some efforts to model the radially symmetric distortion of fish-eye lenses

with different models [16], [17], [20]. The idea in many of these approaches is to transform

the original fish-eye image to follow the pinhole model. In [17] and [16], the parameters of the

distortion model are estimated by forcing straight lines straight after the transformation but
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the problem is that the methods do not give the full calibration. They can be used to “correct”

the images to follow the pinhole model but their applicability is limited when one needs to

know the direction of a back-projected ray corresponding to an image point. The calibration

procedures in [5] and [3] instead aim at calibrating fish-eye lenses generally. However, these

methods are slightly cumbersome in practice because a laser beam or a cylindrical calibration

object is required.

Recently the first auto-calibration methods for fish-eye lens cameras have also emerged

[8], [9], [12]. Mičušı́k and Pajdla [8] proposed a method for simultaneous linear estimation of

epipolar geometry and an omnidirectional camera model. Claus and Fitzgibbon [12] presented

a distortion model which likewise allows the simultaneous linear estimation of camera motion

and lens geometry, and Thirthala and Pollefeys [9] used the multiview-view geometry of

radial 1D cameras to estimate a non-parametric camera model. In addition, the recent work

by Barreto and Daniilidis [10] introduced a radial fundamental matrix for correcting the

distortion of wide-angle lenses. Nevertheless, the emphasis in these approaches is more in

the auto-calibration techniques than in the precise modeling of real lenses.

In this paper, we concentrate on accurate geometric modeling of real cameras.1 We propose

a novel calibration method for fish-eye lenses that requires that the camera observes a planar

calibration pattern. The calibration method is based on a generic camera model that will be

shown to be suitable for different kind of omnidirectional cameras as well as for conventional

cameras. First, in Section II, we present the camera model and, in Section III, theoretically

justify it by comparing different projection models. In Section IV, we describe a procedure

for estimating the parameters of the camera model, and the experimental results are presented

and discussed in Sections V and VI.

II. GENERIC CAMERA MODEL

Since the perspective projection model is not suitable for fish-eye lenses we use a more

flexible radially symmetric projection model. This basic model is introduced in Section II-A

and then extended with asymmetric distortion terms in Section II-B. Computation of back-

projections is described in Section II-C.

1An early conference version of this paper is [2].
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A. Radially Symmetric Model

The perspective projection of a pinhole camera can be described by the following formula

r = f tan θ (i. perspective projection), (1)

where θ is the angle between the principal axis and the incoming ray, r is the distance

between the image point and the principal point and f is the focal length. Fish-eye lenses

instead are usually designed to obey one of the following projections:

r = 2f tan(θ/2) (ii. stereographic projection), (2)

r = fθ (iii. equidistance projection), (3)

r = 2f sin(θ/2) (iv. equisolid angle projection), (4)

r = f sin(θ) (v. orthogonal projection). (5)
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Fig. 1. (a) Projections (1)-(5) with f = 1. (b) Fish-eye camera model.

The image of the point P is p whereas it would be p′ by a pinhole camera.

Perhaps the most common model

is the equidistance projection. The

behavior of the different projec-

tions is illustrated in Fig. 1(a) and

the difference between a pinhole

camera and a fish-eye camera is

shown in Fig. 1(b).

The real lenses do not, how-

ever, exactly follow the designed

projection model. From the view-

point of automatic calibration, it

would also be useful if we had

only one model suitable for different types of lenses. Therefore we consider projections

in the general form

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + . . . , (6)

where, without any loss of generality, even powers have been dropped. This is due to the fact

that we may extend r onto the negative side as an odd function while the odd powers span

the set of continuous odd functions. For computations we need to fix the number of terms

in (6). We found that first five terms, up to the ninth power of θ, give enough degrees of
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freedom for good approximation of different projection curves. Thus, the radially symmetric

part of our camera model contains the five parameters, k1, k2, . . . , k5.

Let F be the mapping from the incoming rays to the normalized image coordinates




x

y



 = r(θ)





cos ϕ

sin ϕ



 = F(Φ), (7)

where r(θ) contains the first five terms of (6) and Φ = (θ, ϕ)> is the direction of the incoming

ray. For real lenses the values of parameters ki are such that r(θ) is monotonically increasing

on the interval [0, θmax], where θmax is the maximum viewing angle. Hence, when computing

the inverse of F , we may solve θ by numerically finding the roots of a ninth order polynomial

and then choosing the real root between 0 and θmax.

B. Full Model

Real lenses may deviate from precise radial symmetry and therefore we supplement our

model with an asymmetric part. For instance, the lens elements may be inaccurately aligned

causing that the projection is not exactly radially symmetric. With conventional lenses this

kind of distortion is called decentering distortion [1], [13]. However, there are also other

possible sources of imperfections in the optical system and some of them may be difficult to

model. For example, the image plane may be tilted with respect to the principal axis or the

individual lens elements may not be precisely radially symmetric. Therefore, instead of trying

to model all different physical phenomena in the optical system individually, we propose a

flexible mathematical distortion model that is just fitted to agree with the observations.

To obtain a widely applicable, flexible model, we propose to use two distortion terms as

follows. One distortion term acts in the radial direction

∆r(θ, ϕ) = (l1θ + l2θ
3 + l3θ

5)(i1 cos ϕ + i2 sin ϕ + i3 cos 2ϕ + i4 sin 2ϕ) , (8)

and the other in the tangential direction

∆t(θ, ϕ) = (m1θ + m2θ
3 + m3θ

5)(j1 cos ϕ + j2 sin ϕ + j3 cos 2ϕ + j4 sin 2ϕ) , (9)

where the distortion functions are separable in the variables θ and ϕ. Because the Fourier

series of any 2π-periodic continuous function converges in the L2-norm and any continuous

odd function can be represented by a series of odd polynomials we could, in principle, model

any kind of continuous distortion by simply adding more terms to (8) and (9), as they both

now have seven parameters.
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By adding the distortion terms to (7), we obtain the distorted coordinates xd = (xd, yd)
>

by

xd = r(θ)ur(ϕ) + ∆r(θ, ϕ)ur(ϕ) + ∆t(θ, ϕ)uϕ(ϕ), (10)

where ur(ϕ) and uϕ(ϕ) are the unit vectors in the radial and tangential directions. To achieve

a complete camera model we still need to transform the sensor plane coordinates into the

image pixel coordinates. By assuming that the pixel coordinate system is orthogonal we get

the pixel coordinates (u, v)> from




u

v



 =





mu 0

0 mv









xd

yd



+





u0

v0



 = A(xd), (11)

where (u0, v0)
> is the principal point and mu and mv give the number of pixels per unit

distance in horizontal and vertical directions, respectively.

By combining (10) and (11) we have the forward camera model

m = Pc(Φ), (12)

where m = (u, v)>. This full camera model contains 23 parameters and it is denoted by p23

in the following. Since the asymmetric part of the model is very flexible, it may sometimes be

reasonable to use a reduced camera model in order to avoid over-fitting. This is the case if, for

instance, the control points do not cover the whole image area. Leaving out the asymmetric

part gives the camera model p9 with nine parameters: five in the radially symmetric part (7)

and four in the affine transformation (11). We did experiments also with the six-parametric

model p6 which contains only two parameters in the radially symmetric part.

C. Backward Model

Above we have described our forward camera model Pc. In practice, one also needs to

know the backward model

Φ = P−1
c (m) (13)

which is the mapping from the image point m = (u, v)> to the direction of an incoming

light ray, Φ = (θ, ϕ)>. We write Pc as the composite function Pc = A ◦ D ◦ F , where F
is the transformation (7) from the ray direction Φ to the ideal Cartesian coordinates x =

(x, y)> on the image plane, D is the distortion mapping from x to the distorted coordinates

xd = (xd, yd)
>, and A is the affine transformation (11). We decompose the projection model
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in this form because, for the inverse transfrom P−1
c = F−1 ◦D−1 ◦A−1, it is straightforward

to compute F−1 and A−1. The more difficult part is to numerically compute D−1.

Given a point xd, finding x = D−1(xd) is equivalent to computing the shift s into the

expression x = xd − s, where

s = S(Φ) = ∆r(θ, ϕ)ur(ϕ) + ∆t(θ, ϕ)uϕ(ϕ). (14)

Moreover, we may write S(Φ) ≡ (S ◦ F−1) (x) and approximate the shift by the first order

Taylor expansion of S ◦ F−1 around xd that yields

s ' (S ◦ F−1)(xd) +
∂(S ◦ F−1)

∂x
(xd)(x − xd)

= S(Φd) −
∂S
∂Φ

(

∂F
∂Φ

(Φd)

)−1

s,

where Φd = F−1(xd) may be numerically evaluated. Hence, we may compute the shift s

from

s '
(

I +
∂S
∂Φ

(Φd)

(

∂F
∂Φ

(Φd)

)−1
)−1

S(Φd) . (15)

where the Jacobians ∂S/∂Φ and ∂F/∂Φ may be computed from (14) and (7), respectively.

So, finally

D−1(xd) ' xd −
(

I +

(

∂S
∂Φ

◦ F−1

)

(xd)

((

∂F
∂Φ

◦ F−1

)

(xd)

)−1
)−1

(S ◦ F−1)(xd).

(16)

It seems that the first order approximation for the asymmetric distortion function D is

tenable in practice because the backward model error is typically several degrees smaller that

the calibration accuracy for the forward model, as will be seen in detail in Section V.

III. JUSTIFICATION OF THE PROJECTION MODEL

The traditional approach for camera calibration is to take the perspective projection model

as a starting point and then supplement it with distortion terms [1], [6], [18]. However, this

is not a valid approach for fish-eye lenses because, when θ approaches π/2, the perspective

model projects points infinitely far and it is not possible to remove this singularity with the

conventional distortion models. Hence, we base our calibration method to the more generic

model (6).
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Fig. 2. Approximations.

We compared the polynomial projection model (6) to the two

two-parametric models

r =
a

b
sin(bθ) (M1) and r =

a −
√

a2 − 4bθ2

2bθ
(M2),

proposed by Mičušı́k [11] for fish-eye lenses. In Fig. 2 we

have plotted the projection curves (1)-(5) and their least-squares

approximations with models M1, M2 and P3, where P3 is the

polynomial model (6) with the first two terms. Here we used

the value f = 200 pixels which is a reasonable value for a

real camera. The projections were approximated between 0 and θmax, where the values of

θmax were 60◦, 110◦, 110◦, 110◦ and 90◦, respectively. The interval [0, θmax] was discretized

using the step of 0.1◦ and the models M1 and M2 were fitted by using the Levenberg-

Marquardt method. It can be seen from Fig. 2 that the model M1 is not suitable at all for

the perspective and stereographic projections and that the model M2 is not accurate for the

orthogonal projection.
TABLE I

THE APPROXIMATION ERRORS.

M1 M2 P3 P9

(1) 69 13 12 0.1

(2) 90 13 13 0.0

(3) 0.0 0.0 0.0 0.0

(4) 0.0 1.8 0.33 0.0

(5) 0.0 9.7 1.80 0.0

In Table I, we have tabulated the maximum approximation

errors for each model, i.e., the maximum vertical distances

between the desired curve and the approximation in Fig. 2.

Here we also have the model P9 which is the polynomial

model (6) with the first five terms. It can be seen that the

model P3 has the best overall performance from all of the

two-parametric models and that the sub-pixel approximation

accuracy for all the projection curves requires the five-

parametric model P9. These results show that the radially symmetric part of our camera

model is well justified.

IV. CALIBRATING THE GENERIC MODEL

Next we describe a procedure for estimating the parameters of the camera model. The

calibration method is based on viewing a planar object which contains control points in

known positions. The advantage over the previous approaches is that also fish-eye lenses,

possibly having a field of view larger than 180◦, can be calibrated by simply viewing a planar

pattern. In addition, a good accuracy can be achieved if circular control points are used, as

described in Section IV-B.
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A. Calibration Algorithm

The calibration procedure consists of four steps that are described below. We assume that

M control points are observed in N views. For each view, there is a rotation matrix Rj and

a translation vector tj describing the position of the camera with respect to the calibration

plane such that

Xc = RjX + tj, j = 1, . . . , N . (17)

We choose the calibration plane to lie in the XY -plane and denote the coordinates of the

control point i with Xi = (X i, Y i, 0)>. The corresponding homogeneous coordinates in the

calibration plane are denoted by xi
p = (X i, Y i, 1)> and the observed coordinates in the view j

by mi
j = (ui

j, v
i
j)

>. The first three steps of the calibration procedure involve only six internal

camera parameters and for these we use the short-hand notation p6=̂(k1, k2,mu,mv, u0, v0).

The additional parameters of the full model are inserted only in the final step.

Step 1: Initialization of internal parameters
The initial guesses for k1 and k2 are obtained by fitting the model r = k1θ + k2θ

3 to the

desired projection (2)-(4) with the manufacturer’s values for the nominal focal length f and

the angle of view θmax. Then we also obtain the radius of the image on the sensor plane by

rmax = k1θmax + k2θ
3
max.

With a circular image fish-eye lens, the actual image fills only a circular area inside the

image frames. In pixel coordinates, this circle is an ellipse
(

u − u0

a

)2

+

(

v − v0

b

)2

= 1 ,

whose parameters can be estimated. Consequently, we obtain initial guesses for the remaining

unknowns mu, mv, u0, and v0 in p, where mu = a/rmax and mv = b/rmax. With a full-frame

lens, the best thing is probably to place the principal point to the image center and use the

reported values of the pixel dimensions to obtain initial values for mu and mv.

Step 2: Back-projection and computation of homographies
With the internal parameters p6, we may back-project the observed points mi

j onto the unit

sphere centered at the camera origin (see Fig. 1(b)). The points on the sphere are denoted

by x̃i
j . Since the mapping between the points on the calibration plane and on the unit sphere

is a central projection, there is a planar homography Hj so that sx̃i
j = Hjx

i
p.

For each view j the homography Hj is computed as follows:
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(i) Back-project the control points by first computing the normalized image coordinates




xi
j

yi
j



 =





1/mu 0

0 1/mv









ui
j − u0

vi
j − v0



 ,

transforming them to the polar coordinates (ri
j, ϕ

i
j)=̂(xi

j, y
i
j), and finally solving θi

j from

the cubic equation k2(θ
i
j)

3 + k1θ
i
j − ri

j = 0.

(ii) Set x̃i
j = (sin ϕi

j sin θi
j , cos ϕi

j sin θi
j , cos θi

j)
>.

(iii) Compute the initial estimate for Hj from the correspondences x̃i
j ↔ xi

p by the linear

algorithm with data normalization [15]. Define x̂i
j as the exact image of xi

p under Hj

such that x̂i
j = Hjx

i
p/||Hjx

i
p||.

(iv) Refine the homography Hj by minimizing
∑

i sin
2 αi

j , where αi
j is the angle between

the unit vectors x̃i
j and x̂i

j .

Step 3: Initialization of external parameters
The initial values for the external camera parameters are extracted from the homographies

Hj . It holds that

sx̃i
j =

[

Rj tj

]















X i

Y i

0

1















=
[

r1
j r2

j tj

]











X i

Y i

1











which implies Hj = [r1
j r2

j tj], up to scale. Furthermore

r1
j = λjh

1
j , r2

j = λjh
2
j , r3

j = r1
j × r2

j , tj = λjh
3
j ,

where λj = sign(H3,3
j )/||h1

j ||. Because of estimation errors, the obtained rotation matrices

are not orthogonal. Thus, we use the singular value decomposition to compute the closest

orthogonal matrices in the sense of Frobenius norm [4] and use them as initial guess for each

Rj .

Step 4: Minimization of projection error
If the full model p23 or the model p9 is used the additional camera parameters are initialized to

zero at this stage. As we have the estimates for the internal and external camera parameters,

we use (17), (7) or (10), and (11) to compute the imaging function Pj for each camera,

where a control point is projected to m̂i
j = Pj(X

i). The camera parameters are refined by

minimizing the sum of squared distances between the measured and modeled control point
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projections
N
∑

j=1

M
∑

i=1

d(mi
j, m̂

i
j)

2 (18)

using the Levenberg–Marquardt algorithm.

B. Modification for Circular Control Points

In order to achieve an accurate calibration, we used a calibration plane with white circles

on black background since the centroids of the projected circles can be detected with a sub-

pixel level of accuracy [19]. In this setting, however, the problem is that the centroid of the

projected circle is not the image of the center of the original circle. Therefore, since mi
j in

(18) is the measured centroid, we should not project the centers as points m̂i
j .

To avoid the problem above, we propose solving the centroids of the projected circles

numerically. We parameterize the interior of the circle at (X0, Y0) with radius R by X(%, α) =

(X0 + % sin α, Y0 + % cos α, 0)>. Given the camera parameters, we get the centroid m̂ for the

circle by numerically evaluating

m̂ =

∫ R

0

∫ 2π

0
m̂(%, α)|detJ(%, α)| dαd%

∫ R

0

∫ 2π

0
|detJ(%, α)| dαd%

, (19)

where m̂(%, α) = P(X(%, α)) and J(%, α) is the Jacobian of the composite function P ◦ X.

The analytical solving of the Jacobian is rather a tedious task but it can be computed by

mathematical software such as Maple.

V. CALIBRATION EXPERIMENTS

A. Conventional and Wide-Angle Lens Camera

The proposed camera model was compared to the camera model used by Heikkilä [6].

This model is the skew-zero pinhole model accompanied with four distortion parameters and

it is denoted by δ8 in the following.
In the first experiment we used the same data, provided by Heikkilä, as in [6]. It was

originally obtained by capturing a single image of a calibration object consisting of two

orthogonal planes, each with 256 circular control points. The camera was a monochrome

CCD camera with a 8.5 mm Cosmicar lens. The second experiment was performed with

the Sony DFW-VL500 camera and a wide-angle conversion lens, with total focal length

of 3.8 mm. In this experiment, we used six images of the calibration object. There were

1328 observed control points in total and they were localized by computing their gray scale

centroids [19].
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TABLE II

THE RMS RESIDUAL ERROR IN PIXELS.

δ8 p6 p9 p23

Cosmicar 0.061 0.107 0.055 0.052

Sony 0.124 0.234 0.092 0.057

The obtained RMS residual errors, i.e.

the root-mean-squared distances between

the measured and modeled control point

positions, are shown in Table II. Especially

interesting is the comparison between models δ8 and p9 because they both have eight

degrees of freedom. Model p9 gave slightly smaller residuals although it does not contain

any tangential distortion terms. The full model p23 gave the smallest residuals.

(a) (b)

Fig. 3. Heikkilä’s calibration data. (a) The estimated asym-

metric distortion (∆rur +∆tuϕ) using the extended model

p23. (b) The remaining residual for each control point. The

vectors are scaled up by a factor of 150.

However, in the first experiment the full

model may have been partly fitted to the

systematic errors of the calibration data.

This is due to the fact that there were

measurements only from one image where

the illumination was not uniform and all

corners were not covered by control points.

To illustrate the fact, the estimated asymmetric distortion and remaining residuals for the

model p23 are shown in Fig. 3. The relatively large residuals in the lower right corner of the

calibration image (Fig. 3(b)) seem to be due to inaccurate localization, caused by non-uniform

lighting.

In the second experiment the calibration data was better so the full model is likely to be

more useful. This was verified by taking an additional image of the calibration object and

solving the corresponding external camera parameters with given internal parameters. The

RMS projection error for the additional image was 0.049 pixels for p23 and 0.071 for p9.

This indicates that the full model described the true geometry of the camera better than the

simpler model p9.

Finally, we estimated the backward model error for p23, caused by the first order ap-

proximation of the asymmetric distortion function (see Section II-C). This was done by

back-projecting each pixel and then reprojecting the rays. The maximum displacement in the

reprojection was 2.1 · 10−5 pixels for the first camera and 4.6 · 10−4 pixels for the second.

Both values are very small so it is justified to ignore the backward model error in practice.

B. Fish-Eye Lens Cameras

The first experimented fish-eye lens was an equidistance lens with the nominal focal length

of 1.178 mm, and it was attached to a Watec 221S CCD color camera. The calibration
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object was a 2×3 m2 plane containing white circles with the radius of 60 mm on the black

background. The calibration images were digitized from an analog video signal to 8-bit

monochrome images, whose size was 640 by 480 pixels.

(a) (b)

Fig. 4. Fish-eye lens calibration using only one view. (a)

Original image where the white ellipse depicts the field of view

of 150
◦. (b) The image corrected to follow pinhole model.

Straight lines are straight as they should be.

The calibration of a fish-eye lens can

be performed even from a single image of

the planar object as Fig. 4 illustrates. In

that example we used the model p6 and

60 control points. However, for the most

accurate results, the whole field of view

should be covered with a large number of

measurements. Therefore we experimented

our method with 12 views and 680 points

in total; the results are in Table III. The

extended model p23 had the smallest residual error but the radially symmetric model p9

gave almost as good results. Nevertheless, there should be no risk of over-fitting because the

number of measurements is large. The estimated asymmetric distortion and the residuals are

displayed in Fig. 5.
TABLE III

THE RMS RESIDUAL ERROR IN PIXELS.

p6 p9 p23

Watec 0.146 0.094 0.089

ORIFL 0.491 0.167 0.137

The second fish-eye lens was ORIFL190-3 lens

manufactured by Omnitech Robotics. This lens

has a 190 degree field of view and it clearly

deviates from the exact equidistance projection

model. The lens was attached to a Point Grey

Dragonfly digital color camera having 1024 × 768 pixels; the calibration object was the

same as in Section V-A. The obtained RMS residual errors for a set-up of 12 views and

1780 control points are shown in Table III. Again the full model had the best performance

and this was verified with an additional calibration image. The RMS projection error for the

additional image, after fitting the external camera parameters, was 0.13 pixels for p23 and

0.16 pixels for p9.

The backward model error for p23 was evaluated at each pixel within the circular images.

The maximum displacement was 9.7 · 10−6 pixels for the first camera and 3.4 · 10−3 pixels

for the second. Again, it is justified to ignore such small errors in practice.
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(a) (b)

Fig. 5. (a) The estimated asymmetric distortion (∆rur +

∆tuϕ) using the extended model p23. (b) The remaining

residual for each control point that shows no obvious system-

atic error. Both plots are in normalized image coordinates and

the vectors are scaled up by a factor of 150 to aid inspection.
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Fig. 6. The average RMS measurement, residual and esti-

mation errors for 10 calibration trials at different levels of

noise. The errorbars represent the minimum and maximum

values among the trials.

C. Synthetic Data

In order to evaluate the robustness of the proposed calibration method we did experiments

also with synthetic data. The ground truth values for the camera parameters were obtained

from the real fish-eye lens experiment that was illustrated in Fig. 5. So, we used the full

camera model and we had 680 circular control points in 12 synthetic calibration images,

where the gray level values of control points and background were 180 and 5, respectively.

In order to make the synthetic images to better correspond real images they were blurred by

a Gaussian pdf (σ = 1 pixel) and quantized to the 256 gray levels.

Firstly, we estimated the significance of the centroid correction proposed in Section IV-B.

In the above setting the RMS distance between the centroids of the projected circles and

the projected centers of the original circles was 0.45 pixels. It is significantly larger value

than the RMS residual errors reported in the real experiment (Table III). This indicates that,

without the centroid correction, the estimated camera parameters would have been biased

and it is likely that the residual error would have been larger.

Secondly, we estimated the effect of noise to the calibration by adding Gaussian noise to

the synthetic images and performing 10 calibration trials at each noise level. The standard

deviation of the noise varied between 0 and 15 pixels. The control points were localized

from the noisy images by first thresholding them using a fixed threshold. Then the centroid

of each control point was measured by computing the gray-level-weighted center-of-mass.

The simulation results are shown in Fig. 6, where we have plotted the average RMS

measurement, RMS residual and RMS estimation errors. There is small error also at the

zero noise level because of the discrete pixel representation and gray level quantization. The
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fact that the RMS errors approximately satisfy the Pythagorean equality indicates that the

calibration algorithm has converged to the true global minimum [15]. Moreover, the low

values of the RMS estimation error indicate that the estimated camera model is close to the

true one even at large noise levels.

VI. CONCLUSION

We have proposed a novel camera calibration method for fish-eye lens cameras that is based

on viewing a planar calibration pattern. The experiments verify that the method is easy-to-use

and provides a relatively high level of accuracy with circular control points. The proposed

camera model is generic, easily expandable and suitable also for conventional cameras with

narrow- or wide-angle lenses. The achieved level of accuracy for fish-eye lenses is better than

it has been reported with other approaches and, for narrow-angle lenses, it is comparable to

the results in [6]. This is promising considering especially the aim of using fish-eye lenses

in measurement purposes.

SOFTWARE

The calibration toolbox is available on the authors’ webpage.
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