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Abstract

This paper proposes a method for constructing lo-

cal image descriptors which efficiently encode texture

information and are suitable for histogram based rep-

resentation of image regions. The method computes a

binary code for each pixel by linearly projecting local

image patches onto a subspace, whose basis vectors are

learnt from natural images via independent component

analysis, and by binarizing the coordinates in this basis

via thresholding. The length of the binary code string

is determined by the number of basis vectors. Image re-

gions can be conveniently represented by histograms of

pixels’ binary codes. Our method is inspired by other

descriptors which produce binary codes, such as local

binary pattern and local phase quantization. However,

instead of heuristic code constructions, the proposed

approach is based on statistics of natural images and

this improves its modeling capacity. The experimental

results show that our method improves accuracy in tex-

ture recognition tasks compared to the state-of-the-art.

1 Introduction

Local image descriptors have been under extensive

investigation during the recent years and many impor-

tant developments have been acquired. Nowadays local

image descriptors are standard tools which provide im-

age features for many computer vision applications. For

example, local descriptors together with interest region

detectors allow extraction and description of image re-

gions which are used for wide baseline image matching,

in e.g. multi-view reconstruction. Also, visual vocabu-

laries, based on descriptors, are predominantly used in

image retrieval and recognition tasks, like particular ob-

ject retrieval and object class recognition. Further, local

image descriptors are widely used in texture recognition

and its applications.

There are various local image descriptors proposed

in literature. For example, interest regions are typically

represented using descriptors like SIFT [8], SURF [3],

or BRIEF [4], and their variants. Further, there are sev-

eral image descriptors originally designed for texture

description and classification, such as local binary pat-

tern (LBP) [9], local phase quantization (LPQ) [10, 2]

and basic image features (BIF) [5]. Some of them, or

their variants, have become increasingly popular also in

other applications, like face identification [1, 2] and ac-

tion recognition from videos [12].

In this paper, we propose an approach which is in-

spired by LBP and LPQ methodologies. These methods

describe each pixel’s neighborhood by a binary code

which is obtained by first convolving the image with

a set of linear filters and then binarizing the filter re-

sponses. The bits in the code string correspond to bina-

rized responses of different filters. However, in contrast

to earlier approaches, such as LBP and LPQ, we do not

use a manually predefined set of filters but learn the fil-

ters by utilizing statistics of natural images.

Our texture and face recognition experiments show

that the proposed approach gives a better overall per-

formance than the popular and widely used comparison

methods LBP and LPQ. Further, our results are obtained

by using a fixed set of filters learnt from a small set of

natural images, which shows that pre-learnt filters can

be used for different applications. Nevertheless, unlike

comparison methods, our approach provides an option

of application-specific learning, which might be poten-

tially useful for describing images that have unusual

characteristics, such as certain medical images.

2 Method

Overview. Our method computes a binary code string

for the pixels of a given image. The code value of a

pixel is considered as a local descriptor of the image

intensity pattern in the pixel’s surroundings. Further,

histograms of pixels’ code values allow to characterize

texture properties within image subregions. Thus, our

descriptor can be used in texture recognition tasks in a

similar manner as local binary patterns [9] or quantized

local phase values [10].

The value of each element (i.e. bit) in our binary code

string is computed by binarizing the response of a lin-

ear filter with a threshold at zero. Each bit is associ-



ated with a different filter and the desired length of the

bit string determines the number of filters used. The

set of filters is learnt from a training set of natural im-

age patches by maximizing the statistical independence

of the filter responses [6]. Hence, statistical properties

of natural image patches determine the descriptors and

therefore we call them binarized statistical image fea-

tures (BSIF). The details of learning the linear filters

follow [6] and they are briefly described below.

Details. Given an image patch X of size l × l pixels

and a linear filter Wi of the same size, the filter response

si is obtained by

si =
∑

u,v

Wi(u, v)X(u, v) = w
⊤

i x, (1)

where vector notation is introduced in the latter stage,

i.e., vectors w and x contain the pixels of Wi and X .

The binarized feature bi is obtained by setting bi = 1
if si > 0 and bi = 0 otherwise. Given n linear filters

Wi, we may stack them to a matrix W of size n× l2

and compute all responses at once, i.e., s = Wx and

we obtain the bit string b by binarizing each element si
of s as above. Thus, given the linear feature detectors

Wi, computation of the bit string b is straightforward.

Also, it is clear that the bit strings for all image patches

of size l×l, surrounding each pixel of an image, can be

computed conveniently by n convolutions.

In order to obtain a useful set of filters Wi we apply

the ideas of [6] and estimate the filters by maximizing

the statistical independence of si. In general, this ap-

proach provides good features for image processing [6].

Furthermore, in our case, the independence of si pro-

vides justification for the proposed independent quanti-

zation of the elements of the response vector s. Thus,

costly vector quantization, used e.g. in [14], is not nec-

essary here for obtaining a discrete texton vocabulary.

However, in order to use standard independent com-

ponent analysis (ICA) algorithms for estimating the in-

dependent components, one has to decompose the filter

matrix W into two parts by

s = Wx = UVx = Uz, (2)

where z =Vx, and U is a n×n square matrix which

will be estimated via ICA, and matrix V performs the

canonical preprocessing, i.e. simultaneous whitening

and dimension reduction of training samples x [6].

In short, the canonical preprocessing uses principal

component analysis as follows. Given a training set of

image patches randomly sampled from natural images,

the patches are first made zero-mean (i.e. the mean in-

tensity of each patch is subtracted) and then their di-

Figure 1. Learnt filters of size 9×9.

mension is reduced by keeping only the n first princi-

pal components which are further divided by their stan-

dard deviation to get whitened data samples z. In de-

tail, given the eigendecomposition C = EDE
⊤ of the

covariance matrix C of samples x, the matrix V is de-

fined by

V =
(

D
−1/2

E
⊤

)

1:n
, (3)

where the main diagonal of D contains the eigenvalues

of C in descending order, and (·)1:n denotes the first n

rows of the matrix in parenthesis.

Then, given the zero-mean whitened data samples

z, one may use standard independent component analy-

sis algorithms to estimate an orthogonal matrix U with

which one yields the independent components s of the

training data [7]. In other words, since z = U
−1

s,

the independent components allow to represent the data

samples z as a linear superposition of the basis vectors

defined by the columns of U−1. Finally, given U and

V, one obtains the filter matrix W =UV, which can

be directly used for computing BSIF features.

Implementation. In all the experiments of this paper,

we used the same filters learnt from a set of 13 natural

images provided by the authors of [6]. Before random

sampling of image patches for learning, the image in-

tensities were normalized to have a zero mean and unit

variance. As described above, there are two parameters

in our BSIF descriptor: the filter size l and the length

n of the bit string. We learnt the filters W using sev-

eral different choices of parameter values, each set of

filters was learnt using 50000 image patches. Learning

was conducted by the three-stage process detailed in the

previous subsection: (a) subtraction of the mean inten-

sity of each patch, (b) dimension reduction and whiten-

ing via principal component analysis, and (c) estimation

of independent components. The filters obtained with

l=9, n=8 are illustrated in Figure 1. In addition, our

implementation of BSIF features is available online.1

1http://www.cse.oulu.fi/Downloads/BSIF



Figure 2. Samples from Outex database

(top) and corresponding BSIF codes.

3 Experiments

In this section we will asses the proposed method in

two canonical texture recognition applications: texture

classification and face recognition. For texture classifi-

cation, we use Outex and CUReT benchmark datasets,

for which we adopt the train-test splits defined in Ou-

tex test suite 00002 and in [14], respectively. Outex

dataset contains 24 texture types and 368 images per

class, while the CUReT database consists of 61 textures

and 205 images per class. Some examples and corre-

sponding BSIF code images are shown in Figures 2 and

3. The classification is performed using nearest neigh-

bor classifier with χ2 distance metric.

The baseline for the experiments is formed by Local

Binary Patterns (LBP) [9], BIF-column (BIFc) [5], and

Local Phase Quantization (LPQ) [10] methods. We use

standard 8 bit coding for LBP and LPQ, which results in

a feature vector with 256 elements. For BIFc we apply

the parameters described in the original paper. Hence,

BIFc applies 4 different scales with 6 codewords per

scale, resulting in descriptor with 1296 elements.

The classification accuracies with different filter

sizes are reported in Figures 5(a) and 5(b). The re-

sults indicate that the proposed descriptor is consis-

tently better than LBP or LPQ over a range of differ-

ent filter sizes. Interestingly, already 7 bit version of

BSIF outperforms all baselines in Outex and LPQ in

CUReT. Compared to BIFc descriptor, the new method

performs clearly better in Outex. In the case of CUReT

datababase, BIFc gives 1.5 percent better accuracy than

8 bit BSIF, but the difference vanishes when the descrip-

tor length is increased to be equivalent to BIFc. The im-

ages in CUReT are taken from several viewing angles

and hence they contain some rotations. Since BIFc is

rotation invariant, it is understandable that it performs

well in this experiment. However, BSIF reaches the

same performance, even if it was not particularly de-

signed to be rotation invariant.

In the face recognition experiment we apply the Face

Recognition Grand Challenge (FRGC) test 1.0.4 [11].

The FRGC database is divided into probe and gallery

Figure 3. Samples from CUReT database

(top) and corresponding BSIF codes.

Figure 4. A sample gallery image and two

probe images images from FRGC (top),

and corresponding BSIF codes. The blur

in the probe images is clearly observable.

sets, which represent 152 subjects. There are exactly

1 gallery image and 2-7 probe images per subject, to-

taling 152 images in the gallery and 608 images in the

probe set. The images in the gallery are acquired with

good quality camera under controlled conditions, while

probe images are taken with pocket digital camera in

uncontrolled conditions. Therefore, probe images con-

tain considerable variations in lightning, facial expres-

sion, and blur. Some examples and the corresponding

BSIF code images are shown in Figure 4.

For the recognition we apply the procedure described

in [1]: the face image is first divided into 8 × 8 non-

overlapping rectangular regions and a given descriptor

is computed independently within each of these regions.

Finally, the descriptors from different regions are con-

catenated to a global description of the face. The clas-

sification is performed using nearest neighbor classifier

with χ2 distance metric. Also, as in [2], we apply the

illumination normalization proposed in [13].

The average face recognition accuracies are shown

in Figure 5(c). The effect of blurring is clearly ob-

servable in the BSIF results. If the number of filters

is increased while keeping the size fixed, more high fre-

quency information will be included into the descrip-
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Figure 5. The average classification accuracies for different benchmark databases. Note: Since
BIFc is a multiresolution method, the corresponding results are indicated by horizontal lines.

tor. Since high frequencies are particularly disturbed by

blurring, it will affect the performance of such combi-

nations. Hence, we need to enlarge the filter size with

respect to the code length in order to cope with blur-

ring. The 6 and 7 bit version of BSIF give good re-

sults already with 7 × 7 filter, losing only 3 percents to

the blur invariant LPQ. When increasing the descriptor

length to 8 bit and above, we reach approximately the

same performance as LPQ with 13 × 13 filters. Fur-

thermore, already 6 bit BSIF outperforms LBP over the

wide range of filter sizes.

4 Conclusion

In this paper we presented a method for constructing

local texture descriptors, based on independent compo-

nent analysis and efficient scalar quantization scheme.

The proposed algorithm results in a binary code for

each pixel, which can be subsequently used to construct

a convenient histogram representation for image areas.

The key idea in the approach is to apply learning, in-

stead of manual tuning, to obtain statistically meaning-

ful representation of the data, which enables efficient

information encoding using simple element-wise quan-

tization. Learning provides also an easy and flexible

way to adjust the descriptor length and to adapt to ap-

plications with unusual image characteristics.

In texture classification experiments, the new BSIF

descriptor clearly outperformed the state-of-the-art

baseline methods with equivalent descriptor length. In-

terestingly, also more compact versions of BSIF re-

sulted in better accuracy than some of the baselines.

Moreover, the proposed method was tested in a face

recognition application, where it resulted in equal per-

formance to the state-of-the-art descriptors. Although

some of the test images were blurred and imperfectly

aligned, BSIF resulted in similar performance as specif-

ically designed rotation and blur invariant methods.

This indicates the tolerance of BSIF descriptor to im-

age degradations appearing in practice.
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