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Abstract

The Self-Organizing Map (SOM) has been ap-
plied in monitoring and modeling of technical
devices and processes. In this paper, we show
how the SOM can be used for building a model
of an industrial production process. Such mod-
els can then be used in process optimization and
control. The model constructed by the SOM
is a non-linear regression model of the training
data, which consists of measurements from indi-
vidual end products of the production process.
This model can be used for predicting any sub-
set of parameters without the committment to
which are dependent and which are independent
variables. In addition, this model enables sens-
itivity analysis of the process parameters. We
show also how local linear models can be fitted
to the data in order to achieve greater accuracy in
the regression. We perform Total Least Squares
(TLS) type of regresion using Principal Compon-
ent Analysis (PCA) in model fitting.

1. INTRODUCTION

The Self-Organizing Map [3] is one of the most
popular neural network models. It has been suc-
cesfully applied, for instance, in various engineer-
ing applications [4]. It is a non-linear, topology
preserving mapping from the high-dimensional
input space to a network of neurons, or map
units. These map units usually form a regular,
two-dimensional lattice. The SOM is based on
unsupervised training, which means that little or
no a priori information about data is needed be-
fore training. Modeling and monitoring applica-
tions of the SOM include data analysis and visu-

alization, process control and fault diagnosis [7]
[8] [9]-

In this paper, a SOM based method to model
an industrial production process is considered.
The measurements used in modeling include the
incoming raw material characteristics, process
parameter settings during the production and the
quality characteristics of the end product. This
model can be used in predicting the quality para-
meters of the end product as well as in investig-
ating the sensitivity of the system to parameter
changes. To enable higher accuracy, local linear
regression models are fitted to the data belonging
to one of the Voronoi tesselations. We perform
Total Least Squares (TLS) type of regression by
using Principal Component Analysis (PCA) in
model fitting [5] [6].

As an industrial application, we use these
methods in modeling a cold rolling and batch
annealing process in steel industry. These meth-
ods enable the prediction of end product quality
in terms of incoming raw material characterist-
ics and process parameter settings. Performance
comparison of these methods is also presented.

2. NON-LINEAR REGRESSION
USING THE SOM

2.1. Prediction of Process Parameters

The SOM can be seen as a non-linear regression
model of the underlying data. This representa-
tion can be used for predicting, for example, the
values of quality parameters with given raw ma-
terial characteristics and process parameter Set-
tings. However, no commitment is made to which
parameters are independent and which are de-
pendent variables. For example, we could also
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make predictions of process parameter settings
with the knowledge of the characteristics of raw
material and the quality of the end product. In
an industrial setting, however, one is usually in-
terested in estimating the quality of products
with known incoming raw material characterist-
ics and process parameters settings.
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Figure 1. Prediction of missing components of
the input vector

First, a SOM is trained with measurement data
from the process. Regression is accomplished by
searching for a best-matching unit (BMU) with
the formula (1), where the set S is the set of
known vector components.

¢ = argmin Z(xk—mik)z (1)

These components belonging to the set S form
the independent variables. The components of
the BMU, which are not members of S are given
as answers and thus form the dependent variables
of the regression model. zj denotes the kth com-
ponent of the vector z and the m;, denotes the
kth component of the ith map unit in the SOM.
This procedure is depicted in Figure 1 above.

The SOM representation of the process is a
generalisation of the input data. The scale of the
model, or the size of the smallest detail is determ-
ined by the number of map units in the SOM. A
SOM with a small number of map units quantizes
the input space sparsely, whereas a SOM with a
large number of codebook vectors builds a dense
lattice of units in the input space. The size of the
SOM thus determines the accuracy of the model.

2.2. SOM and Local Linear Models

The accuracy of the SOM model can be increased
by building local models for the data in one of
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the Voronoi tesselations of the SOM. This com-
pensates for the effects of quantization. Voro-
noi tesselation is a set of points, for which a
given codebook vector is a best matching unit.
If the system’s behavior constrains the values of
measurements, one may expect that the data is
located in a limited subset of the measurement
space, or a low-dimensional manifold. These
manifolds could be modeled locally using, for ex-
ample, linear models. Similar approaches have
appeared in [1] and [2].

While the SOM codebook vectors are local av-
erages of the input data, the Principal Compon-
ent Analysis (PCA) [5] modeling also represents
the second order statistics. If the data is concen-
trated in a subspace that can be approximated
with a linear model, PCA can be used for find-
ing a low-dimensional linear approximation of the
original data. Total Least Squares (TLS) type of
linear regresion is performed by using PCA in
model fitting. This approach allows us to have
measurement errors also in inputs while the usual
Least Squares (LS) approach assumes that the
input variables are accurate and there is error in
the output variables only [6]. These two mod-
eling methods combined take advantage of the
non-linear elasticity of the SOM as well as the
local efficiency of the PCA.

Figure 2 illustrates the idea behind this mod-
eling approach. In Figure 2(a) artificial created
data cloud is depicted. It is worth noting that the
dimension of the manifold is smaller than the di-
mension of the measurement space. Figure 2(b)
shows a trained, one-dimensional SOM with ten
codebook vectors. The small circles denote the
codebook vectors and the lines denote the topo-
logical relations between them. In Figure 2(c)
small points are data points belonging to one of
the Voronoi tesselations of the SOM. Finally, in
2(d) one of the local linear models is depicted.

3. SENSITIVITY ANALYSIS

It is often desirable to know the behavior of a

-system under small changes made in the system

parameters. This is especially the case in indus-
trial environment, where noise is present both in
measurements and in the operating conditions.
Firstly, the operation point needs to be stable:
small random fluctuations in input parameters
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Figure 2. (a) The artifictally created training
data, (b) the one-dimensional SOM with ten
codebook vectors fitted to the data , (c) data be-
longing to one of the Voronoi tesselation and (d)
a local linear model fitted to the data in vicinity
of a neuron

must not cause large fluctuations in output para-
meters. Secondly, we would like to move the state
of the process in such a direction that better qual-
ity is achieved. The model described above can
be used for investigating the leverage effects of
small changes made in one of the process para-
meters. This is possible because the system can
not reach all the possible values in the space
defined by the measurements, but is usually lim-
ited to low-dimensional manifold. One could say
that the state-space, or the space of possible val-
ues is constrained by the characteristic behavior
of the system.

This is illustrated in Figure 3, which depicts
a two-dimensional SOM trained with data ori-
ginating from a three-dimensional measurement
space. As we impose a small change along one
of the axes defined by the measurements, the
BMU changes to another map unit. By track-
ing the change of the best-matching unit caused
by the change of the parameters, we can reveal
the mutual non-linear dependence of the para-
meters. Also, we can say that we are “surfing” on
a low-dimensional manifold defined by the SOM
projection.

A software tool facilitating analysis has also
been implemented. With the tool, one can inter-
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Figure 3. The small change along one of the
measurement azes causes a change in other pro-
cess parameters

actively change one of the measurement values
and instantly see the effects of that change. This
serves as a helpful tool for the process specialist,
who can use it in decision making.

4. RESULTS

To validate the modeling approach, we used data
originating from an industrial production pro-
cess. The data vector used in creating the models
had 26 components, describing the raw mater-
ial characteristics in terms of element concentra-
tions, the process settings during the production
and the output quality characteristics.

The models created were tested with a testing
set, which was not used in the training phase.
The training set had 2306 training vectors and
the testing set consisted of 906 similar vectors.
The output quality was predicted using measure-
ments of the incoming raw material and the pro-
cess parameter settings during the production.
The output of the model was compared with the
real value to give an idea of the performance of
our model.

In Table 1 we can see some performance meas-
ures for our methods for comparison. Both linear

. and non-linear methods are considered. We can

see that the use of local linear models improves
the accuarcy of the model with a given number
of codebook vectors. By increasing the number
of codebook vectors we can also improve the ac-
curacy of the model.
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[ Method | MSE |
Global PCA 1.8858
SOM (8 x 6 map units) 0.8098
SOM (14 x 10 map units) 0.6059
SOM (20 x 14 map units) 0.5668
SOM (8 x 6 map units) and local PCA | 0.6785

Table 1. The prediction errors for an independ-
ent testing set

5. SUMMARY

The Self-Organizing Map is used in modeling
an industrial production process. The model is
constructed in an unsupervised way using vari-
ous measurements and process parameters. In a
practical case study, this model has been success-
fully used in predicting the quality parameters of
the end product of a steel production process.

Using the model, the sensitivity of the produc-
tion process to changes in the parameter values
can also be investigated. The software tool based
on the SOM can be used in an interactive way to
investigate the leverage effects of various para-
meters. With the aid of this tool the process
specialist can efficiently learn the essential char-
acteristics of the process from large amounts of
measurement data.

In complex process environments, analytical
modeling of the system is difficult or even im-
possible. However, mapping the measurement
space onto the SOM clusters the process states
efficiently. Now, linear modeling of the process
behavior locally within these clusters may be pos-
sible provided that the measurement data corres-
ponds to local subspaces.
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