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S1 Deviations from pre-registration

Link to consumer choice study registration: https://doi.org/10.17605/OSF.IO/H3A74

Link to money-risk study registration: https://doi.org/10.17605/OSF.IO/7CDBG

• Instead of using 90 decision rounds, the consumer choice study contained 120 rounds. This

increase was introduced after pilot testing and before the main data collection.

• In addition to analysing last scrolls, first scrolls were analysed in the spirit of exploratory

analysis; a first scroll was coded as 1 if it was to the left, otherwise it was coded as 0. This

analysis paradigm is in line with the literature on the first locations of eye gaze dwells (e.g.

Cavanagh et al., 2014).

• Change in robustness check: the pre-registered description of the robustness check on dwell

time measurement has changed, see Section S3. As this is a robustness check, the change

does not affect the main confirmatory hypothesis testing.
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S2 Screenshots

S2.1 Alternative stimuli

Figure S1: Alternative stimuli, Longines wrist watches, which were shown to 60 subjects, while the
other 60 subjects saw Nike trainers as the stimuli (screenshots in the main paper); preference task
(left), choice task (right)
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S3 Robustness checks

S3.1 Fast scrolling and dwell times

Movement of the scroll bar is typically rapid when shifting from one side to the other, and, during

these fast scrolls, the time between successive measurement points is ≪ 100 ms. One might argue

that the RDV(t) signal (see Subsection 1.2 of the main paper) does not change during these fast

scroll bar “saccades”. However, the dwell time measurement in the paper considers dwell time

to be the total time that the scroll bar spends on either side, including time spent transitioning

between sides. Although it is plausible to assume that fast scrolls between options are symmetrically

distributed and may not cause a large bias to the results obtained in the study, a robustness check

is still required.

Thus, an alternative dwell time metric is defined where such fast scrolls are not counted to-

wards dwell times. See Figure S2 for an illustration. In this alternative metric, all fast scroll bar

movements are subtracted from all dwell time measurements used in the main analysis, and the

choice-scrolling and value-scrolling link analyses are repeated. Fast scrolling is defined in the follow-

ing way. As dwell times are a series sum (t1−t0)+(t2−t1)+ ... where each ti is a y-coordinate (time

stamp) in the response curve S, terms (ti− ti−1) < 80 ms are considered fast and consequently ex-

cluded. On average, subjects engaged in 942 ms of such fast scrolling during their decision making,

from a mean decision time of 2386 ms.

S3.2 Quick U-turns and switches

Some scrolls display quick reversals of scrolling direction, where the option is visible for a short

duration only, such that that no real information is processed. To investigate the robustness of the

switches metric results to such quick U-turns, switches are excluded where the time spent scrolling

over an option is less than 500 ms. See Figure S3 for an illustration. Such U-turns are present in

4.5% of all response curves.

S3.3 Robustness check results

Table S1 presents the choice-scrolling re-analysis (Eq. 12 in the main paper) with robust response

metrics: β2, describing the impact of the proportional scrolling metric on choice, is lower for the
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Figure S2: Robustness check on dwell time measurement; the dashed line in the response curve S
(left panel) and the RDV(t) signal (right panel) represents fast movement of the scroll bar during
which RDV(t) remains constant.

Figure S3: Robustness check on switches measurement; the dashed line in the response curve S
(left panel) and the RDV(t) signal (right panel) represents reversal of the scroll bar direction, for
the duration ta, during which RDV(t) remains constant.

DDM with DT and higher for the DDM with W than in the main paper (Table 1). Table S2

presents the value-scrolling re-analysis (Eq. 13) with robust response metrics: again, we see that

β1, describing the impact of the proportional scrolling metric on subjective value, is lower for the

DDM with DT and higher for the DDM with W than in the main paper. These results imply

that while the strong-choice scrolling and value-scrolling links are preserved, some of the strength

is attributable to the portion of dwell time recorded during fast scrolling. On the other hand,
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removing quick U-turn switches strengthens the relationships.

Table S1: Re-investigation with a logit-GLMM of the choice-scrolling link (Eq. 12 in the main
paper) with proportional response metrics derived using robust DT and W measurements

(1) (2)

β0 −0.041 [−0.14, 0.058] −0.017 [−0.18, 0.14]

β1 1.26 [1.21, 1.31] *** 1.24 [1.19, 1.29] ***

β2(DT ) 0.95 [0.90, 1.0020] ***

β2(W ) 2.031 [1.92, 2.14] ***

RE: subject (SD) 0.50 0.85

Num. obs. 14 200 14 200

Note. RE = random effects, 95% CIs in brackets, significance: *** p < 0.001

Table S2: Re-investigation with an LMM of the value-scrolling link predicting VL when VR = 0,
Eq. 13 in the main paper) with proportional response metrics derived using robust DT and W
measurements

(1) (2)

β0 −0.12 [−0.35, 0.11] −0.13 [−0.36, 0.10]

β1(DT ) 0.47 [0.39, 0.55]***

β1(W ) 0.37 [0.29, 0.45]***

RE: subject (SD) 1.14 1.15

RE: residual (SD) 1.70 1.72

Num. obs. 2270 2270

Note. RE = random effects, 95% CIs in brackets, significance: *** p < 0.001
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S4 Computational modelling details

The DDM assumes that observed RTs and choices arise from a diffusion process that is determined

by parameters ν, a, z, and t0, which are described in the main paper. In all DDMs, the drift rate

ν is hierarchical, i.e. modelled as a linear function of an intercept and the predictors, as specified

by Eqs. 8 and 9, and random effects that vary across subjects. For example, in the additive model

ν ∼ β0 + β1∆V + β2∆PRM

it is assumed that the fixed effect intercept and regressors have normal priors, and the random

effects consist of an individual-level offset and a group-level scaling parameter σs, where the offset

parameter has a standard normal prior and the group-level scaling parameter has a Weibull Beta

prior. The other DDMs follow a similar approach in assigning priors for ν. The remaining DDM

parameters are assigned weakly informative priors. The non-decision time t0 and the boundary

separation a are assigned half normal priors. The starting point z has explicit bounds in (0, 1) and

a uniform prior.
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S4.1 DDM estimation summary tables

Table S3 presents a summary of the marginal posterior distributions for the β coefficients of the

basic and additive models. Table S4 displays a summary of the marginal posterior distributions for

the γ coefficients of the multiplicative models.

Table S3: Marginal posterior summary statistics from the basic and additive models; HDI = highest
density interval, ESS = effective sample size

DDM Parameter Mean SD HDI 2.5% HDI 97.5% ESS

Basic a 1.333 0.007 1.320 1.346 17324
t0 0.708 0.005 0.699 0.717 17424
z 0.502 0.003 0.496 0.509 19443
σs 0.160 0.016 0.128 0.192 4054

ν coefficients

intercept (β0) -0.020 0.018 -0.055 0.016 7253
∆V (β1) 0.532 0.008 0.516 0.548 21909

Additive (ψ) a 1.369 0.007 1.355 1.382 26887
t0 0.697 0.005 0.688 0.706 27126
z 0.503 0.003 0.496 0.509 29589
σs 0.231 0.019 0.196 0.268 5193

ν coefficients

intercept (β0) -0.021 0.023 -0.068 0.024 4761
∆V (β1) 0.475 0.008 0.459 0.491 33409

∆PRM (β2) 0.306 0.009 0.288 0.323 26426

Additive (DT ) a 1.376 0.007 1.362 1.390 23550
t0 0.695 0.005 0.686 0.705 23873
z 0.504 0.003 0.497 0.510 26447
σs 0.236 0.019 0.198 0.273 4334

ν coefficients

intercept (β0) -0.026 0.024 -0.075 0.019 4443
∆V (β1) 0.469 0.008 0.453 0.485 28058

∆PRM (β2) 0.338 0.009 0.321 0.356 27150

Additive (W ) a 1.399 0.007 1.385 1.414 24804
t0 0.689 0.005 0.680 0.699 26013
z 0.504 0.003 0.498 0.511 31817
σs 0.307 0.023 0.262 0.351 3914

ν coefficients

intercept (β0) -0.024 0.031 -0.086 0.035 2285
∆V (β1) 0.443 0.008 0.427 0.459 37369

∆PRM (β2) 0.454 0.011 0.433 0.475 24280
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Table S4: Marginal posterior summary statistics from the multiplicative models; The coefficients
are denoted as follows: C1 ≡ PRMLVL − PRMRVR, C2 ≡ PRMRVL − PRMLVR; HDI = highest
density interval, ESS = effective sample size.

DDM Parameter Mean SD HDI 2.5% HDI 97.5% ESS

Multiplicative (ψ) a 1.333 0.007 1.321 1.347 20807
t0 0.707 0.005 0.698 0.716 20997
z 0.502 0.003 0.496 0.509 21667
σs 0.158 0.016 0.127 0.190 4286

ν coefficients

intercept (γ0) -0.019 0.018 -0.054 0.017 7307
C1 (γ1) 0.342 0.009 0.324 0.360 19977
C2 (γ2) 0.266 0.009 0.248 0.283 19653

Multiplicative (DT ) a 1.333 0.007 1.321 1.347 17705
t0 0.707 0.005 0.698 0.716 18687
z 0.502 0.003 0.496 0.509 19561
σs 0.157 0.016 0.127 0.189 4478

ν coefficients

intercept (γ0) -0.020 0.018 -0.055 0.015 7616
C1 (γ1) 0.338 0.010 0.318 0.357 20521
C2 (γ2) 0.257 0.010 0.238 0.276 18846

Multiplicative (W ) a 1.333 0.007 1.320 1.346 21584
t0 0.707 0.005 0.698 0.716 20905
z 0.502 0.003 0.496 0.509 20118
σs 0.159 0.016 0.128 0.191 4531

ν coefficients

intercept (γ0) -0.020 0.018 -0.056 0.015 6779
C1 (γ1) 0.316 0.013 0.291 0.340 18990
C2 (γ2) 0.254 0.012 0.230 0.279 19827
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S4.2 RT distributions

Figures S4, S5, and S6 show observed RTs and RTs from the posterior predictive distribution, with

flipped values for Right choices, separately for each level in value difference ∆V .

Figure S4: RT distributions (observed and predicted posteriors) from the basic DDM; negative
values = Right choices, positive values = Left choices
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Figure S5: RT distributions (observed and predicted posteriors) from the additive DDMs; negative
values = Right choices, positive values = Left choices
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Figure S6: RT distributions (observed and predicted posteriors) from the multiplicative DDMs;
negative values = Right choices, positive values = Left choices
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S5 Risky choice experiment

Here, I additionally validate the scroll tracking method using another type of decision task. A

risky choice experiment is arranged that is modelled after the “money-risk” task studied by Smith

and Krajbich (2018) (henceforth, SK18), who use it to investigate attention and choice using eye-

tracking.

S5.1 Method

In the money-risk task, subjects choose between two gambles. The gambles are lotteries, each with

two outcomes and a 50% outcome probability. The outcomes vary between £0 and £5, and they are

represented graphically as blue bars against a light grey background, where the height of the blue

bar represents the amount of money (see Figure S7). In each pair, one of the options is always lower

risk than the other, and because each outcome always has the same 50% probability of occurring,

riskiness can be determined by examining the height difference between the outcomes.

The stimuli for the task were reproduced from the publicly available dataset of SK18 (https:

//osf.io/g7cv6/) and scaled to fit the outcome range of the current study. Essentially, each

subject-wise series of lotteries in the SK18 money-risk dataset had an equal chance of being allocated

to a subject in the current study. The pre-registered1 study followed the same format as the

consumer choice experiment in the main paper, but without the preference elicitation task (see

Figures S8, S9). A general risk question (GRQ; Dohmen et al., 2011) was added at the end to

model each subject’s latent risk attitude.

A total of 108 subjects participated from the Prolific subject pool (age 20–50 years, UK res-

idents). They were paid a fixed reward of £3 and bonus payments based on their performance,

which was determined by random choice of one of the choice rounds and the outcome of their

chosen lottery option. The mean bonus was £3.19, and typical completion time for the study was

20 minutes. In total, 10 subjects were excluded after eliminating rounds based on pre-registered

RT criteria: first, 4 subjects had 0 rounds left after excluding rounds that were quicker than 300

ms; then an additional 6 subjects were excluded because they had less than 50 rounds left after

removing those rounds that were quicker than 300 ms. The final number of subjects entering the

1Link to pre-registration: https://doi.org/10.17605/OSF.IO/7CDBG
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Figure S7: Example of two options in the money-risk task. The relative height of the blue bar
describes the proportion of money out of £5 that is attached to the outcome. Here, the Left option
is lower risk than the Right option because the difference between the bar heights is smaller on the
left.

analysis is 98. All data and analysis scripts are included in the project’s OSF repository.2

S5.2 Results

Utility estimation

To obtain the measurement for utility differences, the constant relative risk aversion (CRRA) utility

framework (Prelec, 1998) is utilised, and the risk aversion parameter is estimated for each subject.

Assume that each outcome x is translated to utility using

U(x) =
x1−ρ

1− ρ
(S1)

where 0 < ρ < 1 implies risk averse and ρ < 0 risk seeking behaviour. The risk-aversion pa-

rameters are estimated using maximum likelihood methods; Figure S10 shows the distribution of

the estimated ρs. Given outcome pairs (xL,T , xL,B), (xR,TxR,B), the expected utility difference is

calculated as

∆U = E[UL]− E[UR] where E[Ui] =
1

2
(U(xi,T ) + U(xi,B)), i = L,R (S2)

2Link to the file repository: https://osf.io/25fu7/files/osfstorage
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Figure S8: Screenshots from the money-risk task; the first 5 of 120 rounds were practice rounds,
and the subjects saw feedback from their choices (left panel), but, in the proper decision rounds,
no feedback or numerical outcome values were provided. The choices were made in a similar way
to the consumer choice experiment reported in the main paper (right panel), by scrolling between
them and tapping a choice button to finish the round. Each choice was a free-response and was
preceded by a 1000-ms-long “loading” screen.

Figure S9: Experimental design for the money-risk task.
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and indices T,B denote top and bottom outcomes, respectively. Each E[Ui] is also scaled across

participants to assume values between 0 and 1.

Figure S10: Histogram of ρ-values; ρ > 0 implies risk averse and ρ < 0 risk seeking behaviour

The analysis then proceeds in a similar manner to the consumer choice analysis in the main

paper. First, the choice-scrolling relationship is investigated, then the subjective risk attitude

parameters ρ and GRQ score are estimated from the scrolling data. Finally, the computational

modelling framework is used to predict choices and response times.

Choice-scrolling link

The main analysis with the consumer choice experiment established that increased scrolling over an

option increases the probability of choosing that option in a model that controls subjective value

difference. Table S5 presents the same relationship for the money-risk task with subjective utility

difference. The strong link between scrolling and choice can again be confirmed as evidenced by the

significantly positive β2 coefficients, although the odds ratios are smaller than with the consumer

choice study (Table 1 in the main paper).

Estimating risk attitude from scrolling

Following the procedure in the main experiment with consumer choices, where subjective values

are linked to the amount of scrolling, scrolling behaviour in the money-risk data is used to estimate
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Table S5: Logit-GLMMs exploring the choice-scrolling link (Eq. 12 in the main paper, replacing
value with utility)

(1) (2) (3)

Intercept (β0) −0.009 [−0.11, 0.08] −0.009 [−0.114, 0.095] −0.009 [−0.12, 0.10]

∆U (β1) 0.80 [0.74, 0.87] *** 0.80 [0.74, 0.86] *** 0.82 [0.76, 0.88] ***

PRMψ
L (β2) 0.61 [0.55, 0.67] ***

PRMDT
L (β2) 0.64 [0.59, 0.70] ***

PRMW
L (β2) 0.56 [0.49, 0.62] ***

RE: subject (SD) 0.48 0.48 0.48

Num. obs. 10 257 10 257 10 257

Note. RE = random effects, 95% CIs in brackets, significance: *** p < 0.001

the subjective parameters describing risk attitude. First, the Right option is fixed such that it is

higher risk than the Left option, as follows. The outcomes in the Right option are xR,T and xR,B,

and the riskiness of this option can be described by |xR,T − xR,B|, i.e. the amount of money that

separates the two possible outcomes that have an equal chance of being realised. The analysis is

then restricted to a subset of the data such that the Left option is always the less risky one, or

|xR,T −xR,B| > |xL,T −xL,B|, a condition that leaves us with half the observations. The hypothesis

is that the amount of scrolling over the lower-risk Left option would be linked to the subject-level

parameters ρ and the GRQ score. To have one observation of scrolling behaviour per subject and to

be able to use linear models to investigate the predictions, the average PRML values are calculated

for each subject in this subset of the data. The linear models are written as follows:

ρ ∼ β0 + β1 ˆPRM
M
L (S3)

GRQ ∼ β0 + β1 ˆPRM
M
L (S4)

where ˆPRM
M
L is the subject-wise mean proportional response metric over all rounds where the Left

option is the less risky. The results show significant relationships for Eq. S3 (forM = ψ, β1 = 0.82,

95% CI = [0.56, 1.07], p < 0.001; for M = DT , β1 = 0.83, 95% CI = [0.58, 1.08], p < 0.001; for

M = W , β1 = 0.80, 95% CI = [0.55, 1.06], p < 0.001), implying that the degree of relative risk

aversion ρ has a positive linear relationship with the mean proportional response metrics over the

less-risky option. The relationships are also significant for Eq. S4 (for M = ψ, β1 = −3.29, 95%
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CI = [−5.38,−1.20], p = 0.002; for M = DT , β1 = −3.37, 95% CI = [−5.57,−1.18], p = 0.003;

for M =W , β1 = −3.47, 95% CI = [−5.69,−1.25], p = 0.003), implying that the more (in average

terms) the less-risky option is scrolled proportional to the riskier option, the lower is the GRQ

score, or the subject’s self-reported willingness to take risks in their daily life.

Stillman et al. (2020) estimate risk aversion and loss aversion parameters from a series of bi-

nary gambles and correlate them with mouse tracking area-under-the-curve measurements. They,

likewise, find that subjective risk attitudes correlate with the response dynamics metric. Their cor-

relation coefficients are in the range of [0.26, 0.50] (in absolute values). Our standardised coefficient

β1 = 0.55 in the model where ρ is predicted by PRMψ
L (Eq. S3). Together, both studies point that

response dynamics can be used to index computational risk preference measurements.

Computational modelling

Using the money-risk data, the same DDM modelling procedure is followed as in the main paper,

Subsection 3.6, i.e., 4 chains are run with 4,000 draws using MCMC sampling. The only exception

is the multiplicative model with dwell time, which is run using 6,000 draws and 3,000 burn-ins

due to initial convergence issues. Tables S6 and S7 display the summaries from the marginal

posterior distributions of the DDM parameters. The effective sample size is greater than 400 for all

parameters, indicating full convergence of the chains. The β2 coefficients, which model how drift

rate responds to changes in proportional response metrics, are significantly positive but somewhat

lower than in the consumer choice data reported in the main paper (Figure 6 and Table S3). For

example, the β2 coefficient for the additive DDM with ψ is 0.26 here but 0.31 with the consumer

choice data. This implies a slightly weaker slope in the average rate of evidence accumulation for a

unit change in proportional response metrics when the stimulus is in the risky choice rather than

consumer choice format. In the money-risk data, the mean RT of 2.18 s (SD = 1.94 s) is lower than

the mean RT in the consumer choice data (2.40 s with SD = 1.62 s); therefore, the subjects in the

money-risk task process their choices faster than in the consumer choice study, but the relationship

between the proportional amounts of scrolling and the speed of relative evidence accumulation is

slightly weaker. The comparisons between observed and predicted RTs are shown in Figures S11,

S12, and S13 by different binned ∆U values.
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Table S6: Marginal posterior summary statistics from the basic and additive models with the
money-risk data; HDI = highest density interval, ESS = effective sample size

DDM Param Mean SD HDI 2.5% HDI 97.5% ESS

Basic a 1.326 0.007 1.311 1.341 21002
t0 0.477 0.006 0.465 0.488 22308
z 0.509 0.004 0.501 0.517 24745
σs 0.423 0.042 0.340 0.504 3158

ν coefficients

intercept (β0) 0.021 0.045 -0.069 0.110 1086
∆U (β1) 0.421 0.012 0.398 0.447 30227

Additive (ψ) a 1.343 0.008 1.329 1.359 19877
t0 0.473 0.006 0.461 0.485 18811
z 0.510 0.004 0.502 0.518 23819
σs 0.489 0.044 0.402 0.574 3176

ν coefficients

intercept (β0) 0.022 0.050 -0.076 0.120 827
∆U (β1) 0.398 0.012 0.374 0.422 22440

∆PRM (β2) 0.260 0.011 0.238 0.282 21192

Additive (DT ) a 1.345 0.008 1.330 1.360 18110
t0 0.473 0.006 0.461 0.485 17576
z 0.510 0.004 0.502 0.518 19703
σs 0.493 0.044 0.408 0.581 3304

ν coefficients

intercept (β0) 0.017 0.050 -0.084 0.111 742
∆U (β1) 0.393 0.012 0.370 0.417 23961

∆PRM (β2) 0.280 0.012 0.258 0.303 19470

Additive (W ) a 1.343 0.008 1.327 1.357 14381
t0 0.474 0.006 0.462 0.486 14527
z 0.510 0.004 0.502 0.518 21399
σs 0.517 0.045 0.431 0.607 3073

ν coefficients

intercept (β0) 0.021 0.052 -0.078 0.127 637
∆U (β1) 0.399 0.012 0.376 0.424 18737

∆PRM (β2) 0.295 0.014 0.268 0.323 15106
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Table S7: Marginal posterior summary statistics from the multiplicative models with the money-
risk data; The coefficients are denoted C1 ≡ PRMLUL − PRMRUR, C2 ≡ PRMRUL − PRMLUR;
HDI = highest density interval, ESS = effective sample size

DDM Parameter Mean SD HDI 2.5% HDI 97.5% ESS

Multiplicative (ψ) a 1.345 0.008 1.329 1.360 17017
t0 0.472 0.006 0.460 0.484 15952
z 0.510 0.004 0.502 0.518 22169
σs 0.491 0.045 0.407 0.581 2661

ν coefficients

intercept (γ0) 0.019 0.051 -0.087 0.116 594
C1 (γ1) 1.007 0.027 0.954 1.060 11020
C2 (γ2) 0.716 0.026 0.664 0.769 10887

Multiplicative (DT ) a 1.347 0.008 1.332 1.362 23701
t0 0.472 0.006 0.460 0.484 24213
z 0.510 0.004 0.502 0.517 26191
σs 0.493 0.044 0.405 0.579 4372

ν coefficients

intercept (γ0) 0.021 0.051 -0.082 0.117 1060
C1 (γ1) 0.981 0.026 0.931 1.033 15573
C2 (γ2) 0.674 0.025 0.625 0.725 15832

Multiplicative (W ) a 1.342 0.008 1.327 1.357 14979
t0 0.474 0.006 0.461 0.486 14753
z 0.510 0.004 0.502 0.517 20730
σs 0.505 0.045 0.418 0.593 3091

ν coefficients

intercept (γ0) 0.020 0.052 -0.081 0.121 673
C1 (γ1) 0.904 0.024 0.857 0.949 11749
C2 (γ2) 0.607 0.023 0.562 0.653 11276
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Figure S11: Money-risk RT distributions (observed and predicted posteriors) from the basic DDM;
negative values = Right choices, positive values = Left choices

To compare the predictive ability of the different DDMs in the money-risk task, again the same

hold-out evaluation procedure is followed as in the main paper (Subsection 3.6). Data from odd-

numbered rounds is used to estimate the additive and multiplicative DDMs and derive posterior

predictive distributions of choices for even-numbered rounds. Then, a set of predicted choices

is compared to the real choices on even rounds, and the share of correctly predicted choices is

calculated for each draw in each chain. This results in 4 chains × 4,000 draws = 16, 000 correctness

scores, which are summarised for different models in Table S8.

Table S8: Predictive correctness of DDMs estimated on odd rounds; score = mean % of even round
choices predicted correctly

DDM Score

Basic 56.9%
Additive (ψ) 59.3%
Additive (DT ) 59.5%
Additive (W ) 58.8%
Multiplicative (ψ) 59.3%
Multiplicative (DT ) 59.6%
Multiplicative (W ) 58.7%
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Figure S12: Money-risk RT distributions (observed and predicted posteriors) from the additive
DDMs; negative values = Right choices, positive values = Left choices
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Figure S13: Money-risk RT distributions (observed and predicted posteriors) from the multiplica-
tive DDMs; negative values = Right choices, positive values = Left choices
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S5.3 Re-analysis of the SK18 data

The SK18 dataset includes region-of-interest dwell times, and this allows the proportional dwell

time metrics, PRMDT
L , to be calculated and compared to the results from the scroll tracking metrics

presented in the previous section (Table S5). To prepare the comparisons, two re-calculations are

performed from the SK18 data: (1) The PRMDT
L metrics are calculated for each choice based on

the left/right dwell time data provided in SK18 dataset, and (2) the ρs (CRRA utilities, Eq. S1)

and expected utility differences ∆U (Eq. S2) are calculated using the utility estimation procedure

described in the previous section, based on the choice and lottery value data in the SK18 dataset.

Then, the subset of rounds 1–120 from the SK18 data is used to make the re-analysis comparable

with the scroll tracking data, which contained 120 rounds (SK18 originally collected 200 rounds

from each of the 36 subjects). Table S9 shows the results of a logistic GLMM of the re-analysis,

which is also presented in the main paper, Figure 7 and can be directly compared to Table S5. The

β2 coefficient in the re-analysed SK18 data (which is restricted to rounds 1–120) is higher (0.97)

than in the scroll tracking data (β2(DT ) = 0.64), which implies that choice probability is more

sensitive to response metrics calculated from eye-tracking data than from scroll tracking data.

Table S9: Logistic GLMM for SK18 eye data (Eq. 12 in the main paper)

Intercept (β0) 0.097 [−0.013, 0.21]

∆U (β1) 0.79 [0.70, 0.88] ***

PRMDT
L (β2) 0.97 [0.88, 1.06] ***

RE: subject (SD) 0.25

Num. obs. 3974

Note. RE = random effects, 95% CIs in brackets, significance: *** p < 0.001

Finally, cross-validation is used to predict even round choices using DDMs constructed from

odd rounds in the SK18 data. The predictive correctness scores are reported in the main paper.
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S6 Comparison of response metrics between studies

Figure S14: Comparison of aggregate response metric distributions between studies. Red = con-
sumer choice, Blue = money-risk task.
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