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Abstract

Understanding how preferences are formed in commonplace and natural situations is highly
valuable for researchers and practitioners. Here, I develop scroll tracking, a process-tracing
method that uses a touch-scroll-based responsive mobile web design well-suited for studying
the cognitive processes behind decision making. The method follows the decision maker’s
scrolling behaviour and records a response curve in the pixel-millisecond coordinate space. To
demonstrate the value of response curve analysis in decision research, different metrics are
proposed that are derived from the response curve and rooted in the motor response and gaze
dwell metrics presented in the literature. An experimental study framed as a consumer choice
problem is used to validate the method and test predictions made by attentional evidence
accumulation models using the response curve metrics. The way the decision maker interacts
in the app can be used to predict subjective valuations as well as latent individual difference
measures and risk attitudes, as a complementary risky choice study shows. I then compare the
predictive ability of different drift diffusion models, stocked with the scroll-tracking response
metrics. The scroll tracking metrics improve all the models. These findings show the potential
of naturalistic process-tracing methods in responsive digital applications. These designs can be
used to covertly study decision processes and are applicable to different practical settings.
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1 Introduction

In this paper I introduce scroll tracking, a method that uses mobile websites to trace decision

processes. Scroll tracking utilises data on how people interact with virtual elements, such

as on-screen boxes, that respond to touch-scroll gestures. Research on attention and motor

response dynamics is combined to build a method that models the human computational

process that compares and integrates decision values over time.

Decision neuroscience often studies the following kind of problem, which here is adapted

from Callaway et al. (2021). A decision maker (DM) is choosing a product to buy on a super-

market shelf. They sample information on the available alternatives, and, at some point, they

arrive at a decision. This process is noisy, so it takes some time for the DM to find the item

they want (Ratcliff et al., 1999; Gold and Shadlen, 2007; Shadlen and Kiani, 2013). Moreover,

it takes longer to decide when many options are nearly similar than when one option stands

out. The DM’s neural system creates perceptual representations of the options, which compete

for attention (Desimone and Duncan, 1995). Options that receive more attention experience

a boost in the rate at which the DM sorts out their relative differences (Krajbich et al., 2010;

Cavanagh et al., 2014; Smith and Krajbich, 2018). The literature is well-versed in this link

between attention and choice (Shimojo et al., 2003; Glaholt et al., 2009; Arieli et al., 2011;

Schotter et al., 2012; Orquin and Loose, 2013; Pärnamets et al., 2015). Sequential sampling

models propose that choice is affected by the relative desirability of the options and that it is

biased by where attention is allocated. The models predict that the DM makes a commitment

and moves their hand towards the target once they have sampled enough evidence on the

options.

However, the real picture is richer than this. Shoppers move their hands while they look at

options, and at least some of this movement is non-arbitrary and goal-directed. For instance, the

DM may gaze at option A while reaching towards option B. Alternatively, the DM may already

hold option C in their hands while looking at B. This raises questions about the modelling of

movement in the choice process. For instance, could the model that predicts what the DM

chooses benefit from knowing where hand movements are directed? Could the movements the

DM displays between the options reveal something about their tastes?

Mounting neural evidence suggests that movement is important to decision making. The

brain does not strictly follow a serial process of perceptual coding, target selection, and motor

action when making decisions. Likewise, movement itself is not strictly separated into planning

and execution. Many motor plans can be made while perceptual information is processed

(Hommel et al., 2001; Cisek, 2007; Cisek and Kalaska, 2010). Human movement is flexible

and adaptive because our bodies possess more degrees of freedom than required (Todorov

and Jordan, 2002), and we can achieve the same goals by orchestrating movements in several

different ways (Haggard, 2008). In common language, people use motion-related metaphors

to describe their decision processes. We are often “between” options, or we “step back” to

re-evaluate. We may “lean into” a good option, or “walk away” from a bad option.1 It should be

uncontroversial to state that our decision processes involve movement planning and execution.

Goal-directed movement should be considered a real part of the process such that it precedes

commitment (Lepora and Pezzulo, 2015; Calalo et al., 2025). The literature based on the
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attention-choice paradigm describes how to model how visual perception biases economic

decision making, but, in general, it lacks unified ways that model how motor movements

influence the process with attention. Because hand movements are, in principle, overt and

trackable, such methods have practical implications.

In the present study I show how to record patterns of attention and movement using

the mobile application (“app”) presented in Figure 1. Scroll tracking follows how the DM

moves between options and slows down or stops to look at those options. The method exploits

responsiveness of modern web design. A web page is responsive when its layout automatically

scales to the size of the device. On handheld devices, this means that only a few options are

visible on the screen at one time, and the DM must use scrolling to make comparisons. The DM

indicates their choice by a button tap. The options are contained in a scrollable element, and the

app records how it moves. Movement is represented as a response curve in the pixel-millisecond

coordinate space. The response curve recordings can be converted into analysis metrics that are

used to model the decision process. Based on these ideas, I propose that scroll tracking captures

not only where attention is allocated but also how movement is executed during preference

formation.

Touchscreen digital interfaces allow exploring the link between motor response dynamics

and decision making. These interfaces are ubiquitous: most web browsing is based on touch-

scroll gestures on handheld devices, which means that most digital consumption decisions are

made using such devices.2 In 2024, almost 60% of global internet traffic came from mobile

devices (Statista, 2024). Although the example presented above is from a physical supermarket,

shoppers in virtual marketplaces use motor responses as well, especially when browsing on

tablets or smartphones.3

Scroll tracking is part of a larger family of responsive methods that rely on touch-scroll

gestures. Responsive methods can model preference formation by measuring both attention

and movement from the decision process. Understanding preferences forms the basis of data-

driven econometric applications. Eye tracking provides a precise way to track attentional

allocation during choice (Glaholt et al., 2009; Orquin and Loose, 2013), but it may be overcostly

or inaccessible and may underemphasise the role of actions in the process. Mouse tracking

provides a dynamic approach to mental processing (Freeman et al., 2011) but fails to capture

attention and how it amplifies decision values. Scroll tracking offers a new perspective on the

study of decision processes, even if it cannot substitute eye tracking due to its limited capability

to track nuanced shifts in attention.

The next three subsections provide more detail on the three tenets of scroll tracking: that

decisions are formed when attention and motion interact in the cognitive subsystems, that the

sequential sampling of decision information is biased by response dynamics, and that response

curves can quantify the spatial attraction effect.

1.1 Attention in motion

It is widely known that attention is part of choice. For instance, measurements of eye fixations

are frequently used to model the computation of decision value in evidence accumulation

models (Krajbich et al., 2010; Krajbich and Rangel, 2011; Krajbich et al., 2012; Konovalov and
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Krajbich, 2016; Smith and Krajbich, 2018; Zilker, 2022). Increased gaze dwell time on an option

predicts an increased rate of relative evidence accumulation towards that option, which also

increases the probability of choosing it (Cavanagh et al., 2014). Increased gaze dwell time

amplifies the option’s subjective value in some instances (Smith and Krajbich, 2019). When

there are many attributes, attention to an attribute increases its relative weight and decreases

the weight of a non-fixated one (Fisher, 2017, 2021). Overall, the literature has found that the

time that one attends to information on choice options affects choice probabilities and option

values.4

Another well-known link exists between motion and response competition. Movement

often begins before final selections are made (Freeman et al., 2011; Selen et al., 2012; Gallivan

et al., 2018; Kim et al., 2021; Priorelli et al., 2025), as people can keep multiple goals in

mind and maintain the flexibility to re-evaluate options during choice (Chapman et al., 2010;

Stewart et al., 2013). Neural recordings show that decisions are computed and represented

in the neural structures that guide behavioural responses, such as the parietal cortex (Sugrue

et al., 2005; Wispinski et al., 2020). The perception of an object, such as a teapot, activates

simulations of potential actions related to the object, such as grasping its handle (Tucker and

Ellis, 1998). Shared representation theories propose that attention and motion are intertwined,

as perceptions and motor actions use a common representational format (Hommel et al., 2001).

Thus, it is evident that decision making should be interpreted as the parallel operation of

perception, inference, and motor action.5

The brain uses parallel planning to prepare many competing actions at the same time

(Gallivan et al., 2017), which is reflected in intermediate motor movements (Kim et al., 2021).

These are movements “between” the available options (Spivey and Dale, 2006; McKinstry et al.,

2008; Chapman et al., 2010; Koop and Johnson, 2011; Freeman, 2018; Dotan et al., 2018). An

example of an intermediate movement is a hand reach that travels along an average trajectory

between two options that are in front of the DM. When the options are more similar, there

are more intermediate movements between them. It has been proposed that moving along

these average trajectories is optimal because it preserves the flexibility to re-evaluate options

(Kim et al., 2021). Intermediate movement is shown in the trajectory as curvature towards the

non-chosen option, which has been termed the spatial attraction effect in the literature.

The spatial attraction effect can be illustrated by a virtual shopping example. Consider

that the DM observes two options, A and B, from the website’s layout and the way it cues

movement between the options. The perceptions of these options are shared with action plans

that specify how to move to view the options. The possibilities for performing actions with

choice options are termed affordances in the previous literature, and each option has its own

affordance (Gibson, 1986; Tucker and Ellis, 1998; Symes et al., 2007; Pezzulo and Cisek, 2016).

While looking at option A, the affordance competition from option B creates spatial attraction

that is not necessarily registered as reduced attention to option A but that may be observed

as initiated motor movement away from it. In this sense, the DM is “pulled towards” the

competing option (McKinstry et al., 2008). After viewing option B for some time, the DM may

feel the spatial attraction of option A, which is again registered as motor movement. When A

and B are subjectively more similar, spatial attraction between them is stronger.
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1.2 Computational modelling

Scroll tracking is a computational method that assumes that a sequential sampling process

calculates a relative decision value (RDV) that determines choice (Gold and Shadlen, 2007).

The model is estimated from data that includes choices, response times (RTs), and the response

metrics specified in Subsection 2.2.

I use the bounded drift diffusion model (DDM; Ratcliff, 1978; Ratcliff et al., 1999) as the

basic framework to model the RDV. The DDM is increasingly used in preference-based decision

making research (Milosavljevic et al., 2010; Krajbich et al., 2010; Frydman and Nave, 2017;

Clithero, 2018). As detailed, for instance, in Milosavljevic et al. (2010), the evolution of the

RDV over discrete time t is described by a difference equation

RDVt = RDVt−1 + ν + ϵt . (1)

The parameter ϵt ∼N (0,σ2) describes Gaussian noise that is added after each transition, with

standard deviation σ . The drift rate ν is related to the numerical values assigned to the options

Vi and V−i . In the notation used throughout this paper, −i denotes the option other than i. Drift

rate is then defined as

ν = k(Vi −V−i) (2)

and it models the relative speed of evidence accumulation towards option i. Value difference

is translated into drift rate by the constant k > 0. The DDM, therefore, predicts how choice

probabilities and RTs depend on subjective value differences. A choice is made when RDVt

exceeds either threshold a for option i or a normalised threshold 0 for option −i. Assuming a

neutral starting point value z = a/2 for RDV0, the probability of choosing option i is

P (choose i) = (1 + exp(−aν/σ2))−1 (3)

and the expected RT is

E[RT] = t0 +
a

2ν
tanh(aν/(2σ2)) (4)

where t0 is a non-decision time component that represents the length of the time interval during

which RDVt remains unchanged (Ratcliff et al., 1999).

The DDM yields logistic choice probabilities (Eq. 3), and it is equivalent with the logit

model (Woodford, 2014; Smith et al., 2019). However, using the joint distribution of choices

and RTs in the DDM improves out-of-sample predictions (Clithero, 2018) and reduces variance

in utility estimates (Webb, 2019) over the logit approach. Logit models are widely used in

applications that assume random utility based data-generation processes. DDMs, and bounded

evidence accumulation models more broadly, are valuable in econometric applications (Webb,

2019; Xiang Chiong et al., 2024).

In the basic DDM, the drift rate parameter ν is constant across the decision process and

proportional to the value difference, but it has also been proposed that ν can change within

the process. Perhaps the most common way to bias ν is by attention allocation (Krajbich et al.,

2010; Krajbich and Rangel, 2011; Cavanagh et al., 2014; Smith and Krajbich, 2019; see also

Callaway et al., 2021 for a normative analysis). Attention allocation is quantified in gaze dwells
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on different regions of the stimuli, which have been measured in prior research using eye

trackers. In the DDM, an increased dwell time over option i biases the drift rate towards that

option. When the fixations change to option −i, the biasing effect changes. The biasing effect

can be described by an additive or a multiplicative model. An additive relationship between

drift rate and attention is written

ν = k(Vi −V−i + η), (5)

where η presents a constant attention bias that is independent of the values of the options

(Cavanagh et al., 2014; Thomas et al., 2019; Smith and Krajbich, 2018, 2019). The additive

bias parameter η receives a new measured value each time attention changes between the

options, and this changes the course of the drift process if the options’ value difference is not too

large. It is straightforward to verify that increasing η increases ν and causes both an increased

probability of choosing option i (Eq. 3) and a leftward shift in the RT distribution (Eq. 4) at all

levels of the options’ value difference Vi −V−i .
The biasing effect can also be modelled in the attentional DDM (Krajbich et al., 2010;

Krajbich and Rangel, 2011; Krajbich et al., 2012) using a multiplicative relationship between

drift rate and attention,

ν = k(Vi −θV−i). (6)

Here θ > 0 represents a modulative bias of attention. When the multiplicative bias parameter

θ < 1, attention towards option i amplifies its value Vi relative to V−i . The modulative effect

vanishes when θ approaches unity. The multiplicative model predicts qualitatively the same

modulative effect of attention on choice probabilities and RTs as the additive model.

Movement is not currently used in models of the biasing effect of attention; DDMs view

motor movement as a non-decision component that does not directly affect the RDV (Krajbich

et al., 2012; Wispinski et al., 2020). However, we know that decision making is affected by

processing that occurs after movement initiation (Resulaj et al., 2009; van Den Berg et al., 2016),

implying that the relative evidence continues to accumulate towards an option even while

motor action is ongoing.6

1.3 Motor response dynamics

Interactive choice tasks have previously been used to study how people produce movement

patterns in two and three-dimensional spaces (Spivey et al., 2005; Spivey and Dale, 2006).

These response trajectories track the motion of the hand from a starting point to a point that

marks the chosen option. In previous research, methods that track mouse pointer movements7

have proven sensitive to detecting mixtures of mental states (Spivey and Dale, 2006) in various

domains, such as in spoken words (Spivey et al., 2005), social categorisation cues (Freeman

et al., 2008), dietary attributes (Sullivan et al., 2015) and subjective utilities of risky options

(Stillman et al., 2020).

Mouse tracking quantifies the spatial attraction effect with metrics derived from the response

trajectory. The most common metrics include the degree of curvature in the response trajectory

(where a steeper curve means more attraction from the unchosen option; Spivey et al., 2005;

McKinstry et al., 2008), maximum deviation away from the chosen option and towards the
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unchosen option (Freeman and Ambady, 2010), and the area under the curve, or the polygon

area drawn by the trajectory and closed by an ideal straight line (Freeman et al., 2008; Koop and

Johnson, 2011; Stillman et al., 2020). The spatial attraction effect is graded: if the competing

option is rendered gradually less desirable, the effect diminishes. In the recent literature,

the shape of the motor response trajectory has been seen as a manifestation of the evidence

accumulation process (Dotan et al., 2018; Stillman et al., 2020; Molano-Mazón et al., 2024).

However, as argued above, while response trajectories can model the spatial attraction effect,

they are insufficient to model the biasing effects of attention in evidence accumulation.

1.4 Purpose and organisation of the paper

The main purpose of this paper is to demonstrate that scroll tracking can detect the spatial

attraction effect in movement patterns while also providing measurements of attention. To

validate the method as fit for purpose, metrics that model the biasing effect of scrolling on the

relative decision value are first identified, after which the method is tested empirically.

Section 2 presents how the response curve is constructed from the measurements of scroll

bar movements and discusses different response metrics that quantify the attention-motion

dynamics. Section 3 reports the results of a consumer choice experiment that tests the model

predictions. Section 4 discusses the relevance of scroll tracking as a process-tracing method, its

limitations, and practical implications. The Online Appendix reports the results of robustness

tests, supplementary analyses, and an additional risky choice experiment.

2 Method

2.1 The response curve

Scroll tracking is implemented in an app where the decision stimuli are contained in web

elements. The app is designed for mobile web browsers.8 The user interacts with the elements

using touch-scroll gestures (Figure 1). The motor response is manifested in a response curve S

in the pixel-millisecond coordinate space. To generate S, the app covertly records the horizontal

position of the scroll bar whenever it moves and combines this with time stamps. The response

curve is a time-series of scroll bar locations. Each new round of decision making begins with

the scroll bar placed at the middle position. At the start of each round, the decision stimuli and

the choice buttons are hidden, but they become visible when screen touching is first detected.

RT recording begins at the initial movement of the scroll bar and ends when one of the choice

buttons are tapped.

When the DM is scrolling so that option i ∈ {L,R} (Left, Right) is visible, the motor response

recorded by the moving scroll bar is registered as bias towards that option. The “amount of

scrolling” can be calculated from the part of S that is on side i of the mid-line D, which divides

the 300-pixel wide viewport (the visible part of the web page on screen, see Figure 1). Once the

scroll bar passes the mid-line, the relative decision value changes from accumulating towards

option i to accumulating towards option −i.
Scroll bar movement is interpreted in the same way as changing gaze dwell locations in eye

tracking (Krajbich et al., 2010). In the scroll-tracking app, the first position of the scroll bar is
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Note: The top row demonstrates scrolling between the options, and the boxes below show how the response curve is
drawn from scrolling. (a) Scrolling right to option B. (b) Scrolling left to option A. (c) Scrolling back right to option
B. (d) V = 300 px wide viewport. C = scrollable container for the stimuli where both options cannot be viewed
simultaneously. Squares with A and B = choice buttons for the left and right-hand side options, respectively. (e) The
response curve S in pixel (px)-millisecond (ms) space, S0 = starting point, SE = ending point. D = mid-line in the
centre of the viewport. In this example trajectory, the left-hand side option has been viewed once, and the
right-hand side option has been viewed twice. The first movement of the scroll bar from S0 counts as the first
switch. The thick dashed line at the top is not part of S but it is added for the calculation of ψ3. (f) How the
different response metrics are calculated in this example.

Figure 1: Illustration of scroll tracking
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in the centre (Figure 1), and the DM initiates the round by scrolling left or right. The design

imitates eye-tracking setups where the inter-stimulus interval presents a fixation cross in the

centre of the screen, minimising the possibility of a starting point bias in first fixations.

2.2 Response metrics

To quantify the biasing effect of scrolling, measurement benchmarks are used from the motor

response dynamics literature (e.g. Schoemann et al., 2021). The response curve S is directly

used to determine the response metrics.

Let the sequence τ0, τ1, ..., τN denote the time-values where S intersects with D (Figure 1).

Scrolling starts at τ0 = 0. There are m measurement points within each interval (τj , τj+1], and

we include point τj+1 in these m measurements, but not point τj . The end point of the final

measurement interval is not an intersection point (e.g. τ3 in Figure 1e), but it is included in

the calculation of the metrics. The metrics ML,MR are defined for the left-hand side (L) and

right-hand side (R), respectively. The set of metrics M ∈ {DT ,ψ,W } consists of:

• Dwell times (DT ) over the options, which calculate how long each option has been

observed. These are analogous to the gaze dwell times obtained from eye-tracking data

and used to study the attention-choice link (Krajbich et al., 2010). Dwell times can be

calculated from the sequence τ1 − τ0, τ2 − τ1, ... and totalled as DTL and DTR for the total

time of looking at the Left and Right options, respectively.

• Polygon areas (ψ), or areas determined by the segments of S that belong to either the left

or the right-hand side of the mid-line D. Each interval (τj , τj+1] determines one polygon

(e.g. (τ0, τ1] defines ψ1 in Figure 1e). The polygon is determined by a sequence of vertices

(S(t0), t0), (S(t1), t1), ..., (S(tm), tm) such that t0 = τj , tm = τj+1, and τj < t1 < t2 < ... < tm−1 <

τj+1. The area is calculated using Gauss’s formula 1
2
∑m−1
k=1

(
S(tk)tk+1 − tkS(tk+1)

)
. Each

term in this formula is a cross-multiplication between the vertical and the horizontal

coordinates that are diagonal to each other. When scrolling over the left-hand side option,

the polygon is negatively oriented and the area is multiplied by −1. Total polygon areas

are ψL and ψR. It should be noted that because area is calculated using both the spatial

extent of scrolling and the temporal extent, the polygon area measurements in principle

contain all the information contained in dwell time measurements.

• Switches (W ) between the options in both directions. A switch at τj is considered left-

to-right if S is increasing when it crosses the midline at this point, or if ∃ϵ > 0 such that

∀h ∈ (0,ϵ), S(τj ) < S(τj + h). Otherwise, if S is decreasing when it crosses the midline, it is

considered a right-to-left switch. These switches are then totalled by type: WL indicating

the number of right-to-left switches over the course of the decision, and WR indicating

the number of left-to-right switches.

For statistical analyses, it is practical to use proportional response metrics, defined as

PRMM
i =Mi/(ML +MR), for i ∈ {L,R} (7)
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where M ∈ {DT ,ψ,W }. For instance, when the metric of interest is dwell time, the proportional

response metric PRMDT
L > 0.5 if the subject has viewed the Left option most of the time. In the

illustrative example of Figure 1, the proportional response metrics are calculated as follows: the

proportional dwell time on Left is PRMDT
L = (τ2 − τ1)/τ3 because the total dwell time is equal to

τ3; the proportional polygon area on Left is PRMψ
L = ψ2/(ψ1 +ψ2 +ψ3); and PRMW

L = 1/(1 + 2)

because there is one switch to the left and two switches to the right. While the first two

proportional metrics are continuous between 0 and 1, the proportional metrics for the switches,

PRMW
i , are fractional numbers attaining values from the sequence 1

3 ,
2
3 ,

2
4 , . . . (and also 0,1).

Aggregate response metrics are also studied that are not separate for the left and right-hand

sides, including response time RT =DTL+DTR, total number of switchesWtot =WL+WR, length

of S, and the total distance that the scroll bar travels in the x-direction.

2.3 Using response metrics in computational modelling

To take advantage of scroll tracking when building DDMs, the present study follows research in

the literature that incorporates process tracing to model the value comparison process (Krajbich

et al., 2010; Cavanagh et al., 2014; Smith and Krajbich, 2019; Fisher, 2021). The main purpose

of the DDMs is to model the drift rate ν, i.e. the relative rate of evidence accumulation, towards

the Left option so that it is biased by scrolling. Drift rate depends on value differences and

differences in proportional response metrics (i.e. the additive model, Eq. 5), defined as

ν ∼ β0 + β1∆V + β2∆PRM, (8)

where ∆PRM = PRML−PRMR and ∆V = VL−VR. Given that the beta coefficients are positive, Eq.

8 predicts that the drift rate is increased when VL increases relative to VR, or when the response

metric ML increases relative to MR (see Eq. 7), and that these two effects are independent.

Thus, Eq. 8 states that the relative average speed of evidence accumulation can be raised by an

increase in either the value difference or the relative amount of scrolling.

Cavanagh et al. (2014) derive the following representation for the drift rate in the multiplica-

tive model (Eq. 6) using process tracing. We use product terms that include the proportional

response metrics and option values,

ν ∼ γ0 +γ1(PRMLVL −PRMRVR) +γ2(PRMRVL −PRMLVR) (9)

when setting θ = γ2/γ1 in Eq. 6. Because the modulative parameter θ < 1, i.e. value of the

currently scrolled option is integrated at a higher rate than the competing option, we should

observe that γ1 > γ2 for the data to be consistent with the multiplicative model.

2.4 Choice-scrolling link

The attentional DDM links process tracing to choice (Krajbich et al., 2010; Cavanagh et al.,

2014; Smith and Krajbich, 2018, 2019). It predicts that increased gaze dwell time on an option

increases the likelihood of choosing that option when the options’ subjective values are equal.

Using scroll tracking and the proportional response metrics (Eq. 7), it can be predicted that
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choice and scrolling have the following relationship:

choose i ∼ β0 + β1PRMi , when Vi = V−i , (10)

where β0 and β1 are the intercept and slope coefficients, respectively, of the linear equation. The

link can be understood in terms of the attention-choice relationship: when the values are equal,

the more one attends to option i by scrolling over that option, in proportion to the total amount

scrolled over both options, the higher is the value of PRMi and the higher is the likelihood of

choosing option i. This is a consequence of the bias in the drift rate (Eqs. 8 and 9), which leads

to an increase in choice probability (Eq. 3).

Another choice-bias prediction is the link between value difference and the probability that

the last-attended option is the chosen one (Krajbich et al., 2010; Smith and Krajbich, 2018).

The last-attended option has a higher probability of being chosen than the other option, but

this probability is decreased if the last-attended option is significantly worse than the other.

Hence, the DM may choose option i while attending to option −i because the former has higher

value than the latter. This relationship can also be imported into the scroll-tracking context by

studying whether choice probability is predicted by the last-scrolled option.

2.5 Value-scrolling link

It was argued earlier that motor movement data reflect the dynamic preference formation

process. An example from the literature is how the metric “area-under-the-curve” quantifies

spatial competition in mouse tracking. Stillman et al. (2020) show that such measurements

correlate, at the level of single trials, with risk preferences estimated from observed choices.

They argue that the motor response measurement provides preferential diagnostic information

that could be useful in addition to information on choices and RTs. Observing conflict from the

response metric provides a window into the latent psychological factor, which, in their case, is

a risk preference parameter.

The DM should experience increasing difficulty, or choice conflict, in deciding between

options as the values of these options become more equal. Choice conflict should increase

intermediate movements, or spatial competition from the non-selected option. In the scroll-

tracking app, there should be more scrolling between the options, as manifested by longer

dwell times, larger polygon areas, and more switches, when the subjective values become more

equal. This raises the possibility of using the proportional response metrics to represent the

relative subjective value difference. In other words, when option i is judged as better than

option −i, option i should receive a higher proportion of scrolling. Thus, we should observe a

link between value and scrolling,

Vi ∼ β0 + β1PRMi , when V−i fixed, (11)

where β0 and β1 are the intercept and slope coefficients, respectively. Eq. 11 models subjec-

tive value as a linear function of the measurements that we obtain from scroll tracking, but

conceptually we also know that subjective value influences the proportional response metrics.

It is important to note the following caveats when scroll tracking is used to index valuations
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of decision options. First, only imperfect measurements of subjective value can be obtained

(Chen and Risen, 2010). In Section 3, these are product ratings on a numerical scale, which

are useful but not definitive measurements of preference. There may be some unmeasured

components of subjective value, or measurement error, that influence the response metrics. For

instance, the DM may change their mind about a previously expressed rating of a product, and

scroll over that product more (or less) than we would expect based on the previous measurement.

Second, the two links discussed above do not, as such, predict causal relationships. Eq. 10 is

derived from the attentional DDM. Eq. 11 presents a diagnostic link that makes it possible

to investigate relative value through scrolling measurements. While the typical view would

be that choice processes affect attentional processes, the literature also supports the idea that

attention has a causal effect on choice (Krajbich, 2019).

3 Empirical validation

Understanding consumer choices in digital marketplaces is valuable for theorists and practi-

tioners. It helps develop efficient techniques for modelling choice probabilities and algorithms

for optimising assortments of product and service offerings. Consumer choice processes have

previously been investigated using computational decision models (Busemeyer and Johnson,

2004; Krajbich et al., 2012; Philiastides and Ratcliff, 2013; Enax et al., 2016; Fisher, 2017, 2021).

Here I demonstrate how an understanding of the DM’s response dynamics obtained with scroll

tracking can be integrated into computational choice modelling. Scroll tracking is tested in

an experiment with choices between pairs of ordinary consumer lifestyle products. The next

subsections describe the data collection procedure and present an analysis of the predicted

choice-scrolling relationships. The paper then proceeds to computational modelling using the

DDM and the additive model (Eq. 5). Model comparison is performed using cross-validation,

and the multiplicative model (Eq. 6) is also studied.

3.1 Data collection

The pre-registered experiment consisted of a product rating task and a choice task (see Figure 2).

In Part 1, the subjects rated 115 consumer products, which were either Nike trainers (athletic

shoes) or Longines watches, on a Likert scale from −3 to 3. The subjects were instructed that

a rating of 3 (respectively −3) meant that they would be extremely likely (unlikely) to wear

the product. No information other than a single lateral (trainers) or frontal (watches) picture

of each product was presented. Product k’s rating provided a measurement for its subjective

value Vk . To match the stimuli with the subjects’ gender preferences, at the beginning of Part 1,

the subjects were asked whether they wished to see men’s or women’s products. In Part 2, the

subjects made 120 binary choices between paired products from Part 1. A pairing algorithm

(modelled after Philiastides and Ratcliff, 2013) assigned each product i a pair −i and a random

location L = Left or R = Right, and ensured that |Vi − V−i | ≤ 3. Otherwise, the pairing was

random.

The experiment was conducted online using the Prolific subject pool (20 to 50-year-old UK

residents). Each subject was compensated with a £5 monetary reward, and typical completion
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Figure 2: Experimental design for the consumer choice study

time was 20 minutes. Half the subject pool were assigned shoes and the other half watches

as the experimental stimuli (see Online Appendix for additional screenshots). All decision

rounds shorter than 0.3 seconds or longer than 15 seconds were discarded; the discarded rounds

represent about 0.6% of the total data. Overall, 120 subjects participated, but one subject’s data

was removed because a large number of their rounds were excluded based on pre-registered

criteria. Therefore, the final sample size is 119 subjects.

All data, pre-registration documents, and analysis scripts are available as supplementary

data and at the Open Science Framework.9 In the statistical analyses reported here, continuous

predictors were scaled and centred around their mean values when used in multiple regressions.

3.2 Choices and response metrics

It is instructive to first understand how choices change as a function of value differences

∆V = VL −VR and how aggregate response metrics (see Section 2.2) react to such differences.

Using a Generalised Linear Mixed Model (GLMM) with the logistic link function and subjects

as random intercepts, we can see that ∆V significantly predicts choice of the left-hand side

option (log-odds 1.27, 95% CI = [1.23,1.32], p < 0.001) even when round is added as a covariate

(log-odds 0.00039, 95% CI = [−0.038,0.039], p = 0.98; fixed intercept log-odds −0.041, p = 0.15;

random intercept SD = 0.22).

Figure 3 displays how the aggregate metrics of RT, total distance that the scroll bar moves

(in the x-direction), total length of the response curve S, and the total number of switches,

change as value difference VL−VR changes from −3 to 3. The total switches metric is count data,

unlike the other aggregate response metrics, which are approximately continuous. Therefore,

total switches is presented using a bar plot in Figure 3, while box plots are used for the others.

The median number of total switches is 2. All four metrics reflect decision conflict, a “core

feature” of sequential sampling models (Smith and Krajbich, 2018), in that the amount of

deliberation is highest for choices where value differences are small and choice is difficult, and

13



lowest for choices where value differences are large. Mean RT is 2.40 s (SD = 1.62 s), which is

somewhat higher than some binary consumer choice studies using laboratory desktop setups

(Philiastides and Ratcliff, 2013), although more similar to others (Tavares et al., 2017). Figure 3

also includes a density plot of RTs, which shows that the distribution experiences a slight shift

to the right when |VL −VR| approaches zero, indicating that choice difficulty increases when

value difference decreases.

Note: Box plots: notches are 95% CIs for medians. Bar plot: whiskers are standard errors. Density plot: darker lines
mean that |VL −VR| is closer to zero.

Figure 3: Aggregate response metrics

3.3 Predicting choice from scrolling

The choice-scrolling relationship discussed in Subsection 2.4 is now studied using scroll tracking

and the proportional response metrics.

First, a restricted dataset is used where VL = VR to test whether choice has an increasing

relationship with the proportional response metrics. Figure 4 presents the results from logistic

GLMMs that link choice of Left to scrolling over Left. The results confirm that the probability

of choosing Left increases in all proportional response metrics. As indifference in values is

required, this model represents the strictest test for the choice-scrolling relationship. However,

it should be noted that the ratings Vi are only a proxy for subjective value; thus there could be

latent, unmeasured components of subjective value that affect scrolling behaviour.

As a second test, subjective value difference ∆V is used as a covariate in a GLMM to predict

the choice of the Left option with PRML using the full dataset, including those rounds where

VL , VR. The regression equation is the following:

choose Left ∼ β0 + β1∆V + β2PRMM
L for M ∈ {ψ,DT ,W }, (12)

where β0 is the regression intercept and β1,β2 are slope coefficients. The coefficient estimates

are presented in log-odds in Table 1. As expected, the intercept coefficients β0 are zero, as the
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subjects were assigned random pairings of their rated products. Choice is affected by changing

value difference, as predicted by the β1 coefficients. The β2 coefficients confirm the strong link

between choice and scrolling. The strength of this link is comparable to the choice-attention

relationship established in previous studies using eye tracking (Krajbich et al., 2010; Cavanagh

et al., 2014; Smith and Krajbich, 2018, 2019).

Note: The blue curve represents logit-GLMM estimations when the data are restricted by condition VL = VR, see
Table 1 for results with the full dataset. Shaded ribbons are 95% CIs. In each panel, points depict group means of
choice probabilities in 9 different bins of PRM values at increments of 0.1, and each point is plotted at the bin’s
upper boundary. The right panel contains fewer points because the data are concentrated on fewer bins. Point size
represents the relative size of each bin. In the middle panel, one point is omitted because its bin contained only a
single value.

Figure 4: Link between choice probability and scrolling when VL = VR

(1) (2) (3)

Intercept (β0) −0.036 [−0.14,0.065] −0.039 [−0.15,0.071] −0.017 [−0.19,0.16]
∆V (β1) 1.25 [1.20,1.30] *** 1.25 [1.20,1.30] *** 1.25 [1.20,1.30] ***
PRMψ

L (β2) 1.05 [0.99,1.11] ***
PRMDT

L (β2) 1.19 [1.13,1.25] ***
PRMW

L (β2) 1.95 [1.85,2.045] ***
RE: subject (SD) 0.51 0.57 0.94
Num. obs. 14200 14200 14200

AIC 13675 13350 12573
Note. Coefficients expressed in log-odds. RE = random effects (intercept), AIC = Akaike information criterion. 95%

CIs in brackets, significance level: p < .001 ***.

Table 1: GLMMs (Eq. 12) predicting choices of Left using proportional response metrics

Scroll tracking uses spatial and temporal measurements, and these measurements may yield

different sensitivities to detect the relationships investigated here. Recall from Subsection 2.2

that while the dwell time metric DT is temporal, the area metric ψ is calculated as the polygon

area in the pixel-millisecond space (spatio-temporal metric), and the switches metric W is

based on counting the back-and-forth movement of the scroll bar (spatial metric). Therefore,

comparing the performance of the statistical models that rely on these metrics is a diagnostic of

the accuracy of the metric. One criterion of model comparison that may be used is the Akaike

information criterion (AIC), which is shown for each model in Table 1. The GLMM using PRMW
L

has the lowest AIC at 12573, implying that the switches-based proportional response metric

is the best at minimising the log-likelihood in the logistic model of choice. A model that uses
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both PRMDT
L and PRMW

L to predict choice improves AIC to a value of 12381, as Table 2 shows.

These two metrics, DT and W , are independent from each other unlike ψ, which includes the

temporal and spatial dimensions. This result suggests that the combined metrics provide a

marginal improvement in the model’s ability to explain the statistical relationship.

Intercept (β0) −0.019 [−0.19,0.15]
∆V (β1) 1.24 [1.19,1.29] ***
PRMDT

L (β2,1) 0.52 [0.45,0.60] ***
PRMW

L (β2,2) 1.54 [1.43,1.64] ***
RE: subject (SD) 0.89

Num. obs. 14200
AIC 12381

Note. Coefficients are expressed in log-odds. RE = random effects (intercept), AIC = Akaike information criterion.
95% CIs are indicated in brackets, significance level: p < .001 ***.

Table 2: GLMM similar to Eq. 12 but adding PRMDT
L and PRMW

L as predictors of choices of
Left

3.4 First and last scrolls

Given that one option is revealed first by scrolling, that option potentially exerts an increased

influence on the DM’s choice. Therefore, we next test whether choice probability is affected

by the first scroll direction or by the time the DM spends scrolling over the first option. This

is assessed using a logit-GLMM where an indicator variable “first scroll direction” (1 = Left,

0 = Right) and the duration of the first dwell predict choice of Left. This GLMM also includes

the interaction term between the indicator variable and first dwell duration. The log-odds

are significantly positive for first scroll direction (coefficient = 0.077, 95% CI = [0.002,0.15],

p = 0.044; fixed intercept log-odds −0.073, 95% CI = [−0.13,−0.015], p = 0.013; random subject

intercept SD = 0.13), but not for first dwell time (log-odds 0.023, 95% CI = [−0.029,0.075],

p = 0.39) or the interaction term (log-odds −0.064, 95% CI = [−0.13,0.006], p = 0.072). This

result indicates that there is an increased probability of e0.077 ≈ 8.0% of ultimately choosing

Left if the first scroll is in that direction. However, the duration of the first scroll does not affect

choice probability, regardless of its direction (non-significant interaction term). It should also be

noted that 55.8% of all first scrolls are to the left; however, all else being equal, the probability

of choosing Left is not significantly different from 50%, as seen from the β0 coefficients in Table

1.

Another possibility is that the last viewed option exerts a higher impact on choice probability.

The attention-based DDM (Eqs. 5 and 6) nudges the evidence accumulation process towards the

currently-viewed option, which implies that the chosen option has a high probability of being

the last option viewed. Because this effect is observed in eye-tracking research (Krajbich et al.,

2010; Smith and Krajbich, 2018; Krajbich, 2019), it may also be present in the scroll-tracking

data. The literature also predicts that the relationship between the last-seen option and the

chosen option is dependent on the relative value difference. Hence, the DM might choose the

last viewed option if it is better than the alternative, but not if it is worse.
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To formalise the above, we may investigate the relationship between value difference and

incongruent choices, which are those choices of option i where option −i received the last scroll.

As mentioned in Section 2.4, the attentional DDM predicts that the last-attended option has a

higher probability of being chosen, unless it is significantly worse than the other option. To

test this relationship, I estimate a logistic regression in which the value difference predicts

an indicator for an incongruent choice. The prediction is that the odds of an incongruent

choice of option i increase as the value difference Vi − V−i increases; hence, the odds of an

incongruent choice of i are high only if Vi is sufficiently larger than V−i . Of all choices in the

current study, 23.9% are incongruent. Then, the indicator variable “choose Right while last

scroll is Left” is used and regressed on value difference ∆V = VL −VR using a logit GLMM on

the conditional dataset where all choices are Right. The odds ratio is significant at −0.077 (95%

CI = [−0.15,−0.0017], p = 0.041; fixed intercept log-odds −2.46, p < 0.001; random subject

intercept SD = 2.31). This implies that increasing ∆V , or the relative desirability of Left,

decreases the probability that the choice of Right is preceded by the last dwell that is Left.

To study the converse case, the indicator variable “choose Left while last scroll is Right” is

used and regressed on ∆V using data where all choices are Left. The log-odds of 0.073 are

non-significant (95% CI = [−0.0035,0.15], p = 0.057; fixed intercept log-odds −2.04, 95% CI

= [−2.56,−1.57], p < 0.001; random subject intercept SD = 2.51). However, in both results, the

fixed effect CIs have one boundary close to zero, and a cautious interpretation would be that

the incongruent choice, overall, is not strongly moderated by value difference.

The findings reported here regarding the first and last scrolls are somewhat mixed but

generally in line with previous research using eye tracking. Cavanagh et al. (2014) find that

first dwell time predicts choice in 1 out of 3 conditions, while the present study does not find

this. Cavanagh et al. (2014) also find a last dwell bias on choice in 2 out of 3 conditions. In

turn, Smith and Krajbich (2018) find that there is about a 70% chance of choosing the last-seen

option when value difference is zero. In the scroll-tracking data, the corresponding figure is

79.6%.

3.5 Linking subjective value to scrolling

Next, the link between subjective value and scrolling (Eq. 11) is investigated without using data

on choices. Let us focus on rounds where VR = 0; the DM is indifferent about the Right option

in all these rounds. The question here is whether, in that case, the amount of scrolling over the

Left option is related to the subjective value placed on that option. Following Eq. 11 we can

write linear mixed models (LMMs) with random subject intercepts proposing that

VL ∼ β0 + β1PRMM
L for M ∈ {DT ,ψ,W } and VR = 0. (13)

Table 3 shows the estimated βs; all relationships between value and proportional scrolling met-

rics are significantly positive. We see that, for instance, a one-unit increase in the proportional

dwell time metric over the Left option is related to an increase of 0.42 in the subjective value of

that option.

Scroll tracking applications are likely to find combinations of spatially and temporally
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(1) (2) (3)

Intercept (β0) −0.13 [−0.36,0.10] −0.13 [−0.35,0.10] −0.13 [−0.37,0.10]
PRMψ

L (β1) 0.39 [0.31,0.47] ***
PRMDT

L (β1) 0.42 [0.34,0.50] ***
PRMW

L (β1) 0.40 [0.31,0.48] ***
RE: subject (SD) 1.12 1.13 1.16
RE: residual (SD) 1.71 1.71 1.71

Num. obs. 2270 2270 2270
Note. RE = random effects, 95% CIs in brackets, significance level: p < .001 ***.

Table 3: LMMs predicting VL when VR = 0 (Eq. 13)

constructed response metrics useful in representing subjective value, but based on the previous

analysis, strong conclusions cannot be drawn on which metric stands out from the others. This

stems from the similarity of the metrics, and one way of confirming this similarity is to directly

compare how each metric responds to changes in value difference. Figure 3 shows that these

approaches to quantify the response curve are apparently similar in their sensitivity to detect

value difference to the classical approach using RTs. Figure 3 also indicates that the different

metrics might be highly correlated. Table 4 quantitatively studies how each aggregate metric

correlates with the others, separately when ∆V = 0 and when ∆V , 0. As expected, correlations

between the metrics are rather strong and stronger when the value difference is zero than when

it is non-zero.

RT Length of S Switches Dist. in x
RT 0.997 0.732 0.656

Length of S 0.997 0.752 0.701
Switches 0.684 0.707 0.785
Dist. in x 0.613 0.663 0.743

Table 4: Correlation tables for aggregate metrics; the upper diagonal elements (italics) are
correlations when ∆V = 0, and the lower diagonal elements are correlations when ∆V , 0

3.6 Computational modelling of choices and RTs

This section investigates the latent parameter distributions from DDMs where the scroll-

tracking datastream predicts the relative rate of value comparisons. To compare DDMs that use

different response metrics, I study their ability to predict out-of-sample data. I follow research

in the literature that has demonstrated that incorporating process tracing, typically eye-tracking

data, in evidence accumulation modelling improves the models’ predictive accuracy (Krajbich

et al., 2010; Cavanagh et al., 2014; Smith and Krajbich, 2019; Fisher, 2021). The purpose is to

demonstrate that computational modelling of choice probabilities and RT distributions can

benefit from response metrics, which can be ultimately used in decision science applications.

The DDM modelling investigates what affects the drift rate ν. The DDMs are formulated

such that the drift rate is regressed on value differences and differences in proportional metrics

using all M ∈ {DT ,ψ,W }, following the additive model in Eq. 8. The other DDM parameters
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(starting point z, boundary separation a, non-decision time t0) are formulated without the

regression or hierarchical formats. These parameters are not assumed to vary between subjects,

rounds or levels of value differences. The basic DDM, where the drift rate depends only on one

fixed effect, value difference, is defined by erasing the term β2∆PRM from Eq. 8.

The DDMs are estimated with hierarchical Bayesian modelling and Markov Chain Monte

Carlo (MCMC) sampling.10 The hierarchical Bayesian model produces a set of parameters for

each subject such that these individual parameters are governed by group-level distributions.

Thus, the subjects are modelled as random effect intercepts. The estimated fixed effects are,

depending on the regression format, intercept and coefficients for the drift rate ν. In addition

to the DDM parameters, the procedure produces posterior estimates for the standard deviation

of the subject-level random intercepts (i.e. variation in subject intercepts of drift rate). See

the Online Appendix for more details on the prior distributions. The DDMs are estimated by

running 4 Markov chains of 4,000 samples each, with initial 2,000 burn-in samples that are

discarded. The scale reduction factor (Gelman and Rubin, 1992) is r̂ ≤ 1.01, and the effective

sample size is > 400 for all group-level parameters for all the DDMs, indicating that the chains

have converged to stable posteriors.

The Bayesian approach produces posterior predictive distributions for choices and RTs

that can be used for model comparisons. The posterior predictive distribution expresses the

variability in the model’s ability to predict choices and RTs, given the observed data and its

hierarchical structure. Figure 5 presents quantile probability plots that show predicted RT

quantiles (data points) using the basic and additive DDMs (Eq. 8), as a function of Left-choice

proportions. The predictions are laid over observed RT quantiles, which are denoted by the

“x”-markers. Each “x” pair marks the observed RT quantile for a specific condition given by

∆V , and the line connects those condition-level points for readability. The first “x” in each

pair corresponds to a Left and the second to a Right choice. A value difference of ∆V = 1, for

instance, is indicated by the 5th pair of markers from the left. We can extrapolate that the

proportion of Left choices is close to 0.7 when ∆V = 1 and that 50% of RTs are 2 s or less for

this proportion. Conversely, a proportion of about 0.3 are Right choices when ∆V = 1 and 50%

of RTs are about 2.1 s or less.

We can make two observations from the quantile probability plots of Figure 5, and these

are based on the DDM literature (Ratcliff and McKoon, 2008). First, there is more variance

in predictions for smaller proportions of Left choices, as seen in the left-hand side of each

plot. This is a known feature of DDM predictions where less-preferred (incorrect) responses, or

choosing Left when ∆V < 0, have slower RTs. Second, the basic DDM and the additive models

predict variance in the RTs differently. The latter seemingly exhibit more variance, especially

in higher RT quantiles. The additive models contain one more regressor, the term β2∆PRM

in Eq. 8, than the basic model, which increases variability in the drift rate. Therefore, adding

proportional response metrics as predictors of drift rate increases the variance of the predicted

RTs in higher quantiles, which is expected as changes in drift rate affect the higher RT quantiles

more than the lower ones.

The DDM coefficient estimates are produced by the marginal posterior distributions. Figure

6 presents the distributions for drift rate coefficients that follow the basic and additive models
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Note. Markers connected by solid lines show observed RT quantiles at levels 25%, 50%, and 75% from bottom to
top, respectively. Markers are in pairs of Left and Right choices, and each pair denotes the level of value differences
∆V = VL −VR. Datapoints indicate draws from the posterior predictive distributions. Datapoints are arranged in
the same quantiles as observed RTs.

Figure 5: Quantile probability plots for observed and predicted RTs from the posterior
predictive distributions of the Basic and Additive DDMs

(Eq. 8). All regressor distributions are sufficiently to the right to exclude the possibility that

the 95% highest density interval contains zero. The result confirms what the additive model

predicts: drift rate ν is affected by the differences in ∆V = VL −VR and differences in ∆PRMM

for all M ∈ {DT ,ψ,W }. Summary statistics for the other DDM parameters are presented in the

Online Appendix Table S3. An interesting observation from Figure 6 is that the β2 coefficient

for the DDM with switches is significantly higher than the β2s for the other two additive

DDMs, implying that drift rate is more responsive to a unit change in ∆PRMW than in the

others. Otherwise, the posterior means of β coefficients are similar in magnitude to those in the

literature (e.g. Cavanagh et al., 2014 who find β1 = 0.44 and β2 = 0.29 using gaze dwell times).

Figure 6: Marginal posterior distributions for the basic and additive model coefficients (Eq.
8)

Next, cross-validation is performed using re-estimated DDMs with observations from odd-
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numbered rounds. These models produce new posterior predictive distributions for choices on

even-numbered rounds. Then, a set of predicted choices from multiple draws is compared to

observed choices on even rounds (hold-out evaluation), and the number of predicted choices that

correspond to observed choices is calculated. The comparisons are summarised in correctness

scores that calculate shares of correctly predicted choices in each draw and in each chain. There

are 4 chains × 4,000 draws = 16,000 correctness scores, which are summarised in Table 5. All

the scroll-DDMs demonstrate better predictive power than the basic model, while the additive

model with switches W as the proportional response metric exhibits the best predictive power.

DDM Score
Basic 64.2%
Additive (ψ) 67.5%
Additive (DT ) 68.1%
Additive (W ) 69.4%

Note. Score = mean % of even round choices predicted correctly.

Table 5: Predictive correctness of DDMs estimated using odd rounds data

3.7 Multiplicative effects

Both the additive and the multiplicative model predict that attention to an option boosts the

relative rate of evidence accumulation towards it, but the multiplicative model is sensitive

to reference points. This means that the biasing effect of attention on drift rate is different

for appetitive and aversive options. Recall that in the multiplicative model (Eq. 6), the

biasing parameter θ discounts the value of the non-attended option V−i . If both options are

appetitive (Vi ,V−i > 0), the model predicts that attention on option i will inflate its choice

probability. However, if both options are aversive (Vi ,V−i < 0), attention on i will deflate its

choice probability (Armel et al., 2008).

The same estimation procedure as with the additive model (Subsection 3.6) is used to

estimate multiplicative effects. This produces marginal posterior distributions for the DDM

parameters. The multiplicative case contains two drift rate coefficients in Eq. 9. Table S4 in the

Online Appendix presents the summary statistics from these marginal posterior distributions,

and there we see that the prediction γ1 > γ2 (see Subsection 1.2) holds for all proportional

response metrics M. The result means that the modulative parameter θ < 1 as required by the

model (Eq. 6). Based on the posterior mean estimates, θ is within [0.76,0.80], a range that

is somewhat higher than in previous studies. Using dwell time data based on eye tracking,

Krajbich et al. (2010) find that θ = 0.52 (mean of individual-level fits), while Cavanagh et al.

(2014) find θ = 0.56, and Smith and Krajbich (2018) find θ = 0.48 (mean of group-level fits).

It should be noted, however, that the experiment discussed here did not aim to distinguish

multiplicative-attentional effects from additive effects, a goal that has been extensively pursued

in the recent literature (Cavanagh et al., 2014; Smith and Krajbich, 2019). One reason for this

is how the ratings were used in the stimulus presentations. Krajbich et al. (2010) and Smith

and Krajbich (2018), for instance, use only stimuli that are rated appetitive by the subjects.

By contrast, the pairing algorithm used in the consumer choice study produced a balance of

appetitive and aversive options.
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In the cross-validation procedure the multiplicative models do not reach the same level

of predictive correctness as the additive models (Table 5), and the correctness of each of the

three multiplicative models is 64.2%, equal to that of the basic DDM without the attentional

component. Previous studies with gaze-dwell data, such as Cavanagh et al. (2014), find that

the additive model contains a higher deviance information criterion (a measure of improved

model fit) than the multiplicative model, a result aligned with our cross-validation based on

correctness scores. On the other hand, Smith and Krajbich (2019) find that the amplifying effect

in the multiplicative model is stronger (lower modulative parameter θ) in food-choice tasks

where subjects were familiar with the stimuli.

3.8 Additional validation

3.8.1 Risky choice experiment

The Online Appendix reports a complementary validation experiment using a risky choice

task modelled after the “money-risk” task studied by Smith and Krajbich (2018) (henceforth,

SK18). SK18 used the task to investigate attention and choice using eye tracking. In this

task, subjects choose between two gambles, one of which is lower risk than the other, with

the relative riskiness of the options varying randomly from round to another. The gambles

are two-outcome lotteries, where each outcome has a 50% probability of being realised. The

gambles are presented in the scroll-tracking app in a similar way to the options in the consumer

choice experiment.

The lotteries used in the money-risk task are reproduced from the SK18 dataset. Essentially,

each subject-wise series of lotteries in the SK18 money-risk dataset has an equal chance of

being allocated to a subject in the current study. To model each subject’s latent risk attitude, a

general risk question (GRQ; Dohmen et al., 2011) is added at the end of the study. To create a

measure of relative utility difference, subjective utilities are estimated with the constant relative

risk-aversion (CRRA) framework (Prelec, 1998) using maximum likelihood, which produces the

degree of relative risk aversion parameter ρ for each subject. Then, the money-risk task is used

to study the two links elaborated in Subsections 2.4 and 2.5, namely the choice-scrolling and

value-scrolling links. The computational DDM analyses are also repeated.

The Online Appendix presents the full results, which can be summarised as follows. First,

the choice-scrolling link is confirmed, as scrolling over the Left option heightens the probability

of choosing Left (log-odds range [0.56,0.64]) while controlling for utility difference (see Figure

7 and Table S5). Nonetheless, this link is weaker than in the consumer choice study reported

in Table 1. Second, the value-scrolling link is confirmed, as the risk-aversion parameter ρ

can be predicted from the mean amount of scrolling on the less-risky option (log-odds range

[0.80,0.83]), and the self-reported risk attitude GRQ can likewise be predicted from how much

the less-risky option is scrolled (log-odds range [−3.45,−3.28], negative because risk-seeking

behaviour increases in GRQ). Third, the cross-validation exercise shows that the additive and

multiplicative DDMs exhibit slightly better predictive power (correctness scores in the range of

[58.7,59.6]%; Table S8) than the basic model (correctness score 56.9%). However, there are no

notable differences in the predictive correctness scores between the additive and multiplicative
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DDMs. Therefore, while adding the proportional response metrics in the DDMs improves

predictions, the modelling does not differentiate between the types of metrics used.

The SK18 dataset is used to reproduce analyses of the PRMDT
L metric and estimate CRRA

ρs and utility differences (see the Online Appendix for more details). This allows direct com-

parisons between eye tracking and scroll tracking. Figure 7 (left panel) shows the comparison

between choice-response links in the scroll data and the eye data. Figure 7 (right panel) shows

how the last gaze dwell or scroll is related to choice. A strong link between the last-seen option

and choosing that option is present in both datasets.

The SK18 data is also used to estimate the basic, additive and multiplicative DDMs with

the dwell time metric and perform the cross-validation procedure. The additive model with

DT predicts 64.1% of even round choices in the SK18 dataset, while the basic model predicts

55.8% and the multiplicative model with DT predicts 54.6% of choices. However, as the SK18

dataset contains a smaller sample of 36 subjects, the results are not directly comparable with

the scroll-tracking money-risk data, which is produced by a larger sample of 98 subjects. The

number of subjects is relevant in hierarchical modelling because a model with more levels

enhances the reliability of the estimates by reducing uncertainty in the subject-level effects and

provides a more robust representation of individual-level variability.

Note. Left: The solid curves represent logit-GLMM estimations with Eq. 12 using ∆U as a covariate (see the Online
Appendix for full tables of results). Shaded ribbons = 95% CIs, datapoints = group means of choice probabilities in
9 bins of PRM values at increments of 0.1. Dashed lines are datapoint connectors. Right: Box plots summarising
mean Left choices for each subject, conditional on whether the last dwell was on Right or Left. In both panels, the
eye data uses the first 120 rounds of the SK18 dataset.

Figure 7: Link between choice and response using money-risk data from 2 studies

The analysis procedure followed in the money-risk task involves the additional step of

estimating utility differences from choice data, but the consumer choice study used value

differences calculated from the direct rating task. This may be the reason for the weaker

predictive power of modelling based on utility differences, as demonstrated by the posterior

predictiveness check scores (Online Appendix Table S8). The Online Appendix provides

posterior predictive RT distributions along with observed RTs for different binned levels of
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utility difference (Figures S12 and S13). The comparison shows that extreme utility differences

worsen the fit compared to moderate utility differences, but this observation is partly an artifact

of the analysis process. There are 7 subjects with ρ < −4 (risk seeking) in the scroll data, and,

for these subjects, the utility function is compressed towards zero. Their mean utility of the

Left option is 0.28, whereas for all subjects the mean utility of Left is 0.53 (recall that utility is

scaled in [0,1]).

Finally, we can compare how similar the scrolling patterns are across the two studies. Figure

S14 in the Online Appendix displays aggregate response metric distributions for both studies.

We see that, overall, there is more scrolling in the consumer choice task than in the money-risk

task. It is likely that this discrepancy is a result of the relative complexity of stimuli in the

consumer choice task (product pictures).

3.8.2 Robustness checks

Two robustness checks are performed to investigate how sensitive the main results are to the

definitions of the response metrics. These checks are conducted because the way that the

response metrics are currently calculated may introduce bias in them.

Recall that the DT and ψ metrics are calculated entirely based on the asymmetric portions

of the response curve relative to the mid-line, and the W metric is calculated based on how

many times the response curve crosses the mid-line (Figure 1). Possible bias in these metrics

could arise because (1) some scroll bar movements can be fast, ballistic “saccades” when moving

between the options, as opposed to “smooth-pursuit” scrolling (thus it is plausible that the time

spent in saccadic movements should not be accounted for when calculating attention), and (2)

some scrolls may be “U-turns”, or quick reversals of scrolling direction just after crossing the

mid-line so that the option is visible only for a very short duration of time. Thus, the dwell

times are re-analysed such that only sufficiently slow scroll bar movement is counted towards

dwell time. Then a similar analysis is repeated for switches; namely, a scroll bar making a

quick U-turn does not produce a switch count. The Online Appendix presents measurement

details and results from these robustness checks: some of the strength in choice-scrolling and

value-scrolling links is attributable to the portion of dwell time recorded during fast scrolling,

and removing quick U-turn switches strengthens the relationships. The main conclusions are,

for the most part, qualitatively the same as in Sections 3.3 and 3.5, which report the main

results.

4 Discussion

In this paper I have presented ways to study how dynamic motor responses and attention

interact in the computational process that determines choices. The results show that choice

probabilities and subjective valuations can be linked to using metrics derived from response

curves. The response curves are recorded with a mobile application that represents a natural

choice situation. I now discuss the wider methodological relevance, limitations and challenges,

and practical domains of scroll tracking.
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4.1 Scroll tracking as a process-tracing method

Motor planning is present in trivial tasks, such as choosing which candy to eat. It is also

present in abstract, cognitively demanding tasks, such as playing Candy Crush Saga. Motor

responses do not solely report choices; rather, they belong to the choice process that reflects

the way we build decision values (Lepora and Pezzulo, 2015; Gordon et al., 2021; Priorelli

et al., 2025). As discussed in Subsection 1.1, perceptions and action plans are based on the

presentation features of objects. In an online shopping environment, for instance, product

browsing creates perceptual and attentional representations from gazing at pictures and text

as well as representations for intentions and action plans. The latter specify how choice is

operationalised, i.e. how to scroll or swipe the page to view the products.11 Methods that trace

both attention and movement enable us to capture this link between the two in preference

formation.

Previous studies have modelled attention in preference formation using dynamic eye fixation

distributions (Krajbich, 2019). However, there are two drawbacks to relying on eye tracking

alone. First, eye tracking overlooks the role of action representations in the process, a role that

was extensively analysed in the previous section. Second, the eye is a sensory organ, and people

rarely make choices solely using their eyes (Cisek and Kalaska, 2005). Methods in the action

dynamics literature, such as mouse cursor tracking (Stillman et al., 2018; Schoemann et al.,

2021), can sensitively detect movement in choice, but these methods ultimately reject the role

of perception and attention (for recent exceptions, see Fisher, 2023 and 2025). Moreover, some

movement-tracing methods may be invasive enough to alter the way people acquire information

from response options (Lohse and Johnson, 1996).

In the classical DDM, motor action is a non-decision component of the choice process

(Ratcliff et al., 1999; Krajbich et al., 2012) and goal-directed movement occurs only after the

decision has been made. The current study differs from these previous studies in that it

recognises that spatial movement in a digital application can proxy attentional processes. The

study uses simple metrics derived from the response curve. Figure 3 provides an overview of

how the aggregate response metrics relate to value difference.

Much work remains to understand how movement best fits within the evidence accumu-

lation framework that aims to explain RT-accuracy tradeoffs (Wispinski et al., 2020; Molano-

Mazón et al., 2024). Studying naturalistic movements allows the consideration of evidence

integration across other modalities than just time (Shadlen and Kiani, 2013). Pixel regions

could be treated as one (spatial) modality, and it could be possible to create a model with one

accumulator that integrates evidence across time and another accumulator that integrates evi-

dence across pixels. Future work should also study optimal ways of scrolling. Previous research

has assumed that information sampling (Drugowitsch et al., 2012; Fudenberg et al., 2018) and

gaze dwells and fixation switches (Callaway et al., 2021) are costly. A similar normative analysis

could be conducted with scrolling patterns that assume the notion of costliness quite naturally.
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4.2 Limitations of and challenges to scroll tracking

A clear limitation of the current implementation of scroll tracking is that the stimuli must be

relatively simple. For instance, if an option contains many attributes or many regions of interest,

such as quality and price, the method may not yield the desired resolution. In the money-risk

task, each option consists of two possible outcomes. Scroll tracking assumes that each outcome

pair elicits the spatial attraction effect and attentional bias, but unlike eye tracking used by

Smith and Krajbich (2018), the method does not measure attention allocated to each outcome

separately.

Even with single-attribute options, such as the products used in the consumer choice study,

scroll tracking may not entirely capture attention dynamics. Eye tracking is evidently superior

for capturing overt attention and millisecond precision in attention shifts. As the scroll bar

movement reveals information gradually, one cannot be sure which part of the stimuli the

DM is attending to. On the other hand, looking at something does not equate perceiving it,

and gaze measurements can only be a proxy for overt attention, rather than a direct measure

of perception (Holmqvist et al., 2011). It is possible to design setups where scrolling is both

horizontal for option comparisons and vertical for attribute comparisons (similar to many

e-commerce platforms), or laboratory designs where response curve analysis complements eye

tracking.

In addition, there may be options with unbalanced information content, such as a product

picture versus a numerical value, which may elicit different comparison dynamics within each

viewing (Khaw et al., 2018). Scroll tracking may also be sensitive to option layout: intermediate

movements (see Subsection 1.1) are diminished when the spatial distance between the options

increases, or when the options are separated by virtual barriers (Kim et al., 2021). Therefore,

one might arrive at the wrong conclusions about the spatial attraction effect if the layout is not

carefully designed to track this effect.

Based on the DDM modelling reported in Subsection 3.6, the relative evidence accumulates

at a somewhat slower rate when the intake is modelled using scrolling than when it is modelled

using gaze dwell durations. However, without direct comparisons using identical stimuli,

it is impossible to discern whether this difference should be attributed to the complexity of

the stimuli, or to the scrolling method. DDM non-decision times are likewise slower than in

comparable experiments in the literature. The posterior means of non-decision times are in

the range of [689,708] ms in the consumer choice study (see Tables S3 and S4 in the Online

Appendix), and in the range of [472,477] ms in the money-risk task (Tables S6 and S7). Non-

decision time reflects stimulus encoding and motor execution (Myers et al., 2022), where the

latter means the time it takes to lift one’s finger off the scrollable element and move it to tap

the choice button. Both factors are likely at play in our posterior estimations. Moreover, some

experimental paradigms used in eye-tracking research might not be directly applicable in

the scroll-tracking context. For example, exogenous time pressure might impose a limitation

because scroll bar movements are slower than saccadic eye movements. Furthermore, biometric

analyses that are conducted with an eye-tracker, such as pupillometry, are not transferable to

the scroll-tracking context.

The sampling frequency of scroll tracking is variable, with a mean of 33.3 Hz (SD = 16.8 Hz,
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median 34.6 Hz). This figure is lower than in eye tracking, which commonly has a sampling

frequency above 200 Hz. Thus, low sampling frequency may be considered a limitation to

experimental setups that require high resolution. The sampling frequency is low because

datapoints are recorded only when the scroll bar is moving. The response curve S (Figure

1) remains constant when the scroll bar does not move. Hence, the sampling frequency is

“endogenous” and dependent on the DM’s behaviour. Decision rounds with relatively few

samples (low average resolution) often contain pauses at some time point during the response.

As this tendency to pause scrolling may be subject-specific, future work could study a DDM

with varying boundary and non-decision time parameters for each subject. This would allow

for the possibility that a pause in the process, at least near the completion of a decision round,

marks termination of evidence accumulation.

It should also be noted that the data stream recorded by scroll tracking is of a fundamentally

different nature to the gaze dwell distributions acquired with eye tracking. The spatio-temporal

response curve is a time series signal, and its analysis can be enhanced with signal processing

methods such as smoothing and interpolation if a higher resolution is required.

Furthermore, this paper studies only a handful of possible response metrics, and, as the

literature on mouse tracking demonstrates, there may be more ways to calculate aggregate

metrics from response data. The response curve S (Figure 1) describes scroll bar dynamics

within the choice process, but the metrics that are drawn from S in this paper may not be

specific enough to capture its full potential. For example, the proportional metric PRMψ

measures the spatio-temporal attraction between the two options but does not count how many

times the sides are switched. On the other hand, the metric PRMW tallies the switches but

does not recognise the time dimension or how far the scroll bar moves from the switching

point. One way to develop the metrics would be to incorporate data analytic methods where

the analysis unit is S itself (or segments of S). For example, Stillman et al. (2025) use functional

data analysis to classify mouse pointer trajectories, and in a mobile web context, this method

could be used to classify reject/accept swipe trajectories in sequential decision tasks.

4.3 Managerial and practical applications

The DDM can be seen as a preferential choice model that provides a framework for incorporating

response times as inputs (see Subsection 1.2). Responsive methods such as scroll tracking allow

the use of “clickstream” data (Chen and Yao, 2017; Aouad et al., 2025; Lu and Hutchinson,

2025) collected from e-commerce applications, and here it has been demonstrated how this

datastream can inform the DDM. One immediate econometric avenue for responsive methods

is the prediction of choice probabilities in field applications such as pricing, capacity planning,

and optimal product assortments. Even though the attentional DDM is binary, it can be

extended to model choices between three or more alternatives (Krajbich and Rangel, 2011)

or choices where each alternative contains more than one attribute (Fisher, 2021; Yang and

Krajbich, 2023).

Scroll tracking can be used to index subjective values, such as product ratings and risk

attitudes, if there are sufficient observations of a DM’s scrolling behaviour. This opens the

possibility for applications where preferences are elicited without observing choices. For in-
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stance, a DM who is scrolling more over an item is more likely to choose that item than a

less-scrolled item. Such knowledge could be used to build a consideration set for that DM

(Aouad and Segev, 2021). The marketing literature has for long recognised that consumers

distinguish between considering and choosing (Hauser and Wernerfelt, 1990). Another prac-

tical benefit of responsive process-tracing methods is related to studying the optimality of

goal-directed movement within a website. Studies on sensorimotor control show that people

optimise intermediate movements (Haith et al., 2015; Gallivan et al., 2018). The optimality

of movements within consideration sets, such as those built by online search engines, could

thus be investigated. A related possible application area is digital interventions, which are

increasingly used in healthcare (Trella et al., 2022). These applications use online reinforcement

learning that updates recommendations based on user behaviour, and response curves that

show movements within the apps could potentially be informative for their algorithms.

Touch-scroll gestures belong to the immediate action repertoire of choice in mobile web

applications. These gestures are also increasingly used in a range of other digital interfaces,

including self-service and checkout kiosks, point-of-sale interfaces, smart appliances, fitness

wearables, in-vehicle systems, interactive learning devices, medical and diagnostic equipment,

and different behavioural biometric solutions (Gupta et al., 2023). Many of these environments

could benefit from linking responsive touch-scroll-based methods to preferential choice process

modelling, the first steps of which are demonstrated in this paper.

Notes
1Decision making is not the only avenue where such metaphors are used to convey abstract meanings. Statements

such as “investors embrace AI” or “graduates kickstart their careers” are rooted in movement. Our understanding

of the world at large is embodied (Lakoff and Johnson, 1980; Glenberg and Kaschak, 2002).
2Modern web-design standards aim to ensure that websites are accessible with mobile devices, as outlined

by the W3 Consortium (2015). Since 2020, the dominant search engine, Google, has indexed websites primarily

based on their mobile versions, meaning that developers are incentivised to design websites such that they are

responsive and can be used with touch-scroll gestures. See https://developers.google.com/search/blog/2020/

03/announcing-mobile-first-indexing-for (accessed 11 July 2025).
3Early smart devices used a variety of input methods, but finger movements have become the established way to

use them. Upon launching the first iPhone in San Francisco in 2007, the former Apple CEO, Steve Jobs, famously

said that the finger is the “best pointing device in the world”.
4Most of this literature focuses on endogenously allocated attention. Exogenous attention manipulations are also

known to increase choice probabilities, see e.g. Armel et al. (2008) and Gossner et al. (2021).
5In addition to visual information, neural representations may be based on other sensory modalities, such as

auditory or gustatory (Hommel et al., 2001). For instance, hearing a busker play across the street might generate

an action plan to move closer, and tasting wine a plan to consume more. The visual pathway is arguably the most

relevant in the digital context discussed in this paper.
6Being optimally responsive to a changing environment necessitates movement within decision processes.

It would be counterproductive to pause movement while waiting for the decision process to complete, restart

movement once it has completed, and then, when the environment changes, begin the process anew and again pause

movement (Wispinski et al., 2020).
7Some studies use devices other than computer mice. Examples include Dale et al. (2008), who use a Nintendo

Wiimote game controller, and Dotan et al. (2018) and Zuk et al. (2025), who use touchscreen devices. Dotan

et al. (2019) argue that touchscreens that track finger movements are more natural and contain less variance than

mouse movements. Gomez et al. (2015) find that DDM drift rates are not differentially affected by response modes
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(keypress vs. touchscreen).
8The app is built using the open-source experiment platform oTree (Chen et al., 2016). Response curve recording

is based on the JavaScript HTML Document Object Model. Technical documentation, a link to a demo ver-

sion, and downloadable source code are available at the project’s OSF page at https://osf.io/25fu7/wiki/

Scrolltracking/.
9https://osf.io/25fu7.

10The HSSM toolbox in Python, version 0.2.4 (Fengler et al., 2025).
11Accepting that choice involves movement leads to new interpretations of consumer choice processes. For

instance, online shoppers are not finished with their choice when they click products into shopping carts, because

the action plan contains a longer chain of intended movements. Indeed, cart abandonment rates are extremely high,

sometimes in excess of 90% (Wang et al., 2023). One way to explain cart abandonment is to understand that adding

products to, and removing them from, carts are actions that interact with perceptions. Using the terminology of

Subsection 1.1, cart abandonment happens when the “pull” from competing options gets strong enough.
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