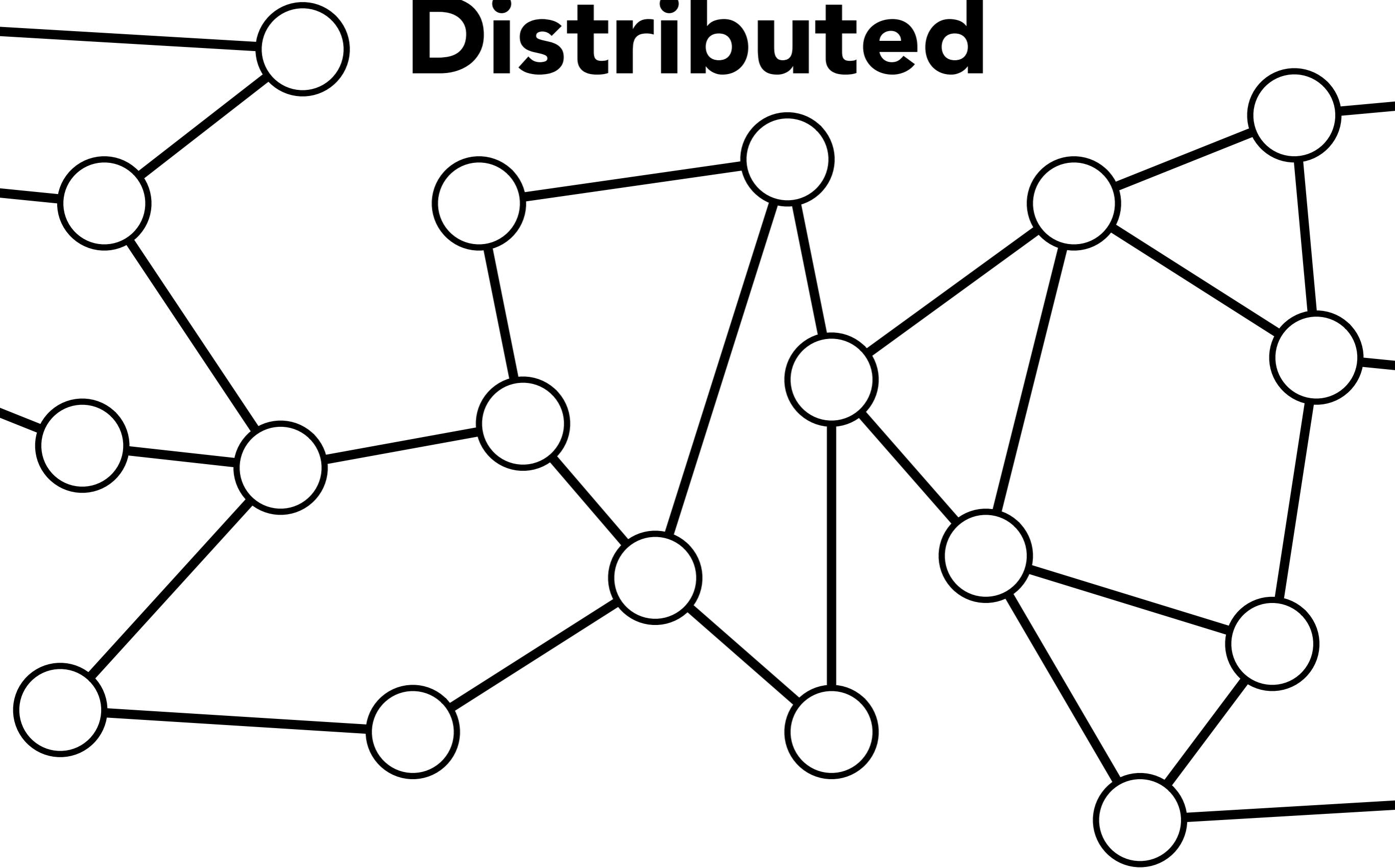


Fast distributed graph algorithms

Juho Hirvonen
Aalto University & HIIT



Distributed

Distributed

Algorithms

Fast

- the number of nodes n
- the maximum degree Δ

Fast

- the number of nodes n
- the maximum degree Δ

Imagine sparse graphs: $\Delta = \text{constant}$, $n \rightarrow \infty$

Fast

Define:

fast algorithms depend only mildly on **n**

where mildly = **$O(\log^* n)$**

Fast

Define:

fast algorithms depend only mildly on **n**

where mildly = **$O(\log^* n)$**

Recall that $\log^* n$ = smallest k s.t. $\log^{(k)} n \leq 1$

Fast

Define:

constant-time algorithms are independent of ***n***

**Q1: What can and
cannot be computed
by constant-time
algorithms?**

A: Computing a 3-coloring on an n -cycle
requires $\Omega(\log^* n)$ time [Linial '92]

Implies the same lower bound for
maximal matching and maximal
independent set

A: Computing a 3-coloring on an n -cycle
takes **$O(\log^* n)$** time [Cole & Vishkin '86]

Implies the same *upper bound* for
maximal matching and maximal
independent set

A: Computing any constant-approximation of an independent set or a maximum matching on an n -cycle requires $\Omega(\log^* n)$ time

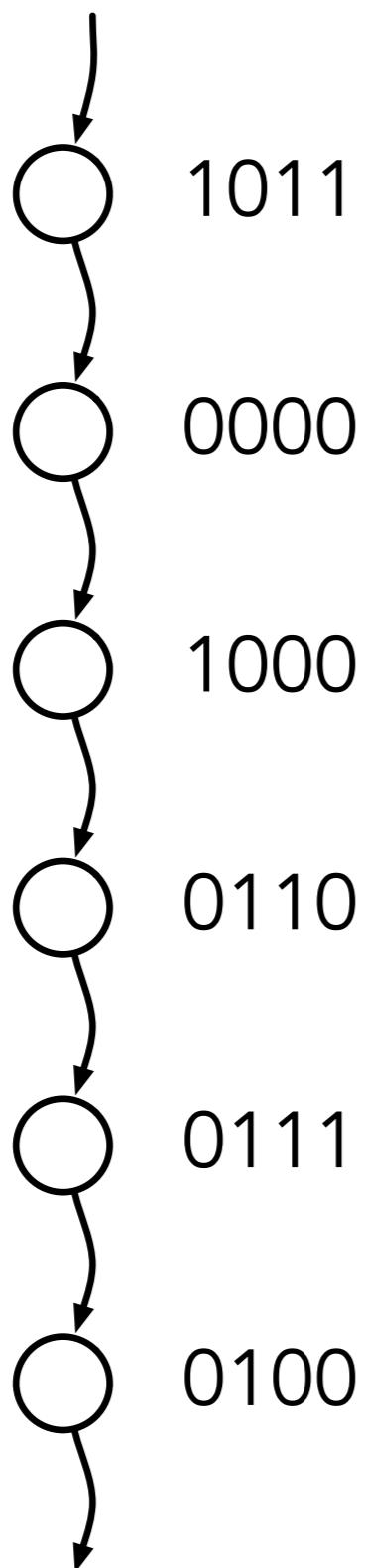
A: Computing any constant-approximation of an independent set or a maximum matching on an n -cycle takes **$O(\log^* n)$** time

There is a fundamental barrier at $\Omega(\log^* n)$
time

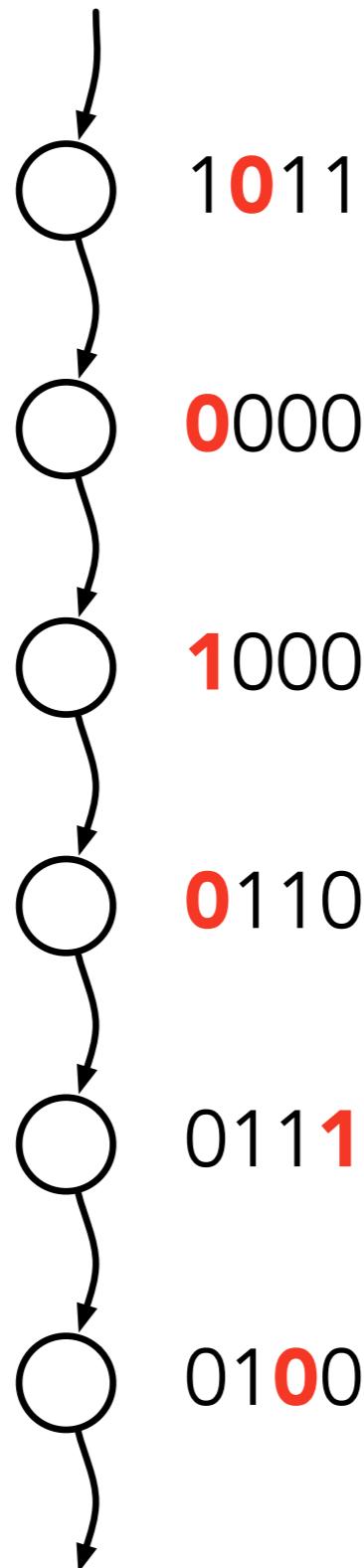
We will call this *symmetry breaking*

This is roughly the same as saying that
adjacent nodes are not allowed
to produce the same output

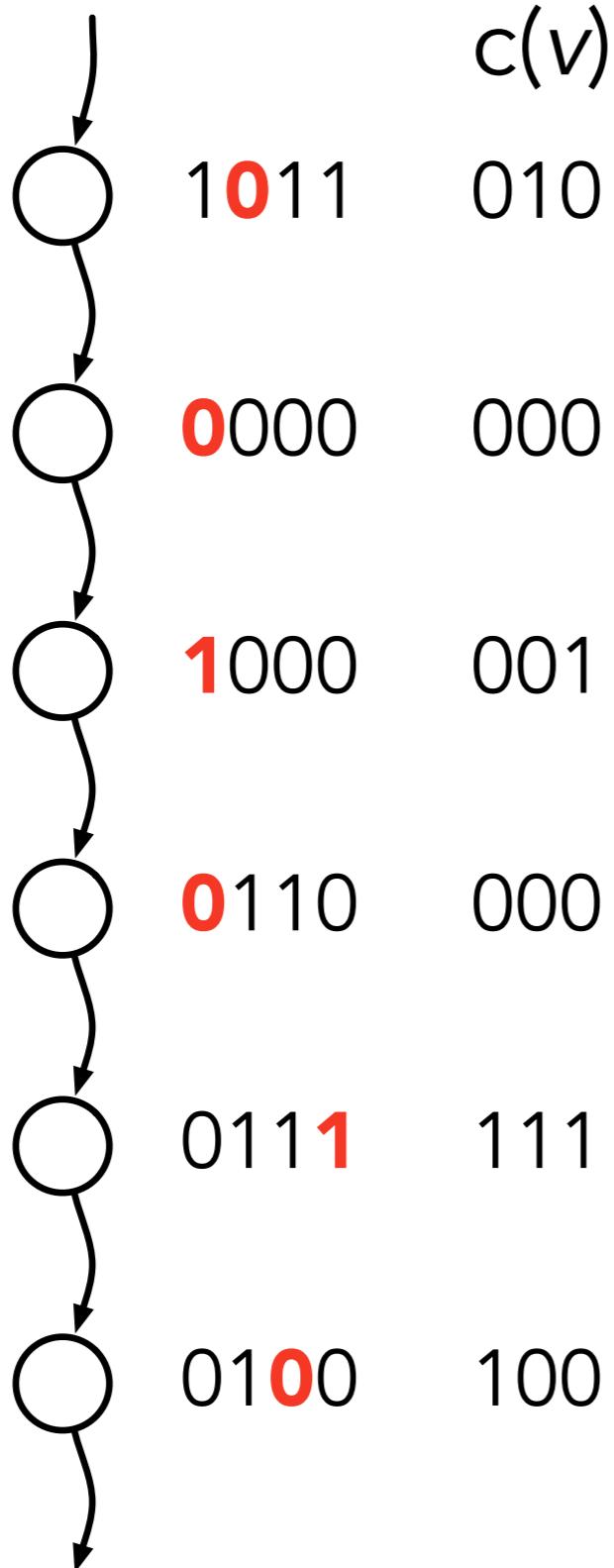
**What does symmetry breaking
look like?**



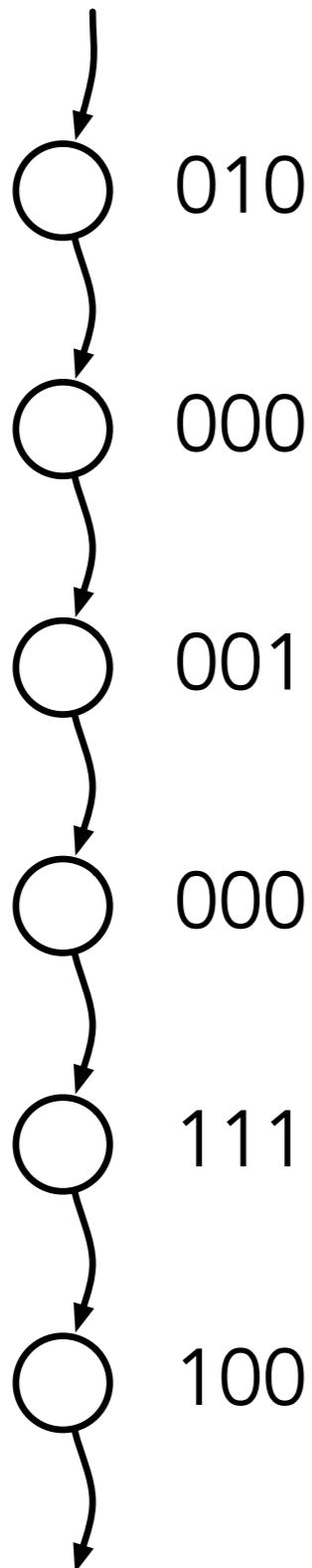
Start with *some* coloring



Learn parents color and
the first bit (from the
start) that differs



Compute $c(v)$, which is the concatenation of the index of the differing bit and the bit itself



Repeat

Each round colors are reduced

$$n \rightarrow \log n + 1$$

$n \rightarrow 6$ colors in $O(\log^* n)$ iterations

**Q1: So what can be
computed by constant-
time algorithms?**

A: 2-approximation of vertex cover
[Åstrand et al. '09]

A: Constant approximation of covering
and packing LPs [Kuhn '05]

A: Maximal fractional matchings
[Åstrand and Suomela '10]

**Common theme: no need to
break symmetry!**

- Tähän kuvia ratkaisuista: syklissä triviaaleja...

The complexity landscape

$O(1)$

FMM

Packing & Covering

2APX-VC

...

$\Theta(\log^* n)$

3-COL

MIS

MM

...

**Another common theme:
constant-time algorithms do not use
unique identifiers!**

Conversely:
**Known $O(\log^* n)$ -time algorithms
depend on the use of identifiers**

**Q2: How do unique
identifiers help?**

A: For constant-time algorithms solving
LCL-problems

unique identifiers \approx total order

[Naor & Stockmeyer '95]

- LCL problems

A: For constant-time algorithms solving
LCL-problems

unique identifiers \approx total order

[Naor & Stockmeyer '95]

A: For constant-time approximation of
PO-checkable problems

unique identifiers

≈

port numbering and orientation

[Göös et al. '13]

- PO-checkable problems

A: For constant-time approximation of
PO-checkable problems

unique identifiers

≈

port numbering and orientation

[Göös et al. '13]

No symmetry breaking

Anonymous
 $O(1)$

FMM
Packing & Covering
2APX-VC

...

Symmetry breaking

ID
 $\Theta(\log^* n)$

3-COL
MIS
MM

...

No symmetry breaking*

Anonymous
 $O(1)$

FMM
Packing & Covering
2APX-VC

...

ID $O(1)$
Scheduling

Symmetry breaking

ID
 $\Theta(\log^* n)$

3-COL
MIS
MM

...

n

The picture is *fairly well understood*
as a function of ***n***

**Q3: What happens
when $\Delta \geq 2$?**

A: The running times of most fast algorithms depend on $\Delta!$

- $(\Delta+1)$ -coloring, maximal independent set and maximal matching in time $\mathbf{O}(\Delta + \log^* n)$
- 2-approximation of vertex cover, fractional maximal matching in time $\mathbf{O}(\Delta)$
- Constant-approximation of various packing and covering problems in time $\mathbf{O}(\log \Delta)$

**In contrast usually the best known
lower bound is $\Omega(\log \Delta)$!**

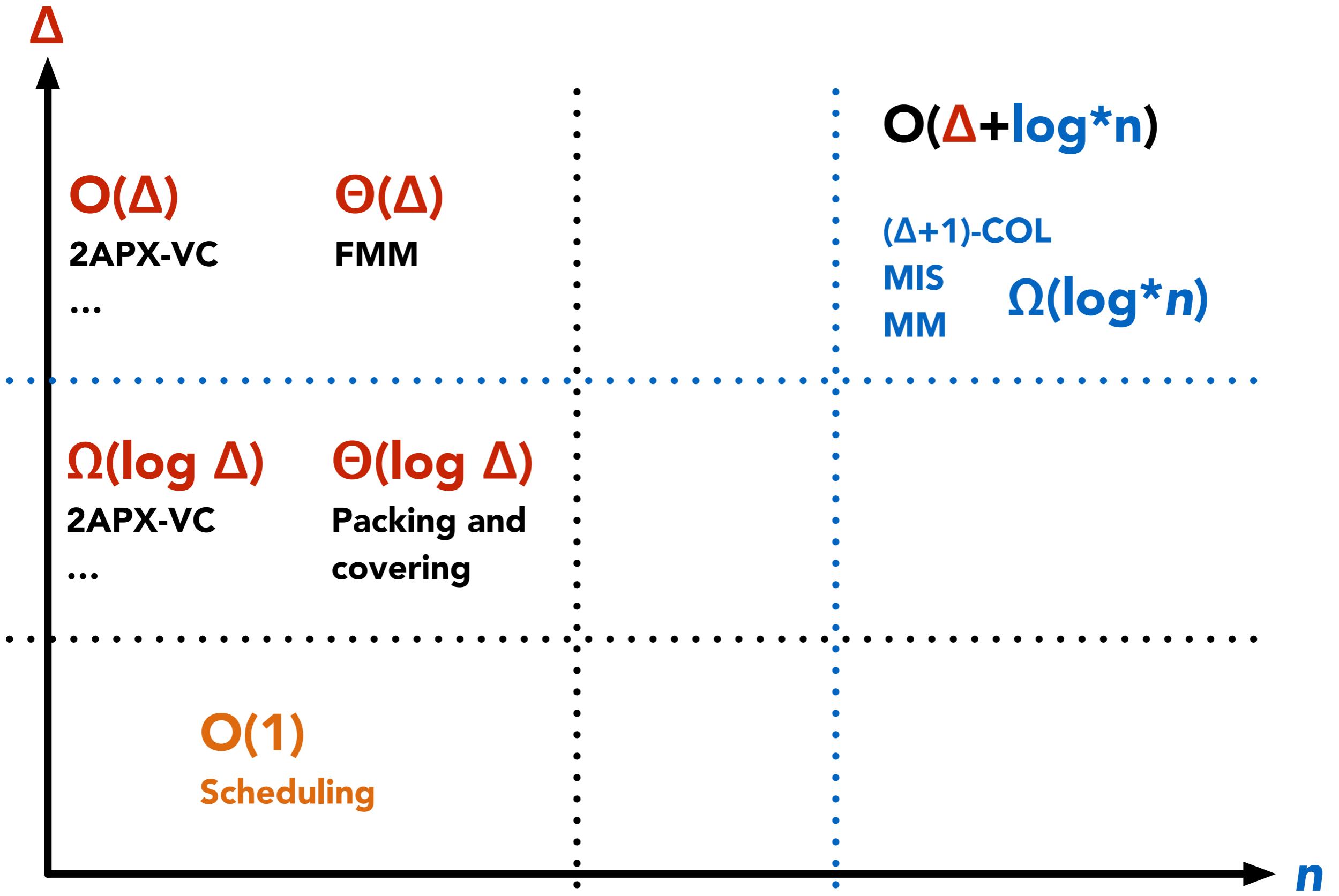
[Kuhn et al. '05]

This bound is for constant approximation
of packing and covering problems and
it is tight

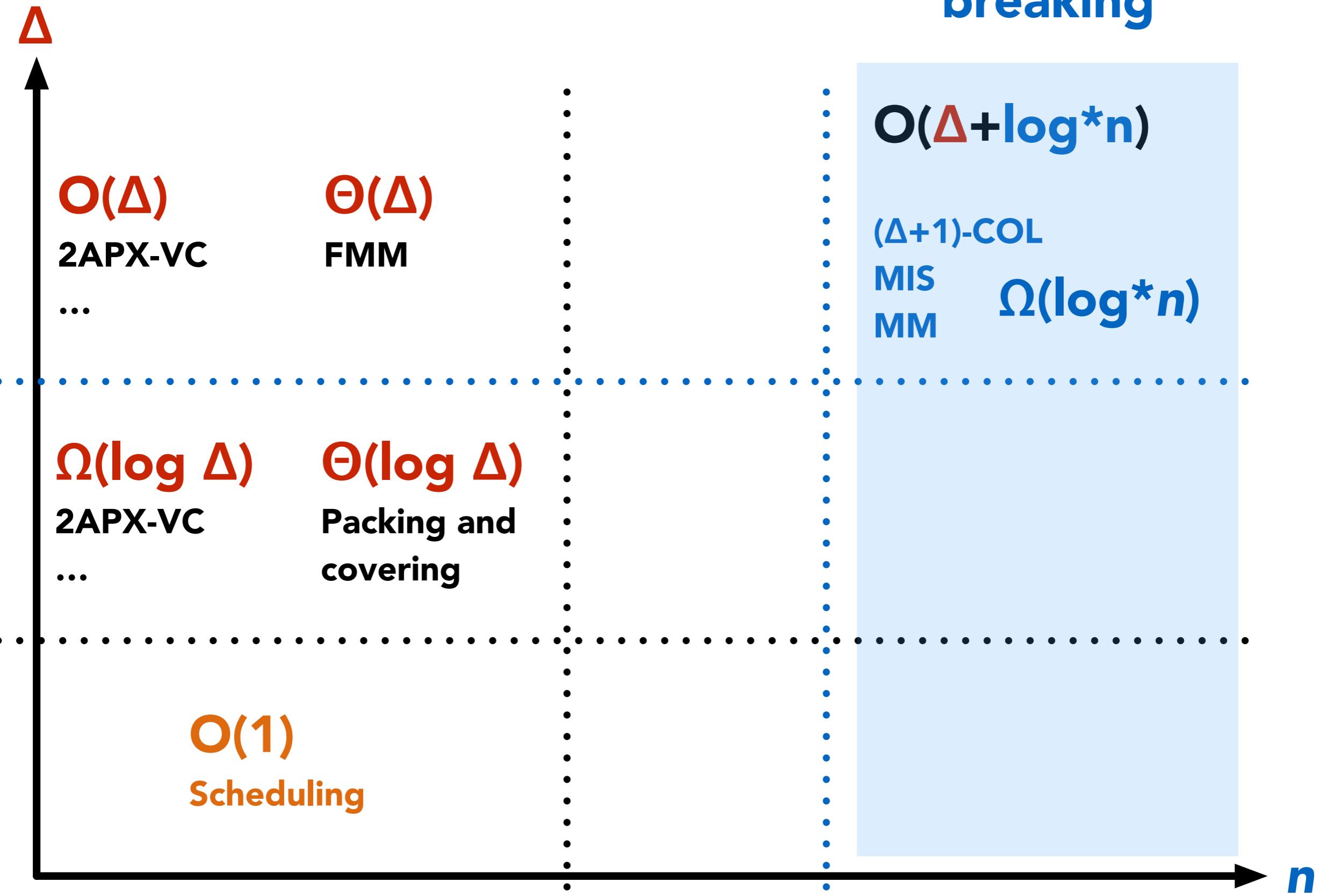
Recently we showed that
fractional maximal matching requires
time $\Omega(\Delta)$ independent of n

[Göös et al. '14]

**Is this the case for all the other
problems as well?**

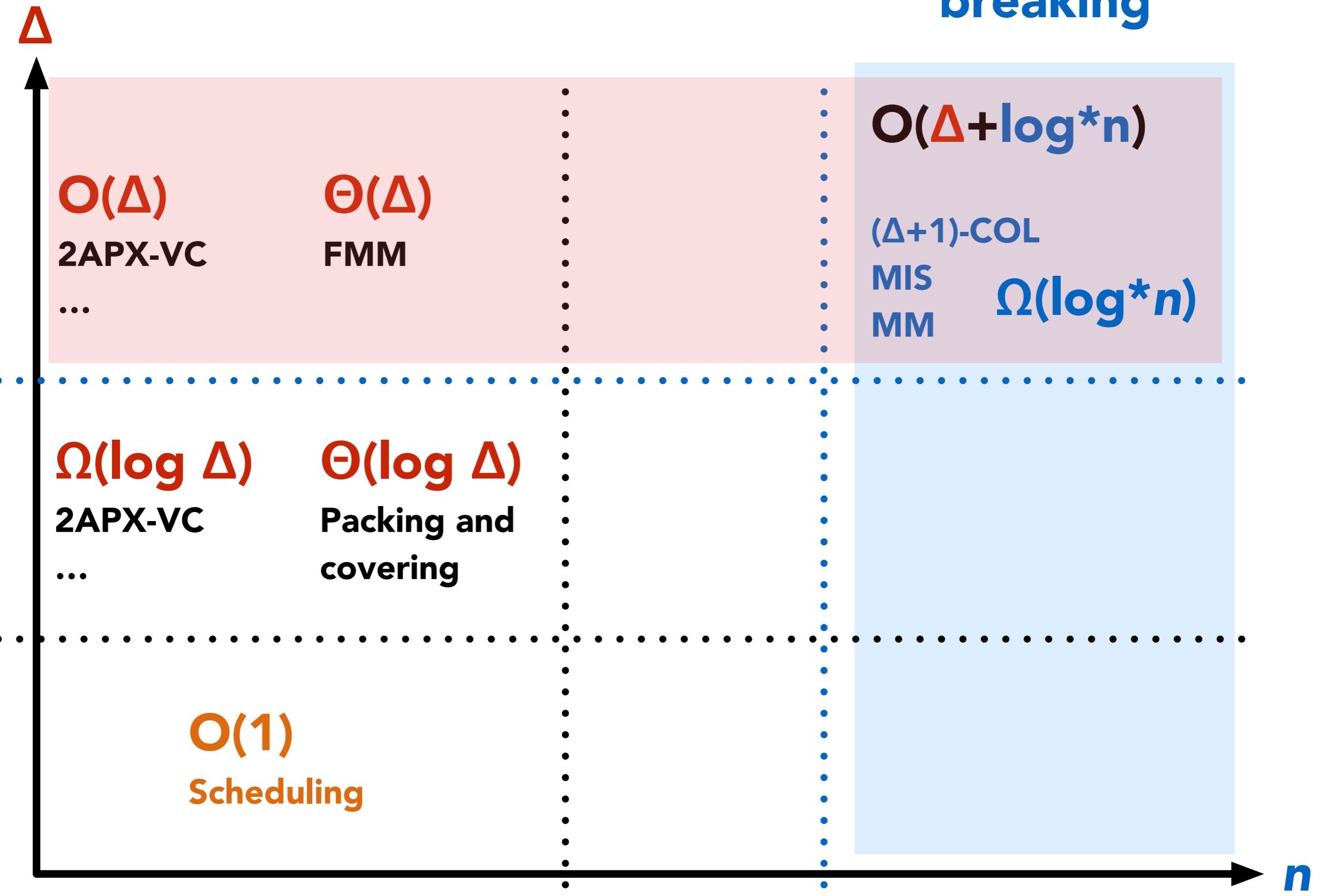


Symmetry breaking



Coordination

Symmetry breaking



**Q4: Is there a separate
symmetry breaking
requirement and
a coordination
requirement?**

Algorithms certainly seem to work this way!

Maximal matching [Panconesi & Rizzi '95]:

1. Decompose graph into Δ forests in **$O(1)$** time
2. 3-Color each forest in time **$O(\log^* n)$**
3. Sequentially for each forest compute a maximal matching in time **$O(\Delta)$**

Algorithms certainly seem to work this way!

$(\Delta+1)$ -coloring [Barenboim & Elkin '09]:

1. Compute an $O(\Delta^2)$ -coloring in time **$O(\log^* n)$** [Linial '92]
2. Improve defective colorings iteratively to get a $(\Delta+1)$ -coloring in time **$O(\Delta \cdot \log \log \Delta)^*$**

On the other hand, this is certainly not true in general:

There is an $O(\log^4 n)$ time algorithm for maximal matching

[Hanckowiak et al. '01]

An interesting open question:

**What is the complexity of maximal matching
in 2-colored graphs?**

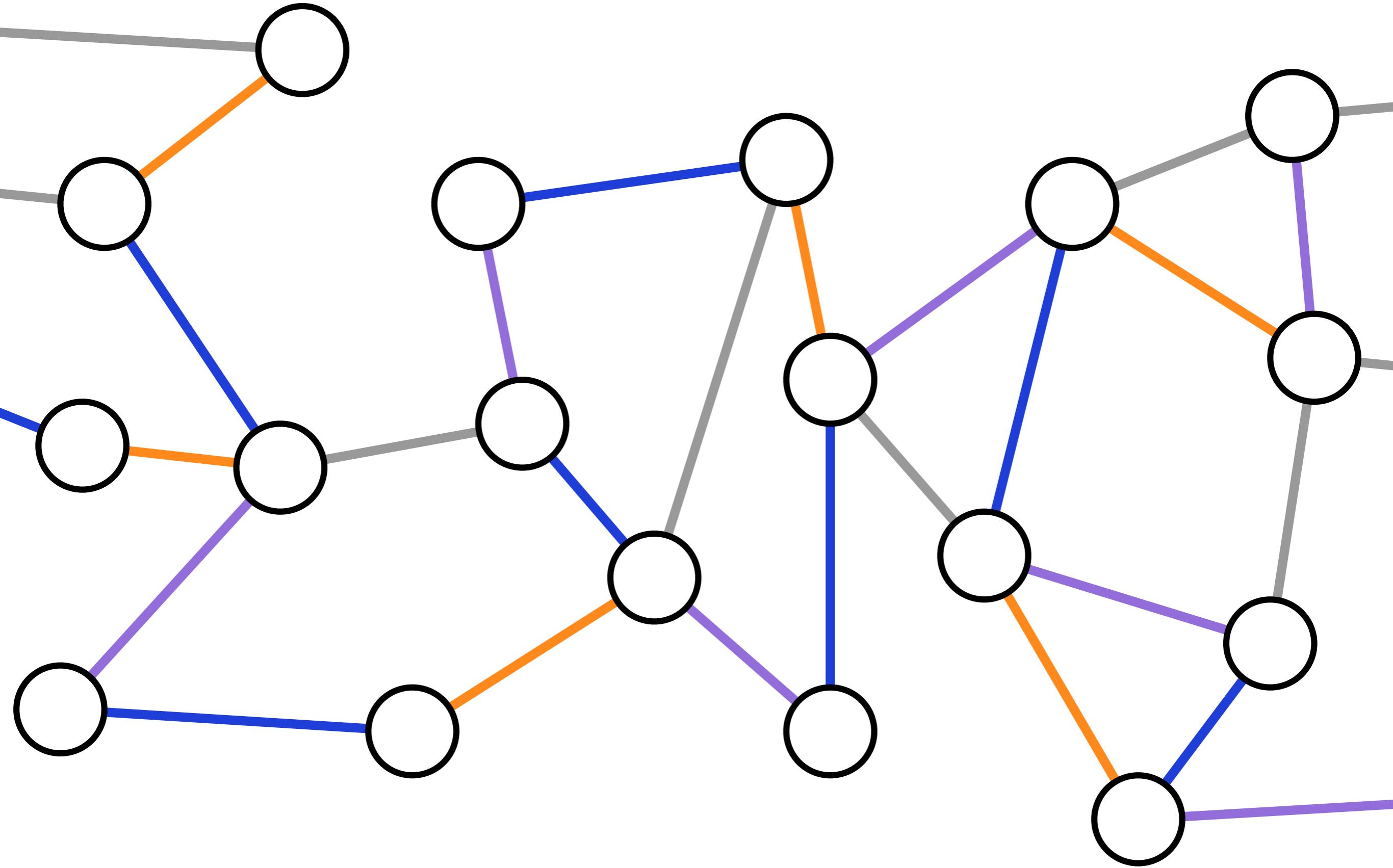
Known to be **$O(\Delta)$** independent of **n**
(A simple proposal algorithm)

Sometimes the simple algorithm is known to be optimal:

Maximal matching in $(\Delta+1)$ -edge colored Δ -regular graphs requires time $\Omega(\Delta)$

[H. and Suomela '12]

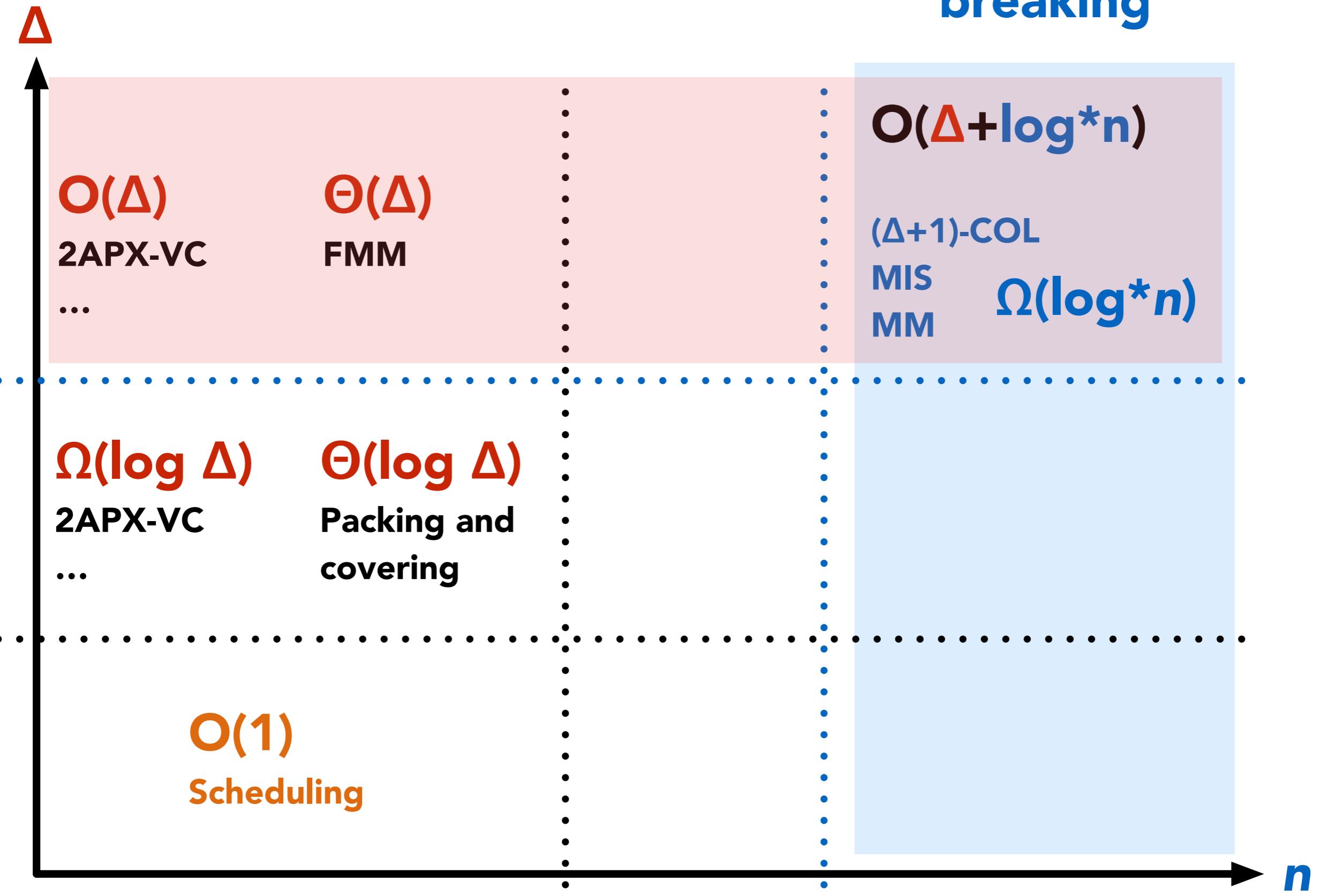
This is tight as there is a trivial greedy algorithm



This is essentially what coordination looks like?

Coordination

Symmetry breaking



**Distributed complexity of
fast algorithms well understood as
function of n**

**Distributed complexity as function of Δ
not as well understood**

**Distributed complexity as function of
both n and Δ not understood at all**