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- the number of nodes n
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Imagine sparse graphs: A = constant, n = oo

6



Fast
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Fast

Define:
fast algorithms depend only mildly on n

where mildly = O(log*n)

Recall that log*n = smallest k s.t. log®¥n < 1
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Define:

constant-time algorithms are independent of n



Q1: What can and
cannot be computed
by constant-time
algorithms?




A: Computing a 3-coloring on an n-cycle
requires Q(log*n) time [Linial '92]

Implies the same lower bound for
maximal matching and maximal
independent set
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A: Computing a 3-coloring on an n-cycle
takes O(log*n) time [Cole & Vishkin '86]

Implies the same upper bound tor
maximal matching and maximal
independent set
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A: Computing any constant-
approximation of an independent set or
a maximum matching on an n-cycle
requires Q(log*n) time
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A: Computing any constant-
approximation of an independent set or
a maximum matching on an n-cycle
takes O(log*n) time
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There is a fundamental barrier at Q(log*n)
time

We will call this symmetry breaking

This is roughly the same as saying that
adjacent nodes are not allowed
to produce the same output
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What does symmetry breaking
look like?
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Start with some coloring
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Learn parents color and
the first bit (from the
start) that differs
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Compute c(v), which is

the concatenation of the
index of the differing bit
and the bit itself
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Q1: So what can be
computed by constant-
time algorithms?




A: 2-approximation of vertex cover
[Astrand et al. ‘09]

A: Constant approximation of covering
and packing LPs [Kuhn ‘053]

A: Maximal fractional matchings
[Astrand and Suomela '10]
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Common theme: no need to
break symmetry!
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» Tahan kuvia ratkaisuista: syklissa triviaaleja...
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The complexity
landscape



O(1) O(log*n)

FMM : . 3-COL
Packing & Covering . . MiIS
2APX-VC : . MM
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Another common theme:
constant-time algorithms do not use
unique identifiers!
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Conversely:
Known O(log*n)-time algorithms
depend on the use of identifiers
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Q2: How do unique
identifiers help?



A: For constant-time algorithms solving
LCL-problems

unique identifiers = total order

[Naor & Stockmeyer '95]
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» LCL problems
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A: For constant-time algorithms solving
LCL-problems

unique identifiers = total order

[Naor & Stockmeyer '95]
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A: For constant-time approximation of

PO-checkable problems

unique identifiers

~

port numbering and orientation

[GOOs et al. "13]
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» PO-checkable problems

34



A: For constant-time approximation of

PO-checkable problems

unique identifiers

~

port numbering and orientation

[GOOs et al. "13]
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No symmetry breaking Symmetry breaking

Anonymous . ID
O(1) : . O(log*n)
FMM . 3-COL
Packing & Covering * MIS
2APX-VC . . MM
e ——————————————————— )
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No symmetry breaking* Symmetry breaking

Anonymous ID

O(1) : . O(log*n)
FMM 3-COL
Packing & Covering * MIS
2APX-VC . . MM

ID O(1)

Scheduling

* n
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The picture is fairly well understood
as a function of n
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Q3: What happens
when A = 2 ?




A: The running times of most fast algorithms
depend on Al

- (A+1)-coloring, maximal independent set
and maximal matching in time O(A + log*n)

- 2-approximation of vertex cover, fractional
maximal matching in time O(A)

- Constant-approximation of various packing
and covering problems in time O(log A)
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In contrast usually the best known
lower bound is Q(log A)!

[Kuhn et al. '05]

This bound is for constant approximation

of packing and covering problems ana
it is tight
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Recently we showed that
fractional maximal matching requires
time Q(A) independent of n

[GOOs et al. "14]

42



Is this the case for all the other
problems as well?

43



O(A+log*n)
O(A) O(A)

2APX-VC FMM ;. (A+1)-COL

. MIS
L MM O(log*n)

O(log A) O(log A) f
2APX-VC Packing and :
covering

O(1)

Scheduling

44



Symmetry
A breaking
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Symmetry

. Coordination breaking
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Q4: Is there a separate
symmetry breaking
requirement and
a coordination
requirement?
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Algorithms certainly seem to work this way!

Maximal matching [Panconesi & Rizzi ‘95]:

1. Decompose graph into A forests in O(1) time

2. 3-Color each forest in time O(log*n)

3. Sequentially for each forest compute a
maximal matching in time O(A)
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Algorithms certainly seem to work this way!

(A+1)-coloring [Barenboim & Elkin "09]:

1. Compute an O(A%)-coloring in time O(log*n)

Linial '92]

2. Improve defective colorings iteratively to get a
(A+1)-coloring in time O(A - log log A)*
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On the other hand, this is certainly not true in
general:

There is an O(log“n) time algorithm for maximal
matching

[Hanckowiak et al. '01]
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An interesting open question:

What is the complexity of maximal matching
in 2-colored graphs?

Known to be O(A) independent of n
(A simple proposal algorithm)
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Sometimes the simple algorithm is known to be
optimal:

Maximal matching in (A+1)-edge colored
A-regular graphs requires time Q(A)

[H. and Suomela "12]

This is tight as there is a trivial greedy algorithm
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This is essentially what coordination
looks like?
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Distributed complexity of
fast algorithms well understood as
function of n
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Distributed complexity as function of A
not as well understood
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Distributed complexity as function of
both n and A not understood at all
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