Fast distributed
graph algorithms

Juho Hirvonen
Aalto University & HIIT






Distributed



Algorithms



Fast

- the number of nodes n

- the maximum degree A



Fast

- the number of nodes n

- the maximum degree A

Imagine sparse graphs: A = constant, n = oo

6



Fast

Define:
fast algorithms depend only mildly on n

where mildly = O(log*n)



Fast

Define:
fast algorithms depend only mildly on n

where mildly = O(log*n)

Recall that log*n = smallest k s.t. log®¥n < 1

8



Define:

constant-time algorithms are independent of n



Q1: What can and
cannot be computed
by constant-time
algorithms?




A: Computing a 3-coloring on an n-cycle
requires Q(log*n) time [Linial '92]

Implies the same lower bound for
maximal matching and maximal
independent set

11



A: Computing a 3-coloring on an n-cycle
takes O(log*n) time [Cole & Vishkin '86]

Implies the same upper bound tor
maximal matching and maximal
independent set

12



A: Computing any constant-
approximation of an independent set or
a maximum matching on an n-cycle
requires Q(log*n) time

13



A: Computing any constant-
approximation of an independent set or
a maximum matching on an n-cycle
takes O(log*n) time

14



There is a fundamental barrier at Q(log*n)
time

We will call this symmetry breaking

This is roughly the same as saying that
adjacent nodes are not allowed
to produce the same output

15



What does symmetry breaking
look like?

16



OO OO O-—O—

1011

0000

1000

0110

0111

0100

17

Start with some coloring



OO OO O-—O—

1011

0000

1000

0110

0111

0100

18

Learn parents color and
the first bit (from the
start) that differs



OO OO O-—O—

1011

0000

1000

0110

0111

0100

c(v)
010

000
001
000
111

100

Compute c(v), which is

the concatenation of the
index of the differing bit
and the bit itself

19



OO OO O-—O—

010

000

001

000

117

100

Repeat

Each round co

reduced
n— logn

n — 6 colors in

ors are

+ 1

O(log*n)

Ilterations

20



Q1: So what can be
computed by constant-
time algorithms?




A: 2-approximation of vertex cover
[Astrand et al. ‘09]

A: Constant approximation of covering
and packing LPs [Kuhn ‘053]

A: Maximal fractional matchings
[Astrand and Suomela '10]

22



Common theme: no need to
break symmetry!

23



» Tahan kuvia ratkaisuista: syklissa triviaaleja...

24



The complexity
landscape



O(1) O(log*n)

FMM : . 3-COL
Packing & Covering . . MiIS
2APX-VC : . MM

20



Another common theme:
constant-time algorithms do not use
unique identifiers!

27



Conversely:
Known O(log*n)-time algorithms
depend on the use of identifiers

28



Q2: How do unique
identifiers help?



A: For constant-time algorithms solving
LCL-problems

unique identifiers = total order

[Naor & Stockmeyer '95]

30



» LCL problems

31



A: For constant-time algorithms solving
LCL-problems

unique identifiers = total order

[Naor & Stockmeyer '95]

32



A: For constant-time approximation of

PO-checkable problems

unique identifiers

~

port numbering and orientation

[GOOs et al. "13]

33



» PO-checkable problems

34



A: For constant-time approximation of

PO-checkable problems

unique identifiers

~

port numbering and orientation

[GOOs et al. "13]

35



No symmetry breaking Symmetry breaking

Anonymous . ID
O(1) : . O(log*n)
FMM . 3-COL
Packing & Covering * MIS
2APX-VC . . MM
e ——————————————————— )
. 36 .



No symmetry breaking* Symmetry breaking

Anonymous ID

O(1) : . O(log*n)
FMM 3-COL
Packing & Covering * MIS
2APX-VC . . MM

ID O(1)

Scheduling

* n
[} 37 [}



The picture is fairly well understood
as a function of n

38



Q3: What happens
when A = 2 ?




A: The running times of most fast algorithms
depend on Al

- (A+1)-coloring, maximal independent set
and maximal matching in time O(A + log*n)

- 2-approximation of vertex cover, fractional
maximal matching in time O(A)

- Constant-approximation of various packing
and covering problems in time O(log A)

40



In contrast usually the best known
lower bound is Q(log A)!

[Kuhn et al. '05]

This bound is for constant approximation

of packing and covering problems ana
it is tight

41



Recently we showed that
fractional maximal matching requires
time Q(A) independent of n

[GOOs et al. "14]

42



Is this the case for all the other
problems as well?

43



O(A+log*n)
O(A) O(A)

2APX-VC FMM ;. (A+1)-COL

. MIS
L MM O(log*n)

O(log A) O(log A) f
2APX-VC Packing and :
covering

O(1)

Scheduling

44



Symmetry
A breaking

O(A+log*n)
O(A) O(A)

2APX-VC FMM » (aTlECOC

: O(log*n)

:MM

O(log A) O(log A)
2APX-VC Packing and :
covering

O(1)
Scheduling

45



Symmetry

. Coordination breaking
O(A+log*n)

O(A) O(A) :

2APX-VC FMM . (A+1)-COL

- I O(log*n)

X MM

O(log A) O(log A)
2APX-VC Packing and :
covering

O(1)
Scheduling

46



Q4: Is there a separate
symmetry breaking
requirement and
a coordination
requirement?

47



Algorithms certainly seem to work this way!

Maximal matching [Panconesi & Rizzi ‘95]:

1. Decompose graph into A forests in O(1) time

2. 3-Color each forest in time O(log*n)

3. Sequentially for each forest compute a
maximal matching in time O(A)

48



Algorithms certainly seem to work this way!

(A+1)-coloring [Barenboim & Elkin "09]:

1. Compute an O(A%)-coloring in time O(log*n)

Linial '92]

2. Improve defective colorings iteratively to get a
(A+1)-coloring in time O(A - log log A)*

49



On the other hand, this is certainly not true in
general:

There is an O(log“n) time algorithm for maximal
matching

[Hanckowiak et al. '01]

50



An interesting open question:

What is the complexity of maximal matching
in 2-colored graphs?

Known to be O(A) independent of n
(A simple proposal algorithm)

51



Sometimes the simple algorithm is known to be
optimal:

Maximal matching in (A+1)-edge colored
A-regular graphs requires time Q(A)

[H. and Suomela "12]

This is tight as there is a trivial greedy algorithm

52






This is essentially what coordination
looks like?

54



Symmetry

. Coordination breaking
O(A+log*n)

O(A) O(A) :

2APX-VC FMM . (A+1)-COL

- I O(log*n)

X MM

O(log A) O(log A)
2APX-VC Packing and :
covering

O(1)
Scheduling

55



Distributed complexity of
fast algorithms well understood as
function of n

56



Distributed complexity as function of A
not as well understood

57



Distributed complexity as function of
both n and A not understood at all

58



