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Fast

- the number of nodes n 

- the maximum degree Δ
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Fast

- the number of nodes n 

- the maximum degree Δ

Imagine sparse graphs: Δ = constant, n → ∞
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Fast

Define:  

fast algorithms depend only mildly on n 

where mildly = O(log*n)
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Fast

Define:  

fast algorithms depend only mildly on n 

where mildly = O(log*n)

Recall that log*n = smallest k s.t. log(k)n ≤ 1
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Fast

Define:  

constant-time algorithms are independent of n
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Q1: What can and 
cannot be computed 

by constant-time 
algorithms?
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A: Computing a 3-coloring on an n-cycle 
requires Ω(log*n) time [Linial ’92] 

Implies the same lower bound for 
maximal matching and maximal 

independent set
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A: Computing a 3-coloring on an n-cycle 
takes O(log*n) time [Cole & Vishkin ’86] 

Implies the same upper bound for 
maximal matching and maximal 

independent set
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A: Computing any constant-
approximation of an independent set or  

a maximum matching on an n-cycle 
requires Ω(log*n) time
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A: Computing any constant-
approximation of an independent set or  

a maximum matching on an n-cycle 
takes O(log*n) time
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There is a fundamental barrier at Ω(log*n) 
time 

We will call this symmetry breaking 

This is roughly the same as saying that 
adjacent nodes are not allowed  

to produce the same output
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What does symmetry breaking  
look like?
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Start with some coloring
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Learn parents color and 
the first bit (from the 

start) that differs
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Compute c(v), which is 
the concatenation of the 
index of the differing bit 

and the bit itself
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Repeat 

Each round colors are 
reduced  

n ⟶ log n + 1 

n ⟶ 6 colors in O(log*n) 
iterations 
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Q1: So what can be 
computed by constant-

time algorithms?
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A: 2-approximation of vertex cover 
[Åstrand et al. ’09] 

A: Constant approximation of covering 
and packing LPs [Kuhn ’05] 

A: Maximal fractional matchings  
[Åstrand and Suomela ’10]
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Common theme: no need to  
break symmetry!

23



• Tähän kuvia ratkaisuista: syklissä triviaaleja…
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The complexity 
landscape
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n

Θ(log*n) 
!
3-COL 
MIS 
MM 
…

O(1) 
!
FMM 
Packing & Covering 
2APX-VC 
…
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Another common theme:  
constant-time algorithms do not use  

unique identifiers!
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Conversely:  
Known O(log*n)-time algorithms 
depend on the use of identifiers
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Q2: How do unique 
identifiers help?
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A: For constant-time algorithms solving 
LCL-problems 

unique identifiers ≈ total order 

[Naor & Stockmeyer ’95]
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• LCL problems
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A: For constant-time algorithms solving 
LCL-problems 

unique identifiers ≈ total order 

[Naor & Stockmeyer ’95]
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A: For constant-time approximation of 
PO-checkable problems 

unique identifiers  
≈  

port numbering and orientation 

[Göös et al. ’13]
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• PO-checkable problems

34



A: For constant-time approximation of 
PO-checkable problems 

unique identifiers  
≈  

port numbering and orientation 

[Göös et al. ’13]
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n

ID 
Θ(log*n) 
!
3-COL 
MIS 
MM 
…

Anonymous 
O(1) 
!
FMM 
Packing & Covering 
2APX-VC 
…

No symmetry breaking Symmetry breaking
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n

ID 
Θ(log*n) 
!
3-COL 
MIS 
MM 
…

Anonymous 
O(1) 
!
FMM 
Packing & Covering 
2APX-VC 
…

ID O(1) 
Scheduling

No symmetry breaking* Symmetry breaking
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The picture is fairly well understood  
as a function of n
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Q3: What happens 
when Δ ≥ 2 ?
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A: The running times of most fast algorithms  
depend on Δ! 

- (Δ+1)-coloring, maximal independent set 
and maximal matching in time O(Δ + log*n) 

- 2-approximation of vertex cover, fractional 
maximal matching in time O(Δ) 

- Constant-approximation of various packing 
and covering problems in time O(log Δ)
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In contrast usually the best known 
lower bound is Ω(log Δ)! 

[Kuhn et al. ’05] 

This bound is for constant approximation 
of packing and covering problems and  

it is tight
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Recently we showed that  
fractional maximal matching requires  

time Ω(Δ) independent of n 

[Göös et al. ’14]
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Is this the case for all the other 
problems as well?
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n

O(Δ+log*n) 
!
(Δ+1)-COL 
MIS 
MM

O(Δ) 
2APX-VC 
…

O(1) 
Scheduling

Θ(Δ) 
FMM

Θ(log Δ) 
Packing and  
covering

Ω(log Δ) 
2APX-VC 
…

Δ
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n

O(Δ+log*n) 
!
(Δ+1)-COL 
MIS 
MM

O(Δ) 
2APX-VC 
…

O(1) 
Scheduling

Θ(Δ) 
FMM

Θ(log Δ) 
Packing and  
covering

Ω(log Δ) 
2APX-VC 
…

Symmetry 
breakingΔ
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n

O(Δ+log*n) 
!
(Δ+1)-COL 
MIS 
MM

O(Δ) 
2APX-VC 
…

O(1) 
Scheduling

Θ(Δ) 
FMM

Θ(log Δ) 
Packing and  
covering

Ω(log Δ) 
2APX-VC 
…

Symmetry 
breakingCoordination

Δ
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Q4: Is there a separate 
symmetry breaking 

requirement and  
a coordination 
requirement?
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Algorithms certainly seem to work this way! 

Maximal matching [Panconesi & Rizzi ’95]: 

1. Decompose graph into Δ forests in O(1) time 
2. 3-Color each forest in time O(log*n) 
3. Sequentially for each forest compute a 

maximal matching in time O(Δ)
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Algorithms certainly seem to work this way! 

(Δ+1)-coloring [Barenboim & Elkin ’09]: 

1. Compute an O(Δ2)-coloring in time O(log*n) 
[Linial ’92] 

2. Improve defective colorings iteratively to get a 
(Δ+1)-coloring in time O(Δ ∙ log log Δ)*
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On the other hand, this is certainly not true in 
general: 

There is an O(log4n) time algorithm for maximal 
matching 

[Hanckowiak et al. ’01]
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An interesting open question: 

What is the complexity of maximal matching  
in 2-colored graphs? 

Known to be O(Δ) independent of n 
(A simple proposal algorithm)
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Sometimes the simple algorithm is known to be 
optimal: 

Maximal matching in (Δ+1)-edge colored  
Δ-regular graphs requires time Ω(Δ) 

[H. and Suomela ’12] 

This is tight as there is a trivial greedy algorithm
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This is essentially what coordination 
looks like?
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n

O(Δ+log*n) 
!
(Δ+1)-COL 
MIS 
MM

O(Δ) 
2APX-VC 
…

O(1) 
Scheduling

Θ(Δ) 
FMM

Θ(log Δ) 
Packing and  
covering

Ω(log Δ) 
2APX-VC 
…

Symmetry 
breakingCoordination

Δ
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Distributed complexity of  
fast algorithms well understood as 

function of n
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Distributed complexity as function of Δ 
not as well understood
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Distributed complexity as function of 
both n and Δ not understood at all
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