
Fast distributed
graph algorithms

Juho Hirvonen
Aalto University & HIIT

Distributed

2

Distributed

3

Algorithms

4

Fast

- the number of nodes n

- the maximum degree Δ

5

Fast

- the number of nodes n

- the maximum degree Δ

Imagine sparse graphs: Δ = constant, n → ∞

6

Fast

Define:

fast algorithms depend only mildly on n

where mildly = O(log*n)

7

Fast

Define:

fast algorithms depend only mildly on n

where mildly = O(log*n)

Recall that log*n = smallest k s.t. log(k)n ≤ 1

8

Fast

Define:

constant-time algorithms are independent of n

9

Q1: What can and
cannot be computed

by constant-time
algorithms?

10

A: Computing a 3-coloring on an n-cycle
requires Ω(log*n) time [Linial ’92]

Implies the same lower bound for
maximal matching and maximal

independent set

11

A: Computing a 3-coloring on an n-cycle
takes O(log*n) time [Cole & Vishkin ’86]

Implies the same upper bound for
maximal matching and maximal

independent set

12

A: Computing any constant-
approximation of an independent set or

a maximum matching on an n-cycle
requires Ω(log*n) time

13

A: Computing any constant-
approximation of an independent set or

a maximum matching on an n-cycle
takes O(log*n) time

14

There is a fundamental barrier at Ω(log*n)
time

We will call this symmetry breaking

This is roughly the same as saying that
adjacent nodes are not allowed

to produce the same output

15

What does symmetry breaking
look like?

16

Start with some coloring

17

1011

0000

1000

0110

0111

0100

Learn parents color and
the first bit (from the

start) that differs

18

1011

0000

1000

0110

0111

0100

Compute c(v), which is
the concatenation of the
index of the differing bit

and the bit itself

19

1011

0000

1000

0110

0111

0100

010

000

001

000

111

100

c(v)

Repeat

Each round colors are
reduced

n ⟶ log n + 1

n ⟶ 6 colors in O(log*n)
iterations

20

010

000

001

000

111

100

Q1: So what can be
computed by constant-

time algorithms?

21

A: 2-approximation of vertex cover
[Åstrand et al. ’09]

A: Constant approximation of covering
and packing LPs [Kuhn ’05]

A: Maximal fractional matchings
[Åstrand and Suomela ’10]

22

Common theme: no need to
break symmetry!

23

• Tähän kuvia ratkaisuista: syklissä triviaaleja…

24

The complexity
landscape

25

n

Θ(log*n)
!
3-COL
MIS
MM
…

O(1)
!
FMM
Packing & Covering
2APX-VC
…

26

Another common theme:
constant-time algorithms do not use

unique identifiers!

27

Conversely:
Known O(log*n)-time algorithms
depend on the use of identifiers

28

Q2: How do unique
identifiers help?

29

A: For constant-time algorithms solving
LCL-problems

unique identifiers ≈ total order

[Naor & Stockmeyer ’95]

30

• LCL problems

31

A: For constant-time algorithms solving
LCL-problems

unique identifiers ≈ total order

[Naor & Stockmeyer ’95]

32

A: For constant-time approximation of
PO-checkable problems

unique identifiers
≈

port numbering and orientation

[Göös et al. ’13]

33

• PO-checkable problems

34

A: For constant-time approximation of
PO-checkable problems

unique identifiers
≈

port numbering and orientation

[Göös et al. ’13]

35

n

ID
Θ(log*n)
!
3-COL
MIS
MM
…

Anonymous
O(1)
!
FMM
Packing & Covering
2APX-VC
…

No symmetry breaking Symmetry breaking

36

n

ID
Θ(log*n)
!
3-COL
MIS
MM
…

Anonymous
O(1)
!
FMM
Packing & Covering
2APX-VC
…

ID O(1)
Scheduling

No symmetry breaking* Symmetry breaking

37

The picture is fairly well understood
as a function of n

38

Q3: What happens
when Δ ≥ 2 ?

39

A: The running times of most fast algorithms
depend on Δ!

- (Δ+1)-coloring, maximal independent set
and maximal matching in time O(Δ + log*n)

- 2-approximation of vertex cover, fractional
maximal matching in time O(Δ)

- Constant-approximation of various packing
and covering problems in time O(log Δ)

40

In contrast usually the best known
lower bound is Ω(log Δ)!

[Kuhn et al. ’05]

This bound is for constant approximation
of packing and covering problems and

it is tight

41

Recently we showed that
fractional maximal matching requires

time Ω(Δ) independent of n

[Göös et al. ’14]

42

Is this the case for all the other
problems as well?

43

n

O(Δ+log*n)
!
(Δ+1)-COL
MIS
MM

O(Δ)
2APX-VC
…

O(1)
Scheduling

Θ(Δ)
FMM

Θ(log Δ)
Packing and
covering

Ω(log Δ)
2APX-VC
…

Δ

44

Ω(log*n)

n

O(Δ+log*n)
!
(Δ+1)-COL
MIS
MM

O(Δ)
2APX-VC
…

O(1)
Scheduling

Θ(Δ)
FMM

Θ(log Δ)
Packing and
covering

Ω(log Δ)
2APX-VC
…

Symmetry
breakingΔ

45

Ω(log*n)

n

O(Δ+log*n)
!
(Δ+1)-COL
MIS
MM

O(Δ)
2APX-VC
…

O(1)
Scheduling

Θ(Δ)
FMM

Θ(log Δ)
Packing and
covering

Ω(log Δ)
2APX-VC
…

Symmetry
breakingCoordination

Δ

46

Ω(log*n)

Q4: Is there a separate
symmetry breaking

requirement and
a coordination
requirement?

47

Algorithms certainly seem to work this way!

Maximal matching [Panconesi & Rizzi ’95]:

1. Decompose graph into Δ forests in O(1) time
2. 3-Color each forest in time O(log*n)
3. Sequentially for each forest compute a

maximal matching in time O(Δ)

48

Algorithms certainly seem to work this way!

(Δ+1)-coloring [Barenboim & Elkin ’09]:

1. Compute an O(Δ2)-coloring in time O(log*n)
[Linial ’92]

2. Improve defective colorings iteratively to get a
(Δ+1)-coloring in time O(Δ ∙ log log Δ)*

49

On the other hand, this is certainly not true in
general:

There is an O(log4n) time algorithm for maximal
matching

[Hanckowiak et al. ’01]

50

An interesting open question:

What is the complexity of maximal matching
in 2-colored graphs?

Known to be O(Δ) independent of n
(A simple proposal algorithm)

51

Sometimes the simple algorithm is known to be
optimal:

Maximal matching in (Δ+1)-edge colored
Δ-regular graphs requires time Ω(Δ)

[H. and Suomela ’12]

This is tight as there is a trivial greedy algorithm

52

53

This is essentially what coordination
looks like?

54

n

O(Δ+log*n)
!
(Δ+1)-COL
MIS
MM

O(Δ)
2APX-VC
…

O(1)
Scheduling

Θ(Δ)
FMM

Θ(log Δ)
Packing and
covering

Ω(log Δ)
2APX-VC
…

Symmetry
breakingCoordination

Δ

55

Ω(log*n)

Distributed complexity of
fast algorithms well understood as

function of n

56

Distributed complexity as function of Δ
not as well understood

57

Distributed complexity as function of
both n and Δ not understood at all

58

